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Abstract: Problem statement: Liquefaction was the most hazardous damage during an earthquake. 
Ground improvement techniques were employed to mitigate liquefaction hazards. Most common 
methods to improve engineering properties of soils are densification, reinforcement, grouting/mixing 
and drainage. Among various remedial measures available, installation of columnar granular inclusions 
is the most widely adopted method for liquefaction mitigation. Approach: Columnar granular 
inclusions function as drains and permit rapid dissipation of earthquake induced pore pressures by 
virtue of their high permeability. Results: One of the chief benefits of ground treatment with granular 
piles is the densification of in situ ground by which the in-situ properties of the ground get modified to 
mitigate liquefaction potential. Further, the very high deformation modulus and stiffness of the 
granular pile material provide reinforcement for the in situ soil and offer another mechanism to 
mitigate liquefaction. The study described briefly the phenomenon of liquefaction and the associated 
features. A short discussion on various ground improvement methods available for liquefaction 
mitigation was presented highlighting the importance of columnar inclusions. Construction methods of 
different granular columnar inclusions like sand compaction piles/ granular piles were discussed 
briefly. Recent developments in the research of columnar granular inclusions as liquefaction counter 
measures were presented in relation to physical, numerical and analytical model studies. 
Conclusion/Recommendations: Columnar granular inclusions were demonstrated to be very effective 
for liquefaction mitigation in different case studies and research investigations.  
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INTRODUCTION 
 
 Liquefaction and its associated ground 
displacements resulting from earthquake shaking are 
the major cause of damage in loose saturated granular 
soils. Many liquefaction induced failures or near-
failures of foundations, buildings and infrastructure 
facilities like highway/railway embankments, port 
facilities and earth dams have been reported across the 
globe during various earthquakes. The 1995-Kobe 
earthquake emphasized the importance of foundation 
liquefaction as a potential source of damage. 
Liquefaction can be manifested either by the formation 
of boils and mud-spouts at the ground surface, by 
seepage of water through ground cracks or in some 
cases by the development of quicksand conditions over 
substantial areas[1].  
 Ground improvement techniques like densification, 
reinforcement, grouting/mixing and drainage are 

commonly employed to mitigate liquefaction hazards. 
Provision of columnar granular inclusions like gravel 
drains/granular piles/stone columns is the most 
commonly adopted ground treatment methodology for 
liquefaction mitigation which has proved its 
effectiveness in many instances[2]. Granular piles are 
the most widely preferred alternative all over the world, 
due to technical feasibility, low energy utilization and 
cost effectiveness. They improve the ground by 
reinforcement and densification of the surrounding soil 
apart from providing drainage. Different mechanisms 
operate in the function of gravel drains/granular piles in 
liquefaction mitigation. These mechanisms can be 
stated as drainage, storage, dilation, densification and 
reinforcement.  
 Ground improvement by means of granular 
piles/stone columns/geopiers, which is associated with 
partial substitution of the in situ soil, originated in the 
sixties. Stone columns generally use gravel or crushed 
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stone as backfill. Effect of method of installation, cased 
and uncased holes, number of lifts and magnitude of 
compactive energy per lift given to granular piles and 
pile spacing were discussed by Madhav and 
Thiruselvam[3]. Consideration of granular piles/drains 
installation as a possible method of stabilizing a soil 
deposit, susceptible to liquefaction, started with the 
work by Seed and Booker[4]. They state that pore-water 
pressures generated by cyclic loading get dissipated 
almost as fast as they are generated through the system 
of gravel or rock drains. Since then, different types of 
columnar inclusions are used as liquefaction remedial 
measure, which basically provide the drainage facility 
to dissipate the excess porewater pressures during 
cyclic loading almost as fast as they generated.  
 This study presents some of the recent 
developments in this very vital area of liquefaction and 
its counter-measures highlighting the importance of 
columnar granular inclusions. 
 
