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Abstract: In order to model real fermentation process, a soft sensor 
modelling of biomass concentration during fermentation using accurate 
incremental online ν-Support Vector Regression (ν-SVR) learning 
algorithm was proposed. Firstly, an accurate incremental online ν-SVR 
learning algorithm was proposed. This algorithm solved the two 
complications introduced in the dual problem based on the equivalent 
formulation of ν-SVR. Moreover, it addressed the infeasible updating path 
problem during the adiabatic incremental process by relaxed adiabatic 
incremental adjustments and accurate incremental adjustments. Then, the 
proposed algorithm is used to predict the biomass concentration of glutamic 
acid fed-batch fermentation process online. The results of simulation 
experiment showed that the soft sensor modelling of biomass concentration 
during fermentation using the proposed algorithm was of better 
generalization ability and cost less training time than that of ν-SVR. 
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Introduction 

The optimal control of fermentation process plays an 

important role in microbial fermentation, which concerns 

the success or failure of industrial production (Wei and 

Yang, 2008). According to different process flow, 

fermentation process can be partitioned into three 

categories: Batch fermentation, continuous fermentation 

and fed-batch fermentation (Shi and Pan, 2010). Fed-

batch fermentation has successfully solved problems 

such as substrate inhibition, strain degeneration and 

contamination existed in batch fermentation or 

continuous fermentation. Moreover, the optimal control 

of fermentation process can be realized easily. Therefore, 

fed-batch fermentation has been widely used in industrial 

fermentation in recent years. 
It is well known that fermentation process is time-

variant and nonlinear (Chen and Li, 2002; Yu, 2011). 
Therefore, in order to realize the optimal control of 
fermentation process, it is necessary to master the state 
information of fermentation process timely. 
Unfortunately, some important variables, including 
biomass concentration, product concentration or 
substrate concentration are rather difficult to be 
measured online in real fermentation process. This 

seriously influences the implementation of optimization 
strategy (Yoshida et al., 1973). To address this issue, the 
most widely used approach is soft sensor modelling 
based on training samples. The idea of soft sensor 
modelling is to infer or estimate some important 
variables which cannot or rather difficult to be measured 
by establishing mathematical relations based on other 
known or easily measurable variables. Therefore, to 
some extent, the soft sensor modelling can replace the 
function of hardware. 

Nowadays, many offline soft sensor modelling 
algorithms had been proposed and achieved remarkable 
results. Petrova et al. (1998) realized the modelling of 
biomass growth based on Artificial Neural Network 
(ANN), the chief drawback of this method was that 
large amount of samples were required to train ANN, 

which was unsuitable for small sample learning 
scenarios. Feng et al. (2004) proposed a soft sensor 
model of the Box-Jenkins gas furnace and FCCU based 
on weighted Support Vector Machine (SVM). Gao et al. 
(2006) proposed a soft sensor model of the penicillin 
fermentation process based on SVM. However, once the 

offline model was established, if the model parameters 
need to be tuned, we must wait until the whole 
production process was over, which caused re-training 
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the model from scratch. Therefore, they were unsuitable 
for real production process. 

To overcome this problem, Wang et al. (2009) 

proposed a soft sensor modelling of biotechnical process 

based on online ε-Support Vector Regression (ε-SVR) 

and achieved better results than those of offline 

algorithms. Compared with offline algorithms, the model 

parameters of online algorithms can be tuned online, 

which is more suitable for real fermentation process. 

Unfortunately, it is rather difficult to select an 

appropriate C. To address this issue, Schölkopf et al. 

(2000) proposed the ν-SVR, which uses a new parameter 

ν to replace the parameter C. Moreover, it is easier to 

tune parameter ν than C. However, compared with the 

dual problem of ε-SVR, two complications are 

introduced in ν-SVR. The first one is that the box 

constraints are related to C and the length of the 

training samples and the second one is that one more 

inequality constraint is introduced (Gu et al., 2015). 

Moreover, as proved in Gu et al. (2012), it will not 

guarantee that a feasible updating path can always be 

generated. To sum up, it is rather difficult to design an 

online ν-SVR learning algorithm. 

