American Journal of Biochemistry and Biotechnology 9 (3): 206-218, 2013 ISSN: 1553-3468 © 2013 R. Patel *et al.*, This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license doi:10.3844/ajbbsp.2013.206.218 Published Online 9 (3) 2013 (http://www.thescipub.com/ajbb.toc)

IgG Subclass Variation of a Monoclonal Antibody Binding to Human Fc-Gamma Receptors

Rekha Patel, Krista K. Johnson Bruce A. Andrien and Paul P. Tamburini

Alexion Pharmaceuticals Inc, 352 Knotter Dr, Cheshire, CT 06410, USA

Received 2012-01-06, Revised 2013-07-02; Accepted 2013-07-17

ABSTRACT

The importance of human Fc receptors in immune regulation is well known. Their role is critical not only in the recruitment of cellular effector functions but also in regulating the balance in the periphery between autoimmunity and tolerance. Despite their central importance, there is a dearth of literature on controlled numeric comparisons in affinities of antibody subclasses for gamma receptors. To date, no studies have directly compared humanized antibodies with the same variable region and differing Fc region subclasses which would rule out any differences that may be attributed to variations in the variable region. In this study we characterized the interaction between four humanized monoclonal antibodies; IgG_1 , G_2 , G_3 and G_4 , each possessing an identical variable region and the repertoire of human Fc-gamma (Fc γ) receptors (Fc γ RI, Fc γ RIIA, Fc γ RIIB, Fc γ RIIIA and Fc γ RIIB). The studies were performed using both Surface Plasmon Resonance (SPR) and Enzyme-Linked Immunosorbent-Assay (ELISA) formats. The affinities of the antibodies for their antigen molecule, an endogenous human protein, were also analyzed by SPR. While the identity of the Fc-region had no significant effect on the binding to antigen, substantially different affinities for each of the Fc γ receptors, Fc γ RI, Fc γ RIIA, Fc γ RIIB, Fc γ RIIB, Fc γ RIIB, Fc γ RIIB, Fc γ RIB, Fc γ RIIB, Fc γ RIB, Fc γ RIIA, Fc γ RIB, Fc γ RIIA, Fc γ RIB, Fc γ RIIA, Fc γ RIB, Fc γ

Keywords:FC-Gamma Receptors, Surface Plasmon Resonance (SPR), Monoclonal Antibodies, IgG Subclass, Affinity, ELISA

1. INTRODUCTION

Monoclonal Antibodies (mAbs) are a rapidly growing class of highly specific therapeutics (Stockwin and Holmes 2003; Piggee 2008; Carter 2006) which, over the last three decades, have become effective treatments for immunological, oncological, transplantation, cardiovascular and infectious diseases (Nissim and Chernajovsky, 2008; Zhang *et al.*, 2007). Currently there are more than 20 FDA approved antibody therapeutics on the market, all of which are of the Immunoglobulin G (IgG) class. An IgG is comprised of two light chains each consisting of variable and constant domains and two heavy chains, each consisting of one variable and 3 constant domains. The two heavy chains are linked to each other and to a light chain each by disulfide bonds.

Through advancements in engineering know-how, biopharmaceutically desired characteristics such as affinity, avidity, half-life and effector functions of an antibody can be manipulated (Hudson and Souriau, 2003; Chowdhury and Wu 2005; Stavenhagen *et al.*, 2007; Horton *et al.*, 2008; Zalevsky *et al.*, 2009). For example, a triple mutation (M252Y/S254T/T256E) inserted into the C_{H2} domain of a human IgG molecule increased its binding by approximately 10-fold to the human neonatal receptor FcRn with almost a 4-fold increase in serum half-life (Oganesyan *et al.*, 2009)

Corresponding Author: Rekha Patel, Alexion Pharmaceuticals Inc, 352 Knotter Dr, Cheshire, CT 06410, USA Tel: 203 271 8280 Fax: 203 271 6436

while other changes in the Fc domain of IgG have yielded a greater than 100-fold improvement in Antibody-Dependent Cellular Cytotoxicity (ADCC) (Stavenhagen *et al.*, 2007). Many of the approved therapeutic mAbs are of the IgG₁ subclass, reviewed by Carter (2006). Advantages of IgG₁ include a characteristic longer half-life and the ability to orchestrate immune mediated effector functions (Natsume *et al.*, 2009; Strome *et al.*, 2007).

