
American J. of Engineering and Applied Sciences 3 (1): 121-127, 2010

ISSN 1941-7020

© 2010 Science Publications

Corresponding Author: Walid M. Aly, Technical and Vocational Institute,

 Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt

121

Electronic Design Automation Using Object Oriented Electronics

1
Walid M. Aly and

2
Mohamed Said Abuelnasr

1Technical and Vocational Institute,
2
Department of Computer Engineering, Faculty of Engineering,

Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt

Abstract: Problem statement: Electronic design automation is the usage of computer technology and

software tools for designing integrated electronic system and creating electrical schematics.

Approach: An approach is presented for modeling of various electronic and electric devices using

object oriented design, aiming on building a library of devices (classes) which can be used for

electronic design automation. Results: The presented library was implemented using Java

programming language to form an Electronic Application Programmer Interface (EAPI) that can be

easily utilized for electronic design automation. Conclusion: The proposed EAPI that implemented

these models in JAVA language can be used for simulation of real electronic circuits and for

educational purposes, as the proposed API was designed using object oriented design, adding more

new classes, attributes and behaviors to current classes can be done easily.

Key words: Modeling, electronics design automation, object oriented, java

INTRODUCTION

 Electronic Design Automation (EDA) (Rosenthal

and Damore, 1999) is the usage of computer technology

and software tools for designing integrated electronic

system and creating electrical schematics, with the

continuous growth of semiconductor technology, EDA

has become indispensable for modern circuit design.

 One of the well known EDA tools is SPICE

(Simulation Program with Integrated Circuits

Emphasis) (Taubin et al.,

2007), which is a general-

purpose analog electronic circuit simulator program.

SPICE is a powerful program which is used in

integrated circuits and board-level design to check the

integrity of circuit designs and to predict circuit

behavior.

 For usage simplicity, SPICE is invoked using

ASCII text files containing lines of text, each of these

lines states a circuit component and how it is connected.

Many programs are based on different versions of

SPICE and are offering a convenient Graphical User

Interface (GUI).

 Specialized computer languages were developed to

create different software programs for designing and

simulating of electronic circuits, the programming

language VHDL (Very High Speed Integrated Circuit

Hardware Description Language) -defined in the mid

1980’s-is a well known programming language that can

be used to write programs that model and simulate

electronic circuits (Perry, 2002). VHDL is commonly

used as a design language for field-programmable gate

arrays and application-specific IC's in electronic design

automation of digital circuits.

 Object-Oriented Design (OOD) is the design of a

system as a group of interacting software objects. In

OOD, every entity in the system under consideration is

an object, these software objects mimics the real life

objects. Objects can be clients, bank accounts, data base

connections, stocks……etc.

 Each object is created from its class (Johnson and

John,

1994), each class defines a certain concept by

defining the state and behavior that the created objects

can encounter. Each object has its unique state, this

state can be changed within the rules set by the

behavior. When programming, the state is coded into a

number of variables and the behavior is translated into a

number of methods, these variables and methods are

known as class members (Kortright, 1997). Object

oriented design is based upon a number of concrete

principles, these principles include- among others-

abstraction, encapsulation and inheritance, the

following section highlights these principles:

Abstraction: Abstraction is keeping a separating
distance between the idea and its details, the designer of

a class should not be carried away by representing all

Am. J. Engg. & Applied Sci., 3 (1): 121-127, 2010

122

the states and behavior details of the class, but rather

defining only the relevant state and behavior for the

concept under consideration. Furthermore a class

should be cohesive, representing only one abstraction.
We use abstraction every day when interacting with

technological objects such as a shift gear. A vehicle

driver simply understands its external behavior but have

no idea of its inner implementation details. A more

efficient design methodology is the one with increased

abstraction level.

Encapsulation: Encapsulation is as a protective

wrapper that prevents the code and data from being

misused by other code defined outside the wrapper,

encapsulating objects provides abstraction.

 The class is the mechanism by which encapsulation

is achieved, as you can use the class through its

methods without having to worry about the details of its

implementation. Access to the code and data inside the

wrapper is tightly controlled through well-defined

methods.

