
American J. of Engineering and Applied Sciences 4 (3): 429-434, 2011
ISSN 1941-7020
© 2014 W.A. Murtada et al., This open access article is distributed under a Creative Commons Attribution
(CC-BY) 3.0 license

Corresponding Author: Wael A. Murtada, Department of Satellite Communications and Ground Stations,
 Space Sciences and Strategic Studies Division, National Authority for Remote Sensing and Space Sciences,
 Cairo, Egypt

429

Design and Implementation of an Efficient Software Communications

Architecture Core Framework for a Digital Signal Processors Platform

1Wael A. Murtada, 2Mohamed M. Zahra,
2Magdi Fikri, 2Mohamed I. Yousef and 2Salwa El-Ramly

1Department of Satellite Communications and Ground Stations,
Space Sciences and Strategic Studies Division,

National Authority for Remote Sensing and Space Sciences, Cairo, Egypt
2Department of Communications and Electronics Engineering,

Faculty of Engineering, Al-Azhar University, Cairo, Egypt

Abstract: Problem statement: The Software Communications Architecture (SCA) was developed
to improve software reuse and interoperability in Software Defined Radios (SDR). There had been
performance concerns since its conception. Arguably, the majority of the problems and inefficiencies
associated with the SCA can be attributed to the assumption of modular distributed platforms relying on
General Purpose Processors (GPPs) to perform all signal processing. Approach: Significant
improvements in cost and power consumption can be obtained by utilizing specialized and more efficient
platforms. Digital Signal Processors (DSPs) present such a platform and have been widely used in the
communications industry. Improvements in development tools and middleware technology opened the
possibility of fully integrating DSPs into the SCA. This approach takes advantage of the exceptional
power, cost and performance characteristics of DSPs, while still enjoying the flexibility and portability of
the SCA. Results: This study presents the design and implementation of an SCA Core Framework (CF)
for a TI TMS320C6416 DSP. The framework is deployed on a C6416 Device Cycle Accurate Simulator
and TI C6416 Development board. The SCA CF is implemented by leveraging OSSIE, an open-source
implementation of the SCA, to support the DSP platform. OIS’s ORBExpress DSP and DSP/BIOS are
used as the middleware and operating system, respectively. A sample waveform was developed to
demonstrate the framework’s functionality. Benchmark results for the framework and sample
applications are provided. Conclusion: Benchmark results show that, using OIS ORBExpress DSP ORB
middleware has an impact for decreasing the Software Memory Footprint and increasing the System
Performance compared with PrismTech's e*ORB middleware.

Key words: Software Communications Architecture (SCA), Software Defined Radio (SDR), digital

signal processors, Embedded Object Request Broker (ORB)

INTRODUCTION

 The Software Communications Architecture (SCA)
was developed by the Joint Tactical Radio System
(JTRS) program of the US Department of Defense to
standardize the development of Software Defined Radio
(SDR) technology. The SCA was developed to enhance
system flexibility and interoperability, while reducing
development and deployment costs. Early
implementations of SCA SDRs have struggled to meet
performance, cost, size and power requirements.
Arguably, many of the these problems have their origin

in the assumption of a modular and distributed platform
based on General Purpose Processor (GPP) to perform
all signal processing. In order to overcome these
problems, it is necessary to make better use of
specialized hardware optimized for signal processing.
Digital Signal Processors (DSPs) are specialized
microprocessors designed specifically for real-time
digital signal processing. However, DSPs have been
relegated as secondary elements in the SCA, requiring a
Hardware Abstraction Layer (HAL) for connectivity.
Ongoing improvements in development tools and
middleware technology allow the implementation of

Am. J. Engg. & Applied Sci., 4 (3): 429-434, 2011

430

SCA systems using only DSPs. By following this
approach the flexibility and reusability brought by the
SCA are complimented by the cost and power
efficiency of DSPs. If taken to a logical extent, this
approach could eliminate the need for a GPP on certain
SDR implementations. In this study we present the
design and development of an SCA implementation for
a homogeneous TI C6416 DSP platform Texas
Instruments.

System architecture: The goal of this study is to study
the repercussions of implementing the SCA in an
optimized DSP platform. Therefore, we aim to
minimize, or eliminate, the use of GPPs for this
implementation. We leveraged the existing
implementation of MPRG’s Open Source SCA
Implementation: Embedded (OSSIE) (ADMIN, 2011),
by porting it to the C64 platform. The system
implements the SCA version 2.2 (Potter, 2010) in C++.
Our development environment is TI Code Composer
Studio running on a Windows PC. Most of the
development is done using the Device Accurate
simulator of the C6000. The final target platform is a
C6416 board from Texas Instruments.