IgG Fc receptors play an important role in the control of effector functions of mAbs (Sisto et al., 2009) including ADCC (Fanger et al., 1989), complement activation, phagocytosis (Anderson et al., 1990), release of inflammatory mediators (Anegon et al., 1998), antibody production (Fridman, 1993) and immune complex clearance. Three functionally and structurally distinct types of $Fc\gamma$ -Receptors ($Fc\gamma R$) are expressed on human leukocytes, namely: FcyRI (CD64), FcyRII (CD32) and FcyRIII (CD16). The latter two classes are further divided into FcyRIIa, FcyRIIb, FcyRIIIa and FcyRIIIb. All FcyRs belong to the immunoglobulin superfamily and differ in their antibody affinities. FcyRI has a higher affinity for IgG ($K_a = 10^8 - 10^9 M^{-1}$), than FCYRII $(K_a < 10^7 M^{-1})$ or FCYRIII $(K_a < 3 \times 10^7 M^{-1})$ reviewed by Gessner et al., (1998). FcyRI has three immunoglobulin domains in the extracellular portion whereas FcyRII and FcyRIII have two. It is this third domain of FcyRI which confers high affinity and the ability to bind monomeric IgG (Gessner et al., 1998; Allen and Seed 1989). In contrast, the lower affinities of FcyRII and FcyRIII for IgG renders these receptors suited to activation through the avidity afforded by the association with multimeric immune complexes (Shields et al., 2001). Ligation of FcyRs produces activating signals as with FcyRI and FcyRIII, or inhibitory signals as with FcyRIIb, both of which are integral to a balanced immune response (Nimmerjahn and Ravetch, 2005). FcyRs bind to the lower hinge region of IgG and in the case of IgG₁, a common set of residues appears to be involved in the binding to all FcyRs (Sautes et al., 2003; Shields et al., 2001).

While the various subclasses of IgGs have distinct selectivity profiles for the Fc γ receptor repertoire (Salfield 2007; Presta *et al.*, 2002), most of the supporting studies feature qualitative rankings of Fc γ Rs functional association (Strome *et al.*, 2007; Nimmerjahn and Ravetch 2005; Sorge *et al.*, 2003). Few studies have shown comprehensive numerical affinities for antibody subclasses binding to the human Fc γ Rs. One study has reported binding of IgG₁ with RIIa, RIIb and RIII only (Maenaka *et al.*, 2001). Another study by Bruhns *et al.* (2009) discussed the specificity and affinity of $Fc\gamma Rs$ and their polymorphic variants to different human IgG subclasses, using purchased chimeric monoclonal and polyclonal antibodies. However, no studies to date have compared human antibodies with the same variable region in combination with the differing Fc subclasses.

Obtaining accurate affinities of each subclass for various FcyRs and understanding the importance of immune complex clearance is important in the design of antibody-based therapeutics. For example, this can allow monoclonal antibodies to be specifically engineered to manipulate clearance. In this study four recombinant antibodies each possessing an identical variable region and differing only in the subclass of Fc-region $(G_1, G_2, G_3 \text{ and } G_4)$ were produced and shown to be structurally and functionally indistinguishable with respect to the variable region and interaction with the antigen protein. These antibodies were evaluated for binding to each of the FcyRs: FcyRI, FcyRIIA, FcyRIIB, FcyRIIIA and FcyRIIIB using both a monovalent binding SPR format and a multivalent ELISA.

2. MATERIALS AND METHODS

2.1. Antibody and Protein Reagents

Human Fc gamma receptors were purchased from R and D systems; (Cat# Fc γ RI-1257-FC, Fc γ RIIA-1330-CD, Fc γ RIIB-1875-CD, Fc γ RIIIA-4325-FC and Fc γ RIIIB-1597-FC/CF). Anti-Fc (goat anti-human-Fc IgG antibody, 1 mg mL⁻¹) was obtained from KPL (Cat#01-10-20). The endogenous human protein antigen was obtained from commercial sources.

2.2. Generation of Purified mAbs

Monoclonal antibodies to the endogenous human protein antigen containing either G_1 , G_2 , G_3 or G_4 constant regions and the same variable domain were generated using standard molecular biology methods. Plasmids were transfected into CHO K1 cells and cell lines established using single cell cloning (CHO-GS used under license from Lonza Biologics plc.). Antibodies were purified from cell culture supernatants using protein A affinity chromatography. The structural differences between each of the mAb subclasses are well known (Wypych *et al.*, 2008) and include the number of disulfide bonds in the hinge region, the location of the heavy and light chain disulfide bonds and the approximately 5% overall primary sequence divergence between the Fc-regions.