In this study, an accurate incremental online ν-SVR 

learning algorithm is proposed to address the problems 

mentioned above. Then, the proposed algorithm is 

applied in the soft sensor modelling of glutamic acid fed-

batch fermentation process. Finally, compared with ν-

SVR, the results of modelling are analyzed to show the 

superiority of the proposed algorithm. 

Accurate Incremental Online ν-SVR Learning 

To make the symbols easier to follow, we give a 
summary of the symbols at the end of this article. 

Equivalent Formulation of ν-SVR 

Given a training sample set 
1 1

{( , ), ,( , )}
l l

F x y x y= ⋯ , 
such that R

d

i
x ∈  is an input and yi∈R, i = 1,…,l is a 

target output, the primal problem of ν-SVR is (Chang and 
Lin, 2002): 
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Where: 

w = The weight column vector 

b = Bias 

ξi and ξi
* 
= Nonnegative slack variables 

l = The length of training samples 

The training vectors xi are mapped into a high 

dimensional Reproducing Kernel Hilbert Space 

(RKHS) by the transformation function φ. The ε-

insensitive loss function means that if w
T
φ(xi)+b is in 

the range of yi±ε, no loss is considered. ν is the 

introduced new proportion parameter with 0≤ν≤1, 

which lets one control the number of support vectors 

and errors. To be more precise, ν is an upper bound on 

the fraction of margin errors and a lower bound of the 

fraction of support vectors. In addition, with 

probability 1, asymptotically, ν equals to both 

fractions (Gu et al., 2015). Therefore, it is easier to 

tune parameter ν than ε-SVR. 

The dual problem of Equation 1 is (Chang and Lin, 

2002): 
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where, ( , ) ( ) ( )T

ij i j i j
H K x xφ φ= =x x ; K is the kernel 

function. 

Compared with the dual problem of stand ε-SVR 

(Chang and Lin, 2002), it is clear that two complications 

are introduced in the dual problem of ν-SVR. The first 

one is that the box constraints *
0 ,

i i
C lα α≤ ≤  are related 

to C and l, the second one is that Equation 2 has an extra 

inequality constraint. 

To solve the first complication, we multiply the 

objective function P in Equation 1 by the length of 

training samples and consider the following primal 

problem: 
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It is easy to verify that Equation 3 is equivalent to 

Equation 1. The corresponding dual problem of 

Equation 3 is: 
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where, Pij = Hij/l and i
y′ = yi/C. 

Furthermore, we can solve the second complication 

based on Lemma 1. 

Lemma 1 For any given ν in Equation 4, if 0≤ν≤1, 

there are always optimal solutions which happen at the 

equality ( )*
1

l

i ii
lα α ν

=

+ =∑ . 

The detailed proof of Lemma 1 can be found in 

Chang and Lin (2002), it is omitted here. 

Based on Lemma 1, we consider the following dual 

problem instead of Equation 4: 
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In order to make Equation 5 more compact, let zi 

denotes the label of the training sample ( , )
i i
x y′ , we 

define the expanded training sample set T, which is 

defined as: 
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Then, Equation 5 can be rewritten as: 
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where, ( ) ( )T

ij i j i j
Q z z x x lφ φ= . 

According to the convex optimization theory 

(Bertsekas, 2009), the solution of Equation 6 can be 

obtained by minimizing the following convex quadratic 

objective function under constraints: 
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where, b and ρ are Lagrange multipliers. 

Optimizing Equation 7 leads to the following 

Karush_Kuhn_Tucker (KKT) conditions (Karush, 1939): 
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 Based on the value of gi, the expanded training 

sample set T can be partitioned into three independent 

sets, which is shown in Fig. 1. 

(a) The set S including margin support vectors 

strictly on the margin, for convenience, the numbers 

of training data points in the set S is donated as r; (b) 

The set E including error support vectors exceeding 

the margin; (c) The set R including the remaining 

vectors covered by the margin. 

 

 
 

Fig. 1. The partition of the expanded training sample set T into three independent sets: (a) the set S; (b) the set E; (c) the set R 
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Accurate Incremental Online ν-SVR Learning 

Algorithm 

The first accurate incremental online ε-support vector 

learning algorithm was proposed by Cauwenberghs and 

Poggio (2001) (further referred to as a C&P algorithm). 