Liquefaction and counter measures: Liquefaction is 
the state when saturated sandy soil looses its shear 
strength due to increased pore pressure and consequent 
reduction in effective stresses. Terzaghi[5] originally 
introduced the term liquefaction into the engineering 
community in the classical book Erdbaumechanik[6] and 
Casagrande[7], in 1936, used the term to explain the 
massive soil failures at Fort Peck Dam. The concept of 
liquefaction gathered worldwide attention in the 1960’s, 
when in 1964 large magnitude earthquakes located near 
Anchorage, Alaska and Niigata, Japan caused massive 
structural damage through ground failure. Significant 
amount of work on this topic has been performed in the 
last few decades since these earthquakes, resulting in 
several state-of-the-art papers relating to the study, 
evaluation and remediation of liquefaction[8-19]. 
 As a consequence of the applied cyclic stresses, the 
structure of the cohesionless soil tends to become more 
compact but with a resulting transfer of stresses to the 
porewater and a reduction in the effective stresses on the 
soil grains. As a result, the soil grain structure rebounds 
to the extent required to keep the volume constant and 
this interplay of volume reduction and soil structure 
rebound determines the magnitude of the increase in 
porewater pressure in the soil[10]. The basic phenomenon 
is illustrated (Fig. 1) schematically by Seed[11]. The 
mechanism can be quantified so that the pore pressure 
increases due to any given sequence of stress 
applications can be computed from knowledge of the 
stress-strain and the volume change characteristics of the 
sand under cyclic strain conditions and the rebound 
characteristics of the sand due to stress reduction. 
Relationships between cyclic stress ratio and pore 

pressure ratio, number of cycles required to cause 
liquefaction and critical stress ratio with relative density 
were presented by Seed et al.[20] based on the study on 
porewater pressure changes during soil liquefaction. The 
effect of seismic history on liquefaction characteristics of 
saturated sands was studied by[21] with a concluding 
remark that the deposits of sand subjected to low 
magnitude earthquakes, which were not sufficiently 
strong to cause liquefaction, will develop an increased 
resistance to liquefaction in subsequent earthquakes even 
though, there may not be a significant change in density. 
Seed[11] developed a method to estimate liquefaction 
potential for sand under level ground conditions using 
standard penetration test data. This method was based on 
field performance data from sites, which either had or 
had not experienced liquefaction due to earthquake 
loading. Similar such research works on the liquefaction 
and its evaluation are extensively reviewed and 
presented[14,15]. The recent review on this very interesting 
topic is the work by Sawicki and Mierczynski[18], 
wherein the authors reviewed historical developments of 
mechanics of saturated granular soils in relation to the 
liquefaction phenomenon, development of theoretical 
approaches to liquefaction-related problems and 
modeling. In the recent years studies on the micro 
mechanical behavior of granular assemblies, in relation 
to liquefaction and associated mechanisms, are carried by 
several researchers [16, 18, 22, and 23]. 
 

 
 
Fig. 1: Schematic illustration of mechanism of pore 

pressure generation during cyclic loading [11] 
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Table 1: Various ground improvement methods and their locations considered by Mitchell and Wentz[2]  
Sr. No. Name Location Soil conditions Method Year of treatment 
1 Medical/dental clinic Treasure Island Hydraulic sand fill Stone columns 1989 
2 Office building No. 450 Treasure Island Hydraulic sand fill Sand compaction piles 1967 
3 Facilities 487-489 Treasure Island Hydraulic sand fill Vibrocompactin 1972 
4 Approach area, pier 1 Treasure Island Hydraulic sand fill Stone columns 1984 
5 Building 453 Treasure Island Hydraulic sand fill Non-structural timber piles 1969 
6 Esplanade extension Richmond Silty, sandy Stone columns 1986  
 East shore, marina bay  and gravelly fill 
7 East bay park condominiums Emeryville Silty sand fill Vibrocompactin 1981 
8 Harbor bay business park Alameda Hydraulic sand fill Deep dynamic compactin 1985 
9 Hanover properties Union city Silty sand fill Deep dynamic compactin 1988 
10 Kaiser hospital South San Francisco Hydraulic sand fill Compaction grout 1978 
11 Riverside avenue bridge Santa Cruz Sands and gravels Chemical Grout 1986 
12 Adult detention facility Santa Cruz Silty, sandy fill Deep dynamic compactin 1978 

 

 
 
Fig. 2 Strategy for liquefaction remediation[25] 
 
 Various ground improvement methods that can be 
used as liquefaction counter measures can be classified 
into two broad categories[24]: (i) Prevention of 
liquefaction and (ii) Reduce the damage to structures 
due to liquefaction. The former one can be achieved by 
increasing the undrained cyclic strength as well as by 
improving the resistance to deformation or by 
dissipation of pore water pressure. The second one, 
reducing the damage, could be attained by 
strengthening the foundation of the structures and the 
ground supporting the structures to avoid reduction in 
bearing capacity or making the structures more flexible 
so that it can deform in accordance with the ground 
movement in case of buried structures[24]. Resistance to 
liquefaction can be improved by increasing the density, 
modifying the grain size distribution, stabilizing the soil 
fabric, reducing the degree of saturation, dissipation of 
the excess pore pressures generated and intercepting the 
propagation of excess pore pressures. PHRI[25] 
summarize (Fig. 2) the basic strategies for liquefaction 
remediation.  

