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Abstract: In this study a rarefied gas flow inside a rotating circular cylinder by means of direct 
simulation Monte Carlo (DSMC) method is investigated. A rarefied gas is supposed to be contained in 
a cylindrical domain, bonded by a rotational cylinder with smooth and diffuse-reflection surface. The 
top and bottom ends of domain is assumed to be speculary-reflecting. Special attention is focused on 
the effect of parameter L/D, where L and D are the cylinder length and diameter, respectively. The 
investigation on the formation of various kinds of flow patterns in the range of various values of the 
L/D are important aims of the present work. Finally computed results such as density fields and 
velocity profiles are shown and discussed. 
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INTRODUCTION 

 
 This research is carried out as part of numerical 
simulation of centrifugation process using the principle 
of a cylinder rotation at high speed. However, the study 
of this problem with different emphases[1,2,3] have been 
carried out by using direct simulation Monte Carlo 
(DSMC) method[4]. It was concerned generation of 
rotating flow and contraction of the rotating flow. 
Schematically, in the flow field we can distinguish two 
zones. The first one, dense and close to the rotational 
wall and second one, rarefied and close to the center of 
the cylinder. In the fluid calculations, in the both 
domain, the Boltzmann’s equation[5] is governed and 
solved by the DSMC method. We have investigated the 
transport phenomena in rotating rarefied gas on the 
basis of the kinetic theory of gases. Hence the field of 
density, velocity and viscous flow are calculated. From 
a technological viewpoint, it is essential to 
understanding the effects of geometry of rotating 
cylinder (L/D ratio) on the flow patterns. Existence of 
various vortex flow was demonstrated and was shown 
in the next sections. 
 

MATERIALS AND METHODS 
 
Problem And Basic Formulation: We consider a 
rarefied gas inside a rotating cylinder with radius R. 
The cylinder rotate at angular velocity Ω. The bottom 
and top ends of cylinders are covered with plates 
located at z = 0 and z = L, respectively. Thus, we 
consider a cylindrical domain 0≤r≤R, 0≤θ≤2π and 

0≤z≤L. The cylinder is rotating around  z-axes  at  
surface  velocities  Vθ  = ΩR in the θ  direction.  
Cylinder  surface  is  kept at a temperature T0 = 273°K. 
We will investigate the behavior of the gas numerically 
on the basis of kinetic theory under the following 
assumption: 1) the flow field is axisymmetric, 2) the 
gas molecules are Hard-Sphere undergo diffuse 
reflection on the surface of the cylinder and specular-
reflection on the bottom and top boundaries; 3) the 
speed of rotation of cylinder is high; 4) the system has 
Knudsen number Kn0 = 10. Here, Kn0 = λ0/R is the 
Knudsen number with λ0 being the mean free path of 
the gas molecules in the equilibrium state at rest with 
temperature T0 and density ρ0.  
 The cylinder radius R, is assumed the reference 
length in the Knudsen number evaluation. As the 
solution method, we use the direct simulation Monte 
Carlo (DSMC) method by Bird[4]. As in the usual 
DSMC computation, we obtain the steady flow field as 
the long-time limit, pursuing the long-time behavior of 
the solution of the time-dependent boundary-value 
problem with an appropriately chosen initial condition.  
We consider the Boltzmann equation[6,7]: 
 

   x
f 1. f Q(f ,f )
t

∂
+ υ∇ =

∂ ε
  (1) 

 
Supplemented with the initial condition  
 
   0f (x, , t 0) f (x, )υ = = υ   (2) 
where, f = f (x,υ,t) is a non negative function describing 
the time evolution of the distribution of particles witch 
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moves with velocity υ in the position x at time t〉0. The 
parameter ε〉0 is the Knudsen number and is 
proportional to the mean free path between collisions. 
The bilinear collision operator Q (f, f) describes the 
binary collisions of the particles and is given by: 
 

   3 2
1

R S

* *

Q(f ,f )( ) ( , )