Unfortunately, as proved in Gu et al. (2012), when the 

C&P algorithm is directly applied to the equivalent 

formulation of ν-SVR, it will not guarantee that a 

feasible updating path can always be generated. To 

address this issue, an accurate incremental online ν-SVR 

learning algorithm (it is called AIOSVR learning 

algorithm) is proposed in this section. 

AIOSVR Learning Algorithm: 

The AIOSVR learning algorithm is presented in 

Algorithm1. 

Algorithm 1 The AIOSVR learning algorithm: High-

level summary. 

Inputs: 

 The new candidate sample (xc, yc) and αi, i∈S. 

Outputs: 

 Updated αi, i∈S. 

 1: Read the new candidate sample (xc, yc) to obtain 

( , )
c c
x y′ , let {( , , 1),( , , 1)}

new c c c c
T x y x y′ ′= + − and set the 

weights of the samples in Tnew as  αc = 0 and 

compute ,

i new
g i T∈  according to Equation 8. 

 2: Update 
new

T T T← ∪ , ,
1

i i

l
g g i T

l
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,
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b b
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+

 

and
1

l

l
ρ ρ←

+
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 3: Compute N based on N̂ .  

 4: do // see RAIA 

 5:    Compute γ
c
, ,

c

i
i R Eζ ∈ ∪  and max

c
α∆ . 

 6:    Update αi, i∈S, gi, i∈R∪E, the sets S, R and E. 

 7:    Update the inverse matrix N. 

 8: while gc<0 and αc<1 

 9: Compute N̂  based on N.  

10: do // see ARA 

11:      Compute γ̂ , ˆ ,
i
i R Eζ ∈ ∪ and ∆η

*
. 

12:      Update αi, i∈S, gi, i∈R∪E, the sets S, R and E. 

13:      Update the inverse matrix N̂  

14: while Σi∈S αi  ≠ ν(l+1) 

15: Ready for the next new candidate sample, go back 

to step1. 

 

The AIOSVR learning algorithm mainly includes 

two parts: The first part is Relaxed Adiabatic 

Incremental Adjustments (RAIA) and the second part 

is Accurate Restoration Adjustments (ARA). These 

two parts can avoid the infeasible updating path as far 

as possible. 

RAIA: 

During the adiabatic incremental adjustments for αc, 

in order to keep all the training samples satisfying the 

KKT conditions, based on Equation 8 to10, we have: 

 

0,i j ij c ic i

j S

g Q Q z b i Sα α ρ

∈

∆ = ∆ + ∆ + ∆ + ∆ = ∀ ∈∑  (11) 

 

0j j c c

j S

z zα α

∈

∆ + ∆ =∑  (12) 

 

j c

j S

α α ν

∈

∆ +∆ =∑  (13) 

 

Initially, αc is set as αc = 0. 

If the samples in the set S has the same zi and zc of the 

added new candidate sample is the same as zi, then 

Equation 12 is changed into: 
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If ν ≠ 0, it is obvious that Equation 13 and 14 cannot 

hold simultaneously. We call this the contradiction 1, 

which is shown in Table 1. 

The existence of contradictions will cause the fact 

that αi cannot be adjusted effectively. To address this 

issue, we first give up Equation 10 and then a strategy is 

utilized to restore Equation 10. Giving up Equation 10 

means ∆ρ = 0, therefore, referring to C&P algorithm, this 

step is called Relaxed Adiabatic Incremental 

Adjustments (RAIA). 

Define zs = [z1,…,zr]
T 
and ∆αs = [∆α1,…, ∆αr]

T
, then 

Equation 11 and 12 can be further rewritten as the 

following matrix form: 
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where, c

b
γ  stands for the dimension corresponding to b 

in the column vector γ
c
 and it is similar for c

S
γ . 

Finally, substituting Equation 16 into 11, we have: 
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Table 1. Two cases of contradictions existed in RAIA 

zc zi Conflict (Yes or No) 

1+  1+  Yes 

1+  1−  No 

1−  1+  No 

1−  1−  Yes 

 

It is obvious that 0,
c

i
i Sζ = ∀ ∈ . 