 
 

Fig. 3: Comparison of ground subsidence in zones 
treated with different methods[26] 

 
 The 1989 Loma Prieta earthquake experience 
provided the first opportunity to evaluate the behavior of 
treated ground that has been actually subjected to 
significant seismic shaking[2]. Twelve sites treated with 
different improvement methods prior to the earthquake 
were evaluated comprehensively by Mitchell and 
Wentz[2] (Table 1). They conclude that the procedures 
used for prediction of liquefaction were reliable and the 
ground improvement was very effective in mitigating 
liquefaction. Provision of gravel drains/granular 
piles/stone columns was the most commonly adopted 
ground treatment methodology for liquefaction 
mitigation which has proved its effectiveness in many 
instances.  
 Yasuda et al.[26] investigated the liquefied and not-
liquefied subsoil conditions of two reclaimed islands in 
Kobe City after the 1995 Hyogoken-Nambu earthquake. 
Based on the study it was found that the non-liquefied 
zones had been improved by several methods, including 
sand compaction piles, rod (vibro) compaction, sand 
drains and preloading, before buildings had been 
constructed on them. Figure 3 depicts performance of 
different ground improvement methods in reducing the 
ground   subsidence   in  the  earthquake  affected  sites. 
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Fig. 4: Liquefaction-induced settlement of a bridge pier 

built with different in-situ densification 
widths[27] 

 
It can be observed that the subsoil treated with 
columnar inclusions like sand compaction piles did not 
liquefy and nor subside even though the earthquake 
shaking was very strong. Madabhushi[27] discussed and 
showed the effectiveness of three different ground 
improvement methods, viz., in-situ densification, gravel 
drains and grouting, through dynamic centrifugal model 
tests. Figure 4 evidences the effectiveness of in situ 
densification and its extent.  
 Among the different ground improvement methods 
available, provision of columnar granular inclusions in 
the in-situ soil is considered to be the most effective 
method for liquefaction mitigation due to its ability to 
provide drainage facility in lowering the excess 
porewater pressures and strengthen the ground.  
 

MATERIALS AND METHODS 
 
Columnar granular inclusions as liquefaction 
counter-measure: Columnar inclusions are of different 
types viz. sand drains, sand compaction piles; pre-
fabricated vertical drains, granular piles or stone columns 
and lime or cement columns which are stiffer and 
stronger that the ambient soil, that can be installed in 
different arrays as shown in the Fig. 5. Installation of 
sand compaction piles in dynamic vibratory and static 
methods was discussed by Tsukamoto et al.[28] (Fig. 6). 
Theoretical background, analysis, design aspects and 
installation techniques for stone columns/granular piles 
were being developed since 1970s by various 
researchers and practitioners[29-34]. Granular piles are 
installed by vibro-compaction, vibro-replacement, 
cased borehole (rammed stone columns/rammed 
granular   piles)   or   by  simple   auger    methods[31,35]. 

 
 
Fig. 5: Various arrangements of columnar inclusions and 

zones of influence; (a): Triangular; (b): Square; 
(c): Hexagonal 

 

 
 
Fig. 6: Installation of sand compaction piles[28]  
 

 
 
Fig. 7: Installation of stone columns-cased borehole 

method[36] 
 
In cased borehole method[36], granular piles are installed 
into the ground by full displacement methods and by 
ramming in stages, using a heavy falling weight, within 
a ‘pre-bored casing’ or ‘driven closed end casing’ and 
retracting the casing pipe stepwise (Fig. 7). In recent 



Am. J. Engg. & Applied Sci., 2 (3): 526-536, 2009 
 

530 

years, use of encased columns as a ground 
improvement method is increasing. Granular inclusions 
are encapsulated in geosynthetic materials to increase 
the resistance to bulging[37-42].  
 The pioneering work on gravel drains as a possible 
method to stabilize liquefaction susceptible soil deposit 
is reported by Seed and Booker[4]. Numerous 
publications[43-47] describe the use of stone columns for 
ground reinforcement and their potential to mitigate 
liquefaction.  
 Granular columnar inclusions (Granular piles) help 
in mitigating earthquake induced liquefaction effects 
through one or more of these functions or effects: 
 