 Correct encapsulation enables the inner workings

of objects to be changed as needed as long as the

interface to the object is left unaltered.

Inheritance: Inheritance in object oriented is a relation

between two classes that represents the relation "is a",

for example a graduate student is a student. This means

that class graduate student inherits from class student,

inheritance concept embeds the concept of

specialization and generalization, the concept graduate

student is a specialization of concept student, and

concept student is a generalization of concept graduate

student.

 Using Java terminology (Herbert, 2006), the

inheriting class is called a subclass. The class from

which it inherits is called the superclass. When a class

inherits from another class, it means that all the non

private class members are inherited and can be used

directly from the sub class without needing to redefine

them again, thus emphasizing the concept of code

reuse.

 Inheritance also plays an important role in

polymorphism, where an object reference variable can

point to objects from the actual class of the reference or

any of its subclasses which makes the door wide open

for methods that is defined to receive one type of object

reference to handle different types of objects as long as

their classes are sub classes of the class of reference

defined as a method argument.

 This study aims on investigating the idea of using

OOD (Bahrami, 1998) in electronic circuit design as a

tool in electronic design automation.

MATERIALS AND METHODS

 The proposed electronic application programmer

interface (EAPI) defines the set of classes that model

the behavior of each electronic device, these classes are

to be used by a programmer for creating the objects of

various electronic circuits for simulation and testing.

The related classes are grouped together in a package,

EAPI defines three different main packages:

• Package electricDevices with two sub packages

digitalElectronicDevices and

analogElectronicDevices.

• Package circuits.

• Package powerSource.

 The following section highlights some of the

important classes in these packages:

Main classes in EAPI:

Class ElectricDevice:

Concept: Abstract class ElectricDevice is designed to

be the super class of all the devices and encapsulates

the concept of electric device.

State: Each ElectricDevice object has a symbol, a

variable representing the number of ports (terminals)

and an array of object from class Port that represents

the terminal of the device, and an object of reference

type class DeviceModel.

Behavior: the class provides accessor methods for the

member variables, another abstract method getNetList()

also is defined which should be implemented by the

subclasses to return netlist representation of the device.

Constructor: Objects from this class are created

according to a certain model which contains all the data

about the device, objects from the appropriate model is

created, then passed to the constructor of the required

device together with other required parameters, class

ElectronicDevice has only this constructor for creating

objects, this forces the subclasses to form a model

containing all the relevant information before creation

of objects of the actual device, the signature of the

constructor is: public ElectricDevice (int numOfPorts,

String symbol, DeviceModel model).

Class DeviceModel: Concept: Abstract class device

model represents an abstraction of a model for the

electric device, the model will store the important

information about the device, this information is

normally mentioned in the device data sheet.

Am. J. Engg. & Applied Sci., 3 (1): 121-127, 2010

123

 This class is abstract, sub classes from this class

are classes like class BJTModel and class

ResistanceModel.

Class BJT model:

Concept: This class defines the important information

about devices created from class BJT.

State: Information stored is the on characteristics

(hFE,VCE(sat)….), off characteristics and maximum

ratings. Well known BJTs devices like 2N3903 are

stored as final static BJT objects in this class and

created with the actual data from the data sheet for

immediate use.

Behavior: Accessor and mutator methods for all the

member variables.

Class port:

Concept: Class Port encapsulated the terminal of a

device.

State: Each port object has a title and the integer

number of the circuit node to which it is connected.

Behavior: Includes a number of useful methods, an

interesting one of them is method setNode which

receives an integer number representing the node

number to connect the terminal to it.

 Figure 1 shows class diagram for class

ElectronicDevice with its dependencies.

Class ElectronicCircuit:

Concept: The electronic circuit will be encapsulated

using this class.

State: the internal state of the class will be stored using

hash map data structure, the hash map stores objects

from class ElectronicDevice, a map cannot contain

duplicate keys; each key can map to at most one value,

the key used for each object will be its symbol, each

object in the map is a subclass of class

ElectronicDevice thus encapsulating all its information

including its ports and how they are connected.

Behavior: Includes a number of useful methods, an

interesting one of them is method addComponent

(ElectricDevice component) which add devices to the

circuit. This method demonstrates direct usage of

polymorphism as the mentioned method can accept

objects from any the subclasses of class ElectronicDevice.