Note that the RAIA will degenerate into the C&P 

algorithm when ∆ρ = 0. Therefore, for RAIA, similar to 

C&P algorithm, we can compute the maximal increment 
max

c
α∆  and update αi, i∈S, gi, i∈R∪E, the sets S, R, E 

and the inverse matrix N accordingly. 

ARA: 

After the RAIA, a new strategy is utilized to restore 

Equation 10 accurately, so this step is called Accurate 

Restoration Adjustments (ARA). 

During the ARA process, Σi∈S αi is gradually 

adjusted to restore Equation 10, so that all the training 

samples still satisfying the KKT conditions. The 

weights of the training samples in the set S, the 

Lagrange multipliers b and ρ should also be adjusted 

accordingly. Based on Equation 8 to 10, we have: 
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If the training samples in the set S has the same zi, it 

is clear that Equation 19 and 20 cannot hold 

simultaneously. We call this the contradiction 2, which is 

shown in Table 2. To avoid this contradiction, Equation 

20 is changed into: 
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where, ∆η is the introduced new variable to adjust 

Σi∈Sαi, ϑ is any negative number, ϑ∆ρ is an extra term. 

The purpose of using ϑ∆ρ+∆η is to prevent the 

occurrence of contradiction 2. 

Further, Equation 18, 19 and 21 can be rewritten as 

the following matrix form: 
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Table 2. Two cases of contradictions existed in ARA 

zi  Conflict (Yes or No) 

1+  1+  Yes 

1−  1−  Yes 

1+  1−  No 

1−  1+  No 

 

Let 1ˆ ˆN M
−

=  and then we have: 
 

�

ˆ

ˆ0

ˆ ˆ1

ˆ

b
def

S S

γ

b

N

α 0 γ

ρ

γ

ρ η γ η

∆     
     ∆ = − ⋅ ⋅ ∆ = ⋅ ∆     
     ∆     

 (23) 

 
where, ˆ
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γ  stands for the dimension corresponding to b in 

the column vector γ and it is similar for ˆ
ρ

γ  and ˆ
S
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It is obvious that ˆ 0,
i

i Sζ = ∀ ∈ . From Equation 21 and 

23, we have ( ˆ )1jj S ρ
ϑγα η

∈

+∆ = − ∆∑ , which means the 

adjustment of Σj∈S∆αj can be achieved by ∆η.  

Computing the Critical Adjustment Quantity ∆η
*
: 

The critical adjustment quantity ∆η
*
 is computed 

to ensure that only a training sample will migrate 

among the sets S, E and R. This strategy can address 

the problem when directly apply the ARA to obtain 

the new optimal solution of Equation 5. If Σi∈S 

αi>ν(l+1), compute the maximal adjustments ∆η
max

 

and let ∆η
*
 = ∆η

max
; if Σi∈S αi<ν(l+1), compute the 

minimal adjustments ∆η
min
 and let ∆η

*
 = ∆η

min
. Three 

cases should be considered to account for such 

structural changes. 

 

Case 1: A certain training sample migrates from the set S 

to the set E or the set R. 

 

When Σi∈S αi>ν(l+1), the possible weight updates 

are: 
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When Σi∈S αi< ν(l+1), the possible weight updates are: 
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E or the set R to the set S. 
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Case 3: When Σi∈S αi = ν(l+1), which means the 

termination condition is met, then the critical 

adjustment quantity ∆η
Case3

 in case 3 is: 

 

3
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Finally, if Σi∈S αi > ν (l+1), the smallest value: 

 
* 1 2 3
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will constitute the maximal incremental adjustments of 

∆η; otherwise, the largest value: 
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will constitute the minimal incremental adjustments of 

∆η. 

After the critical adjustment quantity ∆η
*
 is 

determined, we can update αi, i∈S, gi, i∈R∪E, the sets S, 

R, E similar to C&P algorithm. 

Efficiently Updating the Inverse Matrix N̂ : 

Once a training sample is either removed from or 

added to the set S, the inverse matrix N̂  should be 

changed accordingly. Fortunately, based on Lemma 2, 

we can update the inverse matrix N̂ efficiently without 

solving the inverse N̂  directly. 