Software architecture elements: The general software
structure can be seen in Fig. 1, showing the three
different components of the SCA Operational
Environment (OE): the Core Framework (CF), ORB
middleware and operating system. In this study we used
OSSIE as the CF, ORBExpress DSP from Objective
Interface Systems (OIS) as middleware and DSP/BIOS
as Real-Time OS. All of them are available
commercially or as open source. Services (e.g., Log,
Event and Naming Services) are not considered in our
current implementation.

Fig. 1: Software structure

 The DSP/BIOS is a scalable real-time multitasking
operating system designed specifically for the TMS320
family of DSPs Texas Instruments. It is developed and
maintained by Texas Instruments. The DSP/BIOS is
built in modules which allows developers to reduce the
footprint to a minimum by only integrating the features
that are strictly necessary for operation. It supports
preemptive multithreaded operations thanks to a real
time scheduler and provides memory management
modules for low overhead dynamic memory allocation.
The DSP/BIOS is not a Portable Operating System
Interface (POSIX) compliant, as required by the SCA,
forcing a slight deviation from the specifications. The
C6000 family of processors does not include a memory
management unit Texas instruments.
 The ORB used in this project is OIS's ORBExpress
DSP C++ version for DSP. It is a very optimized and
modular implementation of minimum-CORBA as
standardized by the Object Management Group (OMG).
However, ORBExpress DSP supports the Extensible
Transport Framework (ETF) which allows custom
transport plug-ins Objective Interface Systems.

MATERIALS AND METHODS

Platform: The target platform for this project is the TI
C6416 development board from Texas Instrument
Texas Instruments. This high performance board
contains TI TMS320C6416T DSP. The system runs at
720 MHz and has 16 Mbytes of SDRAM memory and 1
Mbytes of internal memory. Only DSP are used for
signal processing and framework functionality. Single
TI C6416 DSP is a server and client node.

Real-time implementation: The bulk of this project
consists of porting the existing version of OSSIE to
the C64 platform. The original OSSIE runs on an
×86 platform running Linux as OS with omniORB as
middleware.
 As with any other software project, development
tools play a very important role. We use Code
Composer Studio (CCS), an integrated development
environment for TI DSPs, with version 6.0.8 of its Code
Generation Tools. This particular version lacks the
Standard Template Library (STL) and has limited
support for C++ exceptions. The STL provides template
classes such as Vector, widely used in the original
OSSIE. In the absence of exception support, we use
CORBA Environment variables coupled with a set of
macros, distributed as part of ORBExpress DSP, for
error handling purpose. These characteristics imposed
significant changes in the original OSSIE source code.

Am. J. Engg. & Applied Sci., 4 (3): 429-434, 2011

431

Fig. 2: Processing node deployment scheme

Fig. 3: Proposed XML domain profile parsing strategy

 An important aspect in the development of this
project is the lack of a Memory Management Unit
(MMU) in the C64 (v). The MMU is responsible for
handling memory access requests. It takes care of
virtual memory management, paging, memory
protection and bus arbitration. Its job is to take pieces
of dispersed physical memory and present them to the
requesting process as a contiguous block. In porting
OSSIE to the MMUless C64 platform, all memory
management is the responsibility of the developer.
Certain OS functions, such as spawning a copy of the
running process i.e. child process from certain running
parent process, are not supported. Another important
area in the development is the porting of all schedulable
tasks to the preemptive, multithreaded DSP/BIOS. The
main difference from a traditional fair-share OS is that
the active task with the highest priority will be
scheduled for execution; no matter how many other
tasks are waiting, or for how long. This characteristic
allows deterministic execution, crucial in real-time
systems, but makes the developer completely
responsible for task scheduling and priority assignment.
The functionality of the Core Framework is split
between Host and Remote nodes. The Host node
includes an instance of DomainManager, while a
remote node includes an instance of DeviceManager
and other Devices. Figure 2 shows the CF interfaces
allocated to each node. There are other possible
strategies, for example having a node hosting both
DomainManager and DeviceManager, while the rest of
the nodes in the platforms only host Devices. We

propose this approach to stress our implementation and
evaluate the degree of flexibility delivered by it.