[ f ( )f ( )]d d f ( )f ( )∗

υ = δ υ − υ ω

′ ′− υ υ ω υ υ υ

∫ ∫   (3) 

 
 In the above expression, ω is a unit vector of the 
sphere S2, so that ω is an element of area of the surface 
of the unit sphere S2 in R3. Moreover (υ′,υ′*) represent 
the post-collisional velocities (υ,υ*) and the collision 
parameter ω i.e.,  
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′υ = υ + υ + υ − υ ω

′υ = υ + υ + υ − υ ω
  (4) 

 
 The kernel δ is a nonnegative function which 
characterize the details of the binary interactions.  
 In the case of inverse Kth power forces between 
particulars the kernel has the form: 
 
   * *( , ) b ( ) α

αδ υ − υ θ = θ υ − υ   (5) 
 
Where α = (K-5)/(K-1) for numerical purpose, a widely 
used model is the Variable Hard Sphere (VHS), 
corresponding to take bα (θ) = Cα, where Cα is a 
positive constant. The case α = 0 is referred to as the 
Maxwellian gas, where the case α = 1 yields the Hard 
Sphere gas. 
 During the evolution process, the collision operator 
preserves mass, momentum and energy, i.e.,  
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2
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φ ν = υ υ

∫
  (6) 

 
And in addition it satisfies Boltzmann’s well-known H-
theorem  
 
   

3R

Q(f ,f ) log(f )d 0υ ≤∫   (7) 

 
 From a physical points of view, Boltzmann’s H-
theorem implies that any equilibrium distribution 
function, i.e., any function f which Q (f, f) = 0, has the 
form of a locally Maxwellian distribution  
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ρ
ρ υ =

π

− υ
−

  (8) 

Where ρ, u, T are the density, mean velocity and 
temperature of gas defined by  
 

  [ ]
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ρ = υ = υ υ = υ − υ
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As ε→0 the distribution function approaches the 
Maxwellian. The higher order moments of the 
distribution f can be computed as function of ρ, u and 
T, by using (8) and we obtain the closed system of 
governing equation[7]. 
 
Flow Conditions: More specifically, we restrict 
ourselves to the cases where L/R = 1, 2, 3 The 
peripheral speed Vθ is Vθ = 600 m s−1 and we 
investigate the flow patterns in each of cases.  
 Different grids were used to check the sensitivity 
of the results to the grid parameters and to the extent of 
the computational domain. Thus, the square cross 
section of computational domain (0≤r≤R, 0≤z≤L) is 
divided into various numbers of square cells of a 
uniform size and time step δt is δt = 0.5×10−8.  
 It was supposed (rather arbitrary) that the working 
gas was Argon, characterized by a specific heat ratio γ 
= 5/3 (mono atomic). Considering as a Hard-Sphere 
gas, with a molecular diameter equal to d = 4.11×10−10 
and a molecular mass m = 6.634×10−26 kg m−3. It’s 
viscosity is given by Bird[4] as: 
 

    2

5 mkT
16d

µ =
π

  (10) 

where, k is the Boltzmann constant.  
 
DSMC Calculations: Direct Simulation Monte Carlo 
(DSMC) method calculations were carried out using the 
code DSRF (Direct Simulation of Rarefied Flows) 
developed at the our laboratories in Urmia university, 
based on the idea of the Bird[4].  
 The problem definition scheme is shown in Fig.1. 
The schemes of the grids is shown in Fig. 2 and the 
interaction of the grid with the cylinders surface was 
used to divide faces into surface elements. 
It is generally admitted that cell size must be small 
compared with both the gradient length scale and the 
local mean free path. The first condition is required to 
ensure a correct space resolution. The second condition  
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Fig. 1: Definition of the problem 
 

 
 

Fig. 2: Schemes of computational domain 
 
is based on the fact that collision partners are chosen 
within the same cell, irrespective of their actual 
position[8,9]. Thus the cell should have dimensions 
smaller than a mean free path to prevent unrealistic 
collisions to take place.  
 In fact when the first condition is satisfied, 
collision parameters are sampled with the correct 
distribution function, even when they are more than one 
mean free path apart. An additional condition is due to 
the fact that computational collisions take place at the 
end of the molecular moving rather that any time during 
time interval δt. 
 