Lemma 2 Suppose a (s+1)× (s+1) matrix B can be 

partitioned into a block form: 

 

t

T

t tt

A η
B

η Q

 
=  
 

 

 

where, A is s×s matrix and A is invertible, ηt = 

[Q1t,…,Qst]
T
, Qtt ≠ 0 is a constant. 

Then, the inverse matrix of B can be expanded as 

follows: 

 
T

1

1

T

1

1 10

t t
γ γA 0

B
k0

−

−

     
= + ⋅     

    
 

 

where, 1

t t
γ A η−

= −  and T

t t tt
k η γ Q= +  . 

Furthermore, if B is invertible and (B
−1
)tt ≠ 0, t = s+1, 

then the inverse of matrix of A can be contracted as follows: 

 

( )1 1

*1 1 \

\ 1

( ) ( )
( )

( )

t t
tt

tt

tt

B B

A B
B

− −

∗
− −

−

⋅

= −  

 

where,* ≠ t . 

It can be easily verified that BB
−1
 = Is+1 and AA

−1
 = 

Is. The detailed proof of Lemma 2 can be found in 

Laskov et al. (2006), it is omitted here. 

Based on Lemma 2, if a sample ( , , )
t t t
x y z′  is removed 

from the set S, then N̂  can be contracted as follows: 

 
ˆ ˆ( )ˆ ˆ

ˆ
t t \tt

\tt

tt

N N
N N

N

∗ ∗
⋅

← −  (27) 

 

Similarly, if a sample ( , , )
t t t
x y z′  is added to the set S, 

then N̂ can be expanded as follows: 

 

ˆ 1
ˆ

1 10

T

t t

tT

t

γ γN 0
N

0 ζ

     
← + ⋅     

    
 (28) 

 

where, t t t t

t j tj t b tt

j S

Q y Q
ρ

ζ γ γ γ
∈

= + + +∑  and 

ˆ 1

t

b t

t

t

t

S St

z

γ N

γ Q

ρ

γ

γ

   
   = = − ⋅   
     

. 

 

Preparations for the Next Round of Adjustments: 

From Algorithm 1, it is obvious that we should 

prepare the inverse matrix N̂  for the next round of ARA 
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after RAIA. Similarly, we should also prepare the 

inverse matrix N for the next round of RAIA after ARA. 

Fortunately, based on Lemma 2, the inverse matrix 

N̂  can be expanded as follows: 

 

1

1
ˆ 1

0 1

T

T

N 0 A
N A

0 k

   
 ← +     

   
 (29) 

 

where, [ ]1

0
0

S T

S

k e N
e

ϑ
 

= − ⋅ ⋅  
 

 and 
0

T

S

A N
e

 
= − ⋅  

 
. 

Similarly, we can obtain the inverse matrix N from 

the following three steps. 

First, based on Lemma 2, compute the inverse matrix 

1

def

SS
R Q−

=  by using the contracted rules as follows: 

 

( )\ \ \ * * \

1 1ˆ ˆ ˆ( ) ,
ˆ bb b b bb

bb

R N N N R R R R
RN

ρρ ρ ρ ρρ

ρρ

∗ ∗
← − ⋅ ← − ⋅  

 

Second, Update the inverse matrix of QSS by the rule 

1l
R R

l

+
← . 

Finally, based on Lemma 2, the inverse matrix N can 

be expanded as follows: 

 

2

1
1

0 1

T

T

R 0 B
N B

0 k

   
 ← +     

   
 (30) 

 

where, 
2

T

S
k Bz= ⋅  and 

S
B zR= − ⋅ . 

Similar to Gu and Sheng (2013), we can also prove 

the feasibility and finite convergence of the AIOSVR 

learning algorithm. The detailed proof is omitted here. 

The feasibility of the AIOSVR learning algorithm 

ensures that there always exist the inverse matrices N 

and N̂  during the adiabatic incremental adjustments 

and the set S will always be nonempty during the 

RAIA and ARA. The finite convergence analysis 

ensures that the AIOSVR learning algorithm will 

converge to the optimal solution of the minimization 

problem within finite steps. Therefore, the AIOSVR 

learning algorithm is effective and reliable. 