Proposed XML domain profile parsing strategy: The
SCA specification requires parsing of the XML Domain
Profile at runtime to obtain deployment and
configuration information (Potter, 2010). For example,
the ApplicationFactory interface must read a Software
Assembly Descriptor (SAD) file in order to know what
components are included in a given waveform
application and their connections. Parsing an XML file
is a complicated task for a DSP and there are not many
tools available to perform this. In order to facilitate
development, reduce memory requirements and speed
execution, we developed a two-step parsing scheme
designed to facilitate Domain Profile parsing by the
DSP. In this scheme, an offline translation of the XML
files into a simplified proposed format is performed.
The proposed simplified format only keeps the most
important information from the profile files and stores it
in a simple text file. The information kept includes all
the data required for successful deployment and
configuration of waveforms and components: UUIDs,
descriptors locations, connections.
 The information discarded represents information
not indispensable for waveform deployment and
operation: descriptions, headers, authors. Even though
the discarded information is important and therefore
must be provided when developing an SCA component,
the main framework functionality does not require it for
proper operation. A graphical representation of this
approach is shown in Fig. 3. It can be argued that this
approach is not SCA compliant. However, having this
two-step parsing strategy does not affect the design
cycle of traditional SCA waveforms and only adds one
extra step at installation time. The savings in time and
complexity, along with the uncompromised portability
of the resulting waveforms justify this decision. We
implemented the XML translator in VB6 under
windows XP; it uses Microsoft MSXML library to
parse XML domain profile. The translator parses an
SCA compliant XML file, gathers the required
information and writes the translated file with a .c64
extension, preserving file names and directory structure
as in (Gonzalez et al., 2007a). These simplified. c64
files are then parsed at real time by the framework
running on the C64 platform.

File system: Our hardware platform does not have
long-term storage capability Texas Instruments
Therefore, only a partial file system is implemented in
this project. The host computer’s hard drive and file
system are used by the framework. This is

Am. J. Engg. & Applied Sci., 4 (3): 429-434, 2011

432

accomplished by CCS I/O utilities. To implement the
file system interfaces we relied on IO functions from
the TI run-time support library. However, the access
allowed by this library is limited primarily in terms of
directory manipulation. Therefore, functionality such as
mkdir, rmdir, mount and unmount is not implemented.

Software component deployment: The SCA specifies
two equivalent mechanisms to launch software
components (Potter, 2010). One is using
ResourceFactory and the other using ExecutableDevice.
The ExecutableDevice interface typically represents
processors with a multithreaded operating system
capable of launching software components.
ExecutableDevice has access to the OS directives to
schedule the component. ResourceFactory performs the
exact same functionality and is used as a local tool to
deploy components without a DeviceManager. In this
project we use the ResourceFactory interface to deploy
components in the host node and an ExecutableDevice
for remote nodes. The implementation of these
interfaces uses DSP/BIOS static task scheduler. Every
time a new component instance is required, a new task
is created and scheduled. The ResourceFactory and
ExecutableDevice implementations are in charge of
managing the new task’s priority. Because of the lack
of an MMU and long-term storage capability, it is
necessary to have all the tasks loaded in program
memory before they can be scheduled. This mechanism
is proposed due to real time nature of the system.

Sample application: In order to demonstrate the
framework functionality, two sample applications are
developed. These applications are intended for
demonstration purposes and nothing else. No extensive
signal processing is performed.

Fig. 4: Sample BPSK application waveform

Fig. 5: Sample QPSK application waveform

 The main goal for these applications is to verify the
operation of the framework and to corroborate the
feasibility of deploying SCA compliant waveforms onto
the C64 platform. The first application includes three
simple components: BPSK Modulator, AWGN Channel
and Demodulator as in Fig. 4. The BPSK modulator
generates a random stream of 1’s and -1’s. The stream is
passed to the Channel component which adds Gaussian
noise to the In-Phase and Quadrature components of the
stream. The Demodulator only displays the constellation
diagram of the signal. The second waveform includes a
QPSK modulator and demodulator instead of BPSK
modulator and demodulator. Figure 5 shows a graphical
representation of the second waveform. Both waveforms
were successfully deployed on a single chip
configuration using the ResourceFactory interface to
launch the components.

RESULTS

 We present general profiling results for our
implementation. The framework capabilities are
demonstrated by switching back and forth between two
waveforms. Code Composer Studio (CCS) is used to
control the execution, display information and error
messages and enter selection values. Keep in mind that
from the framework perspective there is no difference
between deploying these simple waveforms and
deploying more sophisticated ones.

Profiling: Profiling was performed on the framework
and application using two different metrics: memory
footprint and cycle count as in (Gonzalez et al., 2007a).
The former represents the extra memory space
necessary to support the SCA framework. The latter
represents the amount of overhead imposed by the
framework in terms of processing power. All results
were obtained from a single-chip configuration. That is,
all framework and waveform components were
collocated within the same processor; they do not
include a transport layer. No optimizations were
performed in either the framework or the waveform
components. All performance tests were carried out
using the C6416 Device Cycle Accurate Simulator and
the Code Composer Studio profiler. It is very important
to emphasize that these results represent initial
measurements and are subject to further investigation,
validation and optimization.