Each Object is added with a certain key, Objects from

class ElectronicCircuit can call method getNetList () to

return the netlist description of the circuit for further

processing by any spice environment program.

Fig. 1: Class ElectricDevice

 One of the subclass of class ElectronicCircuit is

abstract class BiasCircuit, subclasses of class

BiasCircuit represent bias circuits like voltage divider

bias circuit, creating a biased transistor means creating

an instance of the required bias circuit and passing it as

a reference while calling the appropriate constructor

from class Transistor. Class ElectronicCircuit

implements the interface CircuitSolver which defines

the method required to acquire a complete numeric

solution for the circuit. Figure 2 shows the class

diagram of class ElectronicCircuit with two of its

subclasses.

Class transistor:

Concept: This abstract class encapsulates the concept

of transistor, as this class serves as a super class for all

types of transistors; transistor class hierarchy is shown

in Fig. 3.

State: The internal state of the class will be stored in

variables representing the values for voltage gain,

current gain, input resistance and output resistance.

Behavior: The class defines abstract methods for

calculating the variables defined in the state, as these

methods are abstract, sub classes from this class are

forced to implement them otherwise they would have to

be declared themselves abstract too.

Class BJT:

Concept: This abstract class encapsulates the concept

of bipolar junction transistor; this class also serves as a

super class for concepts common base, common emitter

and common collector transistors.

Am. J. Engg. & Applied Sci., 3 (1): 121-127, 2010

124

Fig. 2: Class ElectronicCircuit

Fig. 3: Transistor hierarchy

Am. J. Engg. & Applied Sci., 3 (1): 121-127, 2010

125

State: The state of the class is determined using

variables for all the currents and voltages of transistor

(DC and AC quantities).

 NPN and PNP are identified as types in class BJT

(represented by a final integer constant), they cannot be

defined as separate class because if so they will have to

be sub classes of all of the configuration classes and

multiple inheritance is not accepted in Java.

 The class has a reference of type class BiasCircuit

representing the circuit in which the BJT is connected.

Behavior: Accessor methods and mutator methods for

member variables, other methods exist for checking the

mode of the transistor, the class does not implement the

inherited methods from its super class and leaves the

implementation to the sub classes. Figure 4 shows the

class diagram of class BJT.

Fig. 4: Class BJT

RESULTS

 As the result of the current research, the electronic

application programming interface is developed, this

interface can be utilized for modeling different

electronic devices and creating various electronic

circuits. In the following demonstrations, the actual

code for using the proposed interface for creating an

electronic circuit and for checking the mode of a BJT

transistor is presented, the code is included with

comments for illustration and clarity.

Example of EAPI usage:

Creating an electronic circuit: The following java

code represents how an electronic circuit of a common

base bipolar junction transistor-shown in Fig. 5 can be

coded using the proposed EAPI:

public static void create_CB_BJT()

{

//create an object of class ElectronicCircuit

ElectronicCircuit circuit=new ElectronicCircuit();

// create a power device model to describe a fixed

power supply with 24 volts.

PowerDeviceModel model1=new

PowerDeviceModel(24,PowerDeviceModel.FIXE

D);

// create a dc source based on model1

DCSource e1=new DCSource(model1,"Vin");

//connect the power supply ports to node 0 and

node 1.

Port [] port_e1= e1.getPorts();

port_e1[0].setNode(1);

port_e1[1].setNode(0);

// add component to circuit

circuit.addComponent(e1);

// create a power device model to describe a

variable power //supply with range from 0-5 volt.

PowerDeviceModel model2=new

PowerDeviceModel(PowerDeviceModel.VARIAB

LE);

model2.setRange(0,5);

DCSource e2=new DCSource(model2,"Vsupply");

// connect second power supply to nodes 0 and 4

Port [] port_e2= e2.getPorts();

port_e2[0].setNode(0);

port_e2[1].setNode(4);

circuit.addComponent(e2);

// create a BJT Model with hFE=50

BJTModel model3=new BJTModel();

model3.sethFE(50);

// Craete a common base NPN BJT based on the

model

Am. J. Engg. & Applied Sci., 3 (1): 121-127, 2010

126

BJT q1=new

CommonBaseTransistor("Q1",BJT.NPN,model3);

// connect collector , base and collector to nodes

2,0 and 3 //respectively.