Glutamic Acid Fed-Batch Fermentation 

Process 

Glutamic acid fed-batch fermentation is a rather 

complicated nonlinear process. Its corresponding 

fermentation system is relatively complex (Desai et al., 

2006). However, with the rapid development of modern 

technology, glutamic acid fed-batch fermentation is 

equipped with advanced devices, for example, off-gas 

analyzer and control cabinet. These devices have greatly 

enhanced the automation of fermentation process. 

Glutamic Acid Fed-batch Fermentation System 

Glutamic acid fed-batch fermentation system is mainly 

composed by fermenter, off-gas analyzer, electronic 

balance, control cabinet and industrial computer. 

The fermenter (Model BIOTECH-5BG-5L) is 

made in Shanghai Baoxin Biotechnology Equipment 

Co., Ltd, China. The volume of fermenter is 5L and 

equipped with temperature sensor, mixing controller, 

foam electrode, pH electrode and DO electrode. An 

off-gas analyzer (Model LKM2000A, made in Lokas 

Co., Ltd, Korea) is connected with the fermenter to 

measure the CO2 and O2 concentration under 

incomplete pressure state. The main function of the 

electronic balance is to measure the ammonia 

consumption and substrate quantity to be added in the 

glutamic acid fermentation process. The control 

cabinet is in charge of collecting data, transmitting 

data and controlling execution counterparts. The 

industrial computer is used to monitor and store data 

produced in the glutamic acid fermentation process. 

Seeds Culture and Fermentation Condition 

The seeds (Corynebacterium Glutamicum S9114) 

are offered by key laboratory of industrial 

biotechnology, ministry of education, Jiangnan 

University. The seeds are added into a shake flask 

filled with liquid nutrient medium and they are 

adequately cultivated for 8 to 10 h under the condition 

of 32°C and 200 r/min. Then, the seeds are added into 

the fermenter, which has approximately 3.4L liquid 

fermentation nutrient medium and the pressure of the 

fermenter is kept in 0.07MPa. The initial pH of the 

liquid fermentation nutrient medium is in the range of 

7.0 to 7.1. In order to keep the pH in the range of 

7.1±0.1 during the whole fermentation process, 25% 

ammonia is automatically added, which also offers 

necessary ammonia for glutamic acid synthesis. 

Moreover, 50% glucose is added in the fermentation 

process to offer necessary glucose concentration for 

glutamic acid growth. Furthermore, in order to avoid 

the step change of substrate concentration, a modified 

feed-rate profile is utilized in this study, which is 

shown in Fig. 2. 

Variables in Glutamic Acid Fed-batch 

Fermentation Process 

There are three different kinds of variable in 

glutamic acid fed-batch fermentation process: 

Physical variable, chemical variable and biological 

variable. The physical variable, such as temperature 

(°C), pressure (MPa) and air flow (m
3
/h), etc., can be 

measured online. Similarly, the chemical variable, 

such as pH and Dissolved Oxygen (DO), can also be 

measured online by certain electrode.
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Fig. 2. Feed-rate profiles 

 
However, the biological variable, such as biomass 
concentration, glutamic acid concentration and 
substrate concentration, cannot be measured online. 
Generally, these three biological variables can only be 
analyzed offline every two hours. Fortunately, with 
the help of soft sensor modelling, they can be 
measured and tuned online. 

In our experiment, such variables as temperature, 

pressure, air flow, pH and DO keep constant. The mixing 

speed of motor can control the DO concentration. 

Several batch experiments are carried out under the 

condition of keeping 10%, 20, 30 and 50% DO 

concentration, respectively.  

Soft Sensor Modelling of Biomass 

Concentration during Fermentation using 

AIOSVR Learning Algorithm 

Data Preprocessing 

The data can be divided into offline data and online 

data. Generally, the temperature, pressure, air flow and 

pH are almost constant. Therefore, they cannot be treated 

as the input variable of the soft sensor modelling. 