DISCUSSION

Memory footprint: Memory allocation results are
obtained from the .MAP file generated by CCS Code
Generation Tools. This file contains a mapping of all
sections allocated in memory. It includes program

Am. J. Engg. & Applied Sci., 4 (3): 429-434, 2011

433

memory and data memory. All dynamic memory
allocation requests are served from a memory pool or
heap, which is also included in the .MAP file. All
profiling results are presented in 8-bit memory word.
Note that the C6416 DSP has 16M bytes of external
memory (SDRAM) besides the 1M Bytes of internal
memory (IRAM). The total memory used by the system
is shown in Table 1. It represents a little less than 1% of
the available memory in the platform. These results
correspond to the single-chip implementation of both,
BPSK and QPSK, sample waveforms. The footprint is
directly related to the application’s functionality and the
number of components. Table 2 shows the memory
breakdown by major components. The .SDRAM$heap
field represents the total heap available to serve dynamic
memory allocation requests from the application. The
footprint contribution from support libraries (e.g.,
Generic Runtime Library, Math Library) is considered
under the “Other” category. Figure 6 shows a pie chart
representation of the main components’ contribution to
the total memory allocation.
 Due to space limitations, we do not break down the
memory footprint for each major component. Instead,
we comment on some important aspects and state some
qualifiers for these results. In the break down of the
memory requirements for the Core Framework (CF)
we find that almost 70% of the total memory
allocated for the CF comes from the C++ mapping of
the SCA CF IDL interfaces.
 It is important to note that the CF IDL descriptions,
cf.idl file, contain all the interfaces defined in the SCA
CF, including some that are not used in single-
processor operation (e.g., Device, DeviceManager). It
is possible to optimize the C++ bindings of IDL
interfaces by adding more control to the IDL
compiler, enabling more selective code generation
(e.g., for specific interfaces generate client stub only,
or server skeletons only, or nothing).

Table 1: Total software memory allocation
Memory Type Size in bytes
Used Internal Memory (IRAM) 57,384
Used external memory (SDRAM) 1,185,110
Total used memory 1,242,494
Total available memory 135,266,303

Table 2: Memory breakdown and component contribution
Allocated memory component Size in bytes
Core Framework (CF) 327,748
Parsers 33,793
ORB 260,571
Application 169,028
Sub-Total 791,140
.SDRAM$heap 323,584
Other 127,770
Total memory 1,242,494

 This approach opens the door for potentially large
improvements depending on how much of the IDL
interfaces are being used Objective Interface Systems.
This is a well understood approach, although it is not
implemented in this project. Another important
qualifier for these results is the absence of Device-
related interfaces. No DeviceManager or Device
interfaces were implemented. The methods in
DomainManager relative to Device and service
registration and un-registration are not implemented in
this project version as well. The memory requirement
results for the application include both BPSK and
QPSK components, along with Channel, Demodulator,
Resource Factory, Assembly Controller and the user
interface. The main waveform components have a very
similar footprint as expected. However, the
functionality of these components is extremely simple.
More complex waveforms will require more memory.
The results correspond to the ORB are from an
ORBExpress DSP libraries' memory footprint.

Performance profile: CPU Cycle requirements are
collected for the most significant sections of the
implementation. The sections profiled were domain
initialization and waveform creation. The results are
shown in Table 3. Domain initialization is not
application dependant and includes the instantiation of
Domain Manager, ApplicationFactory and
ResourceFactory. Waveform creation represents the
execution of ApplicationFactory’s create (). It includes
descriptor parsing, task scheduling and initialization
and component connection. Keep in mind that
waveform creation is waveform specific and these
results only apply to our test waveforms.

Fig. 6: Memory footprint summary

Table 3: Core framework tasks performance profile
Task Cycles Time (ms) at 720 MHz
Domain initialization 1,174,726 1.632
Create application 5,474,664 7.604

Am. J. Engg. & Applied Sci., 4 (3): 429-434, 2011

434

CONCLUSION

 One of the main concerns of applying the SCA is
the heavy infrastructure required to support it. In order
to ease requirements in terms of performance, cost and
power consumption, we propose an implementation of
the SCA Core Framework for a TI C6416 DSP
platform. This approach minimizes the total memory
footprint of our complete implementation to about 1.2
MB, which represents 7.5% of the 16 MB available
memory in our DSP platform. Benchmarks show that,
using OIS ORBExpress DSP ORB middleware
decreases Memory Footprint and increases Processing
power compared with PrismTech's e*ORB middleware
(Gonzalez et al., 2007b).

REFERENCES

Gonzalez, C.R.A., F.M. Portelinha and J.H. Reed,

2007a. Part 1: Design and implementation of an
SCA core framework for a DSP platform. MMXI
Military Embedded Systems. http://www.mil-
embedded.com

Gonzalez, C.R.A., F.M. Portelinha and J.H. Reed,
2007b. Aguayo, G., R. Carlos, M. Francisco and H.
Jeffrey, 2007b. Part 2: Design and implementation
of an SCA core framework for a DSP platform.
MMXI Military Embedded Systems.
http://www.mil-embedded.com

Potter, M., 2010. JPEO JTRS Releases the Software
Communication Architecture (SCA) next draft
specification-press release. SCA.
http://www.defenseprocurementnews.com