Port [] port_q1= q1.getPorts();

port_q1[0].setNode(2);

port_q1[1].setNode(0);

port_q1[2].setNode(3);

circuit.addComponent(q1);

// create a resistanse of 100 and connect it to nodes

3,4

ResistanceModel model4=new

ResistanceModel(100);

Resistance re=new Resistance("RE",model4);

Port [] port_re= re.getPorts();

port_re[0].setNode(3);

port_re[1].setNode(4);

circuit.addComponent(re);

// create a resistanse of 800 and connect it to nodes

1,2

ResistanceModel model5=new

ResistanceModel(800);
Resistance rc=new Resistance("RC",model5);

Port [] port_rc= rc.getPorts();

port_rc[0].setNode(1);

port_rc[1].setNode(2); circuit.addComponent(rc);

}

Fig. 5: Sample electronic circuit

Fig. 6: standard bias circuit

Checking the mode of a BJT transistor: The

following code creates a standard bias circuit with

certain value for dc supplies and resistance as shown in

Fig. 6 and then check if the transistor is in saturation

mode or not.

BJTModel model=new BJTModel();

model.setVCEsat(0.2);

model.sethFE(50);

//Create StandardBiasCircuit circuit:

(RB=10000,RC=1000,VBB=3,VCC=10)

BiasCircuit bs = new

StandardBiasCircuit(10000,1000,3,10);

BJT tr=new

CommonEmitterTransistor("Tr",bs,BJT.NPN,

model);

System.out.println(tr.isSaturated()); // prints true

DISCUSSION

 The use of object oriented modeling for electronic

design automation is presented, and as far as the authors

knowledge this is the pioneer attempt.

 Within the electronic application programming

interface, different classes exist to model electronic

devices and electronic circuits. Sample applications of

the presented API are demonstrated to prove the

efficiency of the models.

 the beauty of OOD is its natural reusability

capabilities, different states and behaviors can be added

to existing classes, even the behavior implementation

can be altered without any further problem in the code

that use it as long as the behavior interface is left

unaltered.

CONCLUSION

Object Oriented Design can be an important tool for

designing electronic circuits with various electronic

devices, all of the main devices and circuits can be

coded as classes with relevant state and behavior, and

the whole electronic circuit will be an interaction

between different created objects.

The proposed application programming interface that

implements these classes in JAVA language can be

used for simulation of real electronic circuits and for

educational purposes.

REFERENCES

Bahrami, A., 1998. Object Oriented Systems

Development. 1st Edn., McGraw-Hill, Irwin,

ISBN: 025625348X, pp: 432.

Am. J. Engg. & Applied Sci., 3 (1): 121-127, 2010

127

Herbert, S., 2006. Core Java, Advanced Features. 8th

Edn., Prentice Hall, ISBN: 0-07-226385-7, pp: 1056.

Johnson, R. and M. John, 1994. Design Patterns:

Elements of Reusable Object-Oriented Software.

1st Edn., Addison-Wesley Professional, ISBN:

0201633612, pp: 416.

Kortright, E., 1997, Modeling and simulation with

UML and Java. Proceeding of the Simulation

Symposium, Dec. 1997, IEEE Computer Society,

USA., pp. 43-48. DOI:

10.1109/SIMSYM.1997.586477

Perry, D., 2002. VHDL: Programming by Example. 4th

Edn., McGraw-Hill Professional, ISBN:

0071400702, pp: 476.

Rosenthal, C. and J. Damore, 1999. Hot topics in

electronic design automation. Computer, 32: 79-80.

DOI: 10.1109/MC.1999.10133

Taubin, A., J. Cortadella, L. Lavagno, A. Kondratyev

and A. Peeters, 2007. Design Automation of Real-

Life Asynchronous Devices and Systems. Found.

Trends Elect. Des. Autom., 2: 1-13. DOI:

10.1561/1000000006