The offline data is measured every two hours, so the 

same sampling period should be used for online data. In 

addition, the glucose feed-rate quantity and ammonia 

consumption use the same way as mentioned above. The 

sampling period of OUR and CER is 5 min, so the 

oxygen uptake O2i and CO2 production CO2i per 2 h are 

calculated as follows: 
 

24( 1)

2

24

/ 12

i

i j

j i

O V OUR

+

=

= ∑  (31) 

 
24( 1)

2

24

/ 12

i

i j

j i

CO V CER

+

=

= ∑  (32) 

Table 3. The result of input variables using PCA 

Principle   Contribution 

component variable Eigenvalue (%) 

Xi-1 2.87 19.02 

Xi-2 2.23 14.78 

Xi-3 0.25 1.66 

Si-1 1.92 12.72 

Si-2 1.35 8.95 

Si-3 0.35 2.32 

Fi 1.98 13.12 

Fi-1 1.58 10.47 

Fi-2 0.14 0.93 

Oi 2.36 15.64 

Oi-1 0.06 0.40 

 

Selection of Input Variables 

The glutamic acid growth mainly depends on 

biomass concentration and substrate concentration by 

inner mechanism analysis (Zhang et al., 2005). However, 

different DO leads to different cell activity, which means 

that the oxygen uptake O2i should be treated as an input 

variable of the soft sensor modelling. Therefore, there 

are three different kinds of input variables in the soft 

sensor modelling of biomass concentration: Biomass 

concentration Xi, substrate concentration Si, glucose 

feed-rate Fi and oxygen uptake Oi. 

In our simulation experiment, the following 

variables Xi-1, Xi-2, Xi-3, Si-1, Si-2, Si-3, Fi, Fi-1, Fi-2, Fi-3 

and Oi, Oi-1 are selected as the input variables of the 

soft sensor modelling. The result of input variables 

using Principle Component Analysis (PCA) (Li et al., 

2008) is shown in Table 3. 

According to the characteristic of fermentation and the 

contribution of each principle component variable in 

Table 3, the input variables Xi-3, Si-3, Fi-2 and Oi-1 are 

ignored. So Xi-1, Xi-2, Si-1, Si-2, Fi, Fi-1 and Oi are selected as 

the input vector xi of the expanded training sample set T. 

Setting of Model Parameters 

In order to ensure the matrix QSS is always invertible, 

K(xi, xj) = exp(-||xi-xj||/2σ
2
) is used as the kernel 

function, where the kernel width parameter is set as σ 

= 0.7.71. Due to the main function of the parameter C 

is to transform the output yi into i
y′ , for convenience, 

C is set as 100. In addition, from Equation 23, it is 

easy to verify ˆ
b

γ , ˆ
ρ

γ  and ˆ ,
i
i Sγ ∈  have the same 

denominator ˆdet( )M  and ϑ only correlates with 
ˆdet( )M . Therefore, ϑ can determine ∆η

*
, but is 

independent with the structural changes of the sets S, 

R and E. So the parameter ϑ is fixed at -1. The 

parameter ν of ν-SVR and AIOSVR is set as 0.3. 

Training and Testing of Data 

Six batches of glutamic acid fermentation data are 

selected from the above experiments and each batch of 
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data can represent the whole fermentation process. The 

data includes offline analyzed data and online measured 

data. Five batches are used to train the model and the 

remaining one batch is used to test the model. The 

detailed steps of training and testing of data using 

AIOSVR learning algorithm is listed as follows: 

 

Step 1: Select the input and output of the expanded 

training sample set T. Here, the input is selected 

as xi = [Xi-1, Xi-2, Si-1, Si-2, Fi, Fi-1, Oi] and the 

output is / 100
i i i
y y X′ = = . 

Step 2: In order to enhance the speed of operation, the 

AIOSVR is used to train the model offline 

based on the five batches of glutamic acid 

fermentation data. 

Step 3: The remaining one batch glutamic acid 

fermentation data is used to test the model 

which is already established. Furthermore, the 

minimum error allowed is set as Errmin = 2. 

Step 4: Calculate the prediction error: ˆ
i i i
e y y′ ′= − , where 

i
y′  stands for the real value and ˆ

i
y′  stands for 

the predictive value. If |ei|< Errmin, the model 

will not be tuned and the data is saved for 

future use; otherwise, the model will be tuned 

by training the previously saved data one by 

one according to Step 2. 