• Granular piles function as drains and permit rapid 

dissipation of earthquake induced pore pressures 
by virtue of their high permeability with the 
additional advantage that they tend to dilate as they 
get sheared during an earthquake event 

• Pore water pressures generated by cyclic loading 
get dissipated almost as fast as they are generated 
due to significant reduction in the drainage path 

• Granular piles density and reinforce the in-situ soil; 
improve the deformation properties of the ambient 
soil 

• Granular piles, installed in to a very dense state, are 
not prone to liquefaction and replace a significant 
quantity of in-situ liquefiable soil 

• Granular piles modify the nature of earthquake 
experienced by the in situ soil 

 
RESULTS 

 
 Adalier and Elgamal[48] reviewed the current state of 
stone column technologies as a liquefaction 
countermeasure. Sasaki and Tinaguchi[49] conducted 
large scale shaking table test on gravel drain system as a 
liquefaction counter-measure. Figure 8 shows different 
model configurations considered and typical distribution 
of the pore water pressures[49]. Adalier et al.[50] 
performed a series of highly instrumented dynamic 
centrifuge model tests (Fig. 9) to evaluate effectiveness 
of stone columns in mitigating the liquefaction potential 
of non-plastic silty deposits. Al-Homoud and Degen[47] 
present an introduction to earthquake-resistant design of 
marine stone columns. Similar studies on different 
types of granular columnar inclusions include[51,28,52] on 
sand compaction piles[53] on prefabricated vertical 
drains[27,54,55] on gravel drains. 
 
Analytical studies on columnar inclusions as 
liquefaction remedial measure: Seed and Booker[4] 
were the first to propose an analytical model for the 
generation  and   dissipation  of  pore  pressure  in   a  soil 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 8: (a): Different models used; (b): Distribution of 

pore-water  pressure for model 2 after 20 sec; 
(c): Variation of generation and dissipation of 
pore water pressures for model 2[49] 

 
deposit with vertical drains. Under the assumptions of 
purely radial drainage, constant coefficient of 
compressibility   and   infinite   permeability   of    drains, 
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Fig. 9: Typical model configuration considered for 

centrifugal model studies[50] 
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Fig. 10: Effect of drain diameter and drain spacing on 

maximum pore pressure ratio[4] 
 
design charts (Fig. 10) were developed to evaluate the 
effects of drain diameter and spacing for the expected 
earthquake loading on excess pore pressure ratio. For 
flow into a gravel drain, assuming pure radial flow and 
constant coefficients of permeability (kh) and volume 
compressibility (mv), the governing equation can be 
written as[4]: 
 

2k u1 u u u Ngh .
2.m r r t N trw v

  ∂∂ ∂ ∂ ∂
 + = −
 γ ∂ ∂ ∂ ∂∂ 

 (1) 

 
Where: 
u = The excess pore pressure at a radial distance, r, 

from the centre 
t = Time, γw - the unit weight of water  
ug = Peak excess hydrostatic porewater pressure 

generated by the earthquake 
 
 The rate of generation of pore pressure during an 
earthquake event is defined by: 

g

2a 1l
u u

u ' 1

N a N Sin r cos r
2 2

−

∂ σ=
π π∂ π    

   
   

 (2) 

 
Where: 
ru = u /σ′o = The pore pressure ratio 
σ′o = The initial mean bulk effective stress for 

axi-symmetric conditions or the initial 
vertical effective stress for simple shear 
conditions 

Nl = The number of cycles required to cause 
liquefaction  

α = An empirical constant which is a function 
of the soil properties with a typical average 
value of 0.7 

 
 The irregular cyclic loading induced by an 
earthquake is converted[56] to an equivalent number, 
Neq, of uniform cycles at an amplitude of 65% of the 
peak cyclic shear stress, i.e., τcyc = 0.65τmax, occurring 
over a duration of time, td and: 
 

eq

d

NN

t t

∂ =
∂

 (3) 