RESULTS AND DISCUSSION 
 
     Fig. 3 shows the generation of a double-vortex flow 
in the flow field. In this case L/D=1 and two vortices 
are close to each other. The density contour also shown 
in the Fig. 4.  
     At the L/D = 2, the distance (along z-axes) of 
generated vortices increases (Fig. 5) and internal flow is  

 
 

Fig. 3: Flow field of double-vortex Flow at L/D = 1 
 

 
Fig. 4: Density contour at L/D = 1 

 

 
 

Fig. 5: Flow field of double-vortex  Flow at L/D = 2 
 
affected by the strength and rotation directions of two 
vortices. In this case the density field is different from 
the last case and shown in Fig. 6.  
When the L/D = 3 the effects of generated vortices on 
each other is less than latest case. In this case higher 
vortex flow is nearly confined to the top and bottom 
ends of cylindrical domain (Fig. 7). 
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Fig. 6: Density contour at L/D = 2 
 

 
 

Fig. 7: Flow field of double-vortex  Flow at L/D = 3 
 

CONCLUSIONS 
  
 Numerical simulation of rarefied gas flow in a 
cylindrical domain was carried out using DSMC 
method. We found that flow patterns change with 
various values of L/D of cylinder. As the L/D increases, 
the  generated  vortices tend to move toward the top and  
bottom ends of cylindrical domain. Thus, it is the cause 
of creating a complex vortex flow and this flow field 
impose a valuable external force on the cylinder 
surface. 
 
 
 
 
 
 
 
 
 
 

REFERENCES 
 
1. Roblin, P. and F. Doneddu, 2001. Direct Monte-

carlo Simulation in a Gas Centrifuge. CP585, 
Rarefied Gas Dynamics: 22nd International 
Symposium, American Institute of Physics 
Conference Proceedings 0-7354-0025-3/01, Vol. 
585 Issue 1, pp: 169-173. 

2. Yoshio, S., M. Handa and T. Doi, 2003. Ghost 
Effect and Bifurcation in a Gas Between Coaxial 
Circular Cylinders with Different Temperatures. 
Journal of Physics of Fluids, Vol. 15, No. 10, pp: 
2903-2915. 

3. Soga, T. and K. Ooue, 2003. On the Numerical 
Simulation of Rotating Rarefied Flow in the 
Cylinder with Smooth Surface. CP663, Rarefied 
Gas Dynamics: 23rd International Symposium, 
American Institute of Physics Conference 
Proceedings 0-7354-0124-1/03, Vol. 663 Issue 1, 
pp: 210- 217. 

4. Bird, G.A., 1994. Molecular Gas Dynamics and the 
Direct Simulation of Gas Flows. Oxford University 
Press (1th edition), Oxford, London.  

5. Cercignani, C., 1988. The Boltzmann Equation and 
its Applications.  Springer-Verlag New York Inc 
(1th edition). 

6. Babovsky, H., 1986. On a Simulation Scheme for 
the Boltzmann Equation. Mathematical Methods in 
the Applied Sciences, Vol. 8, pp: 223-233. 

7. Desvillesttes, L. and R.E. Peralta, 1994. A 
Vectorizable Simulation Method for the Boltzmann 
Equation. Mathematical Modeling and Numerical 
Analysis. Vol. 28, pp: 745-760. 

8. Pourmahmoud, N. and S.S. Nourazar, 2007. A 
Numerical Study of a Rarefied Gas in Couette 
Flow. 15th Annual Conference (International) on 
Mechanical Engineering Amirkabir University of 
Technology, pp: 320-425. 

9. Chpoun, A., T.G. Elizarova, I.A. Graur and J.C. 
Lengrand, 2005. Simulation of the Rarefied Gas 
Flow Around a Perpendicular Disk. Eur. Journal of  
Mechanics, B/Fluids, Vol. 24, pp: 457-467. 