Step 5: The next step of prediction is carried out 

according to Step 4 until the whole fermentation 

process is over. 

 

Results 

All simulation experiments are performed on a 3.1 

GHz Inter® Core™ i5-2400 with 4GB RAM and 

MATLAB 2010a platform. 

The prediction results and prediction errors of 

biomass concentration based on ν-SVR and AIOSVR are 

shown in Fig. 3 and 4, respectively. Note that biomass 

concentration refers to OD620 value, which is 

measured by diluting extracted broth 100 times. The 

Mean Square Error (MSE) and training time of ν-SVR 

and AIOSVR are shown in Table 4. Note that T24 and 

T32 refer to the training time at fermentation time of 24 

and 32 h, respectively. 

Discussion 

From Fig. 3 and 4, it is clear that a relatively large 

prediction error occurred at fermentation time of 24 and 

32 h, which leads to a larger prediction error. The 

reason is that the biomass activity becomes stronger at 

fermentation time of 24 and 32 h. Fortunately, 

AIOSVR learning algorithm can tune the parameters 

quickly to cope with this change and obtain smaller 

prediction error than ν-SVR by online learning. 

Therefore, the soft sensor modelling based on AIOSVR 

is of stronger adaptive ability than ν-SVR.  

Table 4 demonstrates that the MSE of AIOSVR is 

around half that of ν-SVR, which means AIOSVR has 

stronger generalization ability. Furthermore, the training 

time of AIOSVR is also less than that of ν-SVR. 

In summary, the AIOSVR learning algorithm is of 

better generalization ability and online learning speed 

than ν-SVR. So it is more suitable for the soft sensor 

modelling of real fermentation process. 

 

 
 
Fig. 3. Prediction results of biomass concentration based on ν-

SVR and AIOSVR 

 

 
 
Fig. 4. Prediction errors of biomass concentration based on ν-

SVR and AIOSVR 

 

Table 4. MSE and training time of ν-SVR and AIOSVR 

 ν-SVR AIOSVR 

MSE 2.616 1.303 

T24(s) 48.500 36.300 

T32(s) 26.500 18.400 
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Conclusion 

In order to design an online soft sensor modelling for 

real fermentation process, we first proposed an AIOSVR 

learning algorithm and then presented its application in 

soft sensor modelling of biomass concentration for 

glutamic acid fermentation process. 

In theory, the AIOSVR learning algorithm can also be 

applied in the soft sensor modelling of substrate 

concentration, product concentration and so on. 

Therefore, the AIOSVR learning algorithm can be 

widely used in the soft sensor modelling of microbial 

fermentation process. 
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List of Symbols 

R
d
 denotes the d-dimensional Euclidean space 

T denotes matrix transposition 

∆ denotes the amount of the change of each variable 

QSS denotes the submatrix of Q with the rows and 

columns indexed by the set S 

QSc denotes the subvector of the matrix Q with the rows 

and columns indexed by the set S and c, respectively 

es denotes the all ones column vector indexed by the set S 

0 denotes the all zeros column vector with proper 

dimensions 

M
-1
 denotes the inverse of the matrix M 

‘def’ above’ =’ denotes the left side of the equal sign is 

defined as the right side 

Im denotes the identity matrix with m dimensions 
ˆ
tt

N  denotes the it th row and the it th column of the 

matrix N̂ , where it stands for the corresponding index in N̂  

\

ˆ
tt

N  denotes the submatrix of N̂  with deleting the it th 

row and it th column, where it stands for the 

corresponding index in N̂  

Xi denotes the biomass concentration at time i (g/L) 

Si denotes the substrate concentration at time (g/L) 

Fi denotes the glucose feed-rate at time i (mL/h)  

O2i denotes the oxygen uptake at time i (mol) 

CO2i denotes the CO2 production at time i (mol) 

V denotes the volume of broth (m
3
) 

OURi denotes the oxygen utilization rate at time i (mol/m
3
/h) 

CERi denotes the CO2 evolution rate at time i (mol/m
3
/h)  