 
 Tokimatsu and Yoshimi[57], Sasaki and Taniguchi[49] 
and Onoue[58], report results similar to those of Seed and 
Booker[4] taking into consideration additional factors 
such as well resistance (finite permeability of gravel 
drain) and drain slenderness ratio (slenderness ratio: L/r, 
where L is the length and r the radius of the gravel drain). 
Pestana et al.[59,60] analyzed the provision of a reservoir to 
minimize the drain resistance to flow in to the drain. 
Poorooshasb et al.[61] propose an equivalent coefficient 
permeability, keq= kuntr.t50 (for untreated ground)/t50 (for 
treated ground), for the treated soil, in terms of the 
permeability, kuntr, of untreated ground and t50 values 
for the untreated and granular pile treated ground are 
the times for 50% degree of consolidation based on 
one dimensional and radial consolidation theories 
respectively. Dilation effect on the drainage function 
of granular piles was studied by Madhav and 
Arlekar[62]. The densification effect of granular piles 
in improving deformation properties of the ambient 
soil was studied by Murali Krishna and Madhav[63] 
and Murali Krishna et al.[64,65].  
 Murali Krishna et al.[64] incorporated the 
densification effect of granular piles, with respect to 
variation of flow parameters from the centre of the 
granular pile, in the analysis of pore pressure generation 
and  dissipation  that  was   originally   developed  by[4]. 
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Fig. 11: Effect of Rma on Wmax

[64] 

 

 
 
Fig. 12: Effect of Rmb on Wmax

[64]
 

 
The modified form of the governing Eq. 1 with the 
inclusion effects of densification is: 
 

2
gh h

2
w v w v

uk (r) 1 u u 1 (k (r)) u u N
. . .

.m (r) r r r .m (r) r r t N t

∂ ∂ ∂ ∂ ∂ ∂ ∂+ + = − γ ∂ ∂ γ ∂ ∂ ∂ ∂ ∂ 

 (4)  

 
 In this case coefficients of permeability, kh(r) and 
volume change, mv(r), are functions of radial distance, 
r, from the point of densification and degree of 
densification. Murali Krishna et al.[64] studied the 
densification effect with respect to the coefficients of 
permeability and volume change at the near and at the 
farthest ends of the granular pile, individually and 
together, on maximum pore pressure variations during 
an earthquake event. Figure 11 and 12 show the 
densification effect on maximum pore pressure ratio 
with respect to coefficient of volume change at the near 
and farthest ends respectively. Rma and Rmb are 
normalized coefficients of volume change due to 
densification at the near and farthest ends respectively.  
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Fig. 13: Effect of densification with respect to Rka and 

Rma and dilation on Wmax
[66]  

 
 Murali Krishna and Madhav[66] combined both the 
densification and dilation effects and incorporated them 
in the analysis of pore pressure generation and 
dissipation. They also verified the effect of variation of 
permeability with distance on maximum pore pressure 
ratios and concluded that the pore pressures ratios are 
not sensitive to the type of variation of permeability 
with distance. Figure 13 shows the effect of 
densification with respect to flow parameters at the near 
end in addition to the dilation effect. It is seen from the 
Fig. 13 that the dilation effect reduces the negative 
effect of reduced permeability. 
 

DISCUSSION 
 
 Densification effect on the coefficient of volume 
change is positive in that the maximum induced pore 
water pressure ratios get reduced and sensitive to the 
type of variation considered as pore pressure ratios are 
lesser for the exponential variation compare to linear 
variation. Densification effect, on the coefficient of 
permeability alone or in addition to effect on coefficient 
of volume change, increases the maximum pore water 
pressure ratios giving a negative effect. The pore 
pressures ratios are not sensitive to the type of variation 
of permeability with distance. Densification effect on 
both coefficients of permeability and volume change 
result in a either slightly negative or positive effect 
depending on the degree of densification.  
 Further research is essential in the area of columnar 
granular inclusions as liquefaction countermeasure 
especially regarding encased granular columns. 
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CONCLUSION 
 
 Liquefaction is the most disastrous feature during 
an earthquake that causes huge loss and damage to 
various structures founded on or in the ground. Ground 
improvements  are  extensively  used  to  reinforce the 
in situ ground and also as liquefaction countermeasures. 
Columnar granular inclusions are the most widely used 
remedial measures against the liquefaction. Columnar 
granular inclusions provide drainage to mitigate the 
liquefaction potential of the ground. Various 
mechanisms such as reinforcement, densification, 
dilation along with the drainage mitigate the damages 
due to liquefaction. The study presents an over-view of 
the recent findings on the topic. 
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