2.3. IEF

Purified antibodies ($10 \ \mu g$ each) were run on a pH 3-10 Invitrogen IEF gel (Cat#EC6655BOX) and calibrated with an IEF pH 3-10 Invitrogen Serva marker kit (Cat#39212-01). Gels were stained with Coomassie brilliant blue R-250 (Research Organics Cat#1447C).

2.4. Electrospray ToF

The monoclonal antibodies were injected into an Agilent 1100 HPLC and the LC effluent electrosprayed into the Agilent LC/MSD ESI-ToF mass spectrometer operated in positive ion mode. A Vydac C4 reverse phase column (1.0×250 mm, 5 µm particles, 300 Å pore size) was used with a mobile phase A of 94.9% Water, 5% Acetonitrile, 0.1% Trifluoroacetic Acid (TFA) and mobile phase B of 79.9% Acetonitrile, 20% Water, 0.1% TFA. An LC-MS run time of 35 min. was used with a 1 min ballistic desalting gradient from 20-100% B 1 min post injection. MS data were generated with Mass Hunter acquisition software and processed using Mass Hunter Qualitative with BioConfirm deconvolution software to resolve the charge state envelope for each sample and to determine the mass of the intact antibody and any variant structures present. The calibration check spectra were acquired pre-acquisition and postacquisition of the samples, using ES-ToF Tuning mix.

2.5. Biacore Analysis

Kinetic data were obtained by surface plasmon resonance performed on a Biacore 3000 biosensor (Biacore AB, Uppsala, Sweden). The CM5 sensor chips (research grade), amine coupling reagents (NHS, EDC, ethanolamine pH 8.5, HBS-EP buffer, 10 mM sodium acetate buffer (pH 5.0) and P20 were obtained from Biacore AB. The binding kinetics of mAbs to the antigen was determined by a capture approach using single cycle kinetics (Karlsson et al., 2006). In this approach, the CM5 sensor chip was normalized and primed using fresh degassed/filtered HBS-EP buffer prior to anti-Fc mAb immobilization at 25°C on two flow cells of the chip at a concentration of 0.1 mg mL⁻¹ in 10 mM sodium acetate pH 5.0 for 8 min. at 10 μ L min⁻¹ via amide coupling chemistry. The mAbs were diluted between 0.8 and 1.4 $\mu g m L^{-1}$ and, in separate experiments, injected as follows: IgG1- 20 µL, IgG2-30 µL, IgG3-18 µL, IgG4-20 μ L at 20 μ L min⁻¹. Concentrations of 0.375, 0.75, 1.5, 3 and 6 nM antigen in HBS-EP were injected over the Anti-FC/mAb surface in single cycle kinetics mode. Experiments were run at 25°C sensor surface temperature. Data were analyzed using a titration kinetics 1:1 Model in BIAsimulation software (Biacore AB, Uppsala, Sweden). The binding affinities of the

mAbs to Fcy receptors (FcyRI, FcyRIIA, FcyRIIB, FcyRIIIA and FcyRIIIB) were determined by directly immobilizing the mAbs to the sensor surface. The mAbs diluted in 10 mM sodium acetate pH 5 were immobilized to one flow cell; the other flow cell was immobilized as a blank reference. Immobilization levels were optimized to show sufficient binding levels of receptors. Various concentrations of receptors were analyzed in HBS-EP. Experiments were run either by single cycle kinetics mode or steady state equilibrium depending on initial affinities in experimental scouting. Data were analyzed using a Steady State Affinity Model in BIAsimulation software (Biacore AB, Uppsala, Sweden). Table 1 outlines concentrations of antibody used in immobilization (including resonance units immobilized), receptor concentration and experimental mode.

Table 1. Methods summary

Table I. N	iculous summ	DIN 11	F	
FcyR	mAb Concn	RU's mAb	FcyR	Expt
	. μg/mL	Immobilized	Concentrations (nM)	Mode
Anti-)	0.8	318	0.19, 0.38,0.	
Fc (G1			75,1.5,3.0	SCK ^a
Anti-)	62	1570	31,63,125,250,	
Fc (G2			500,1000,2000	SSE ^b
Anti-	0.1	318	0.19, 0.38,0.	
Fc (G3)			75,1.5,3.0	SCK ^a
Anti-	0.7	338	0.19, 0.38,	
Fc (G4)			0.75,1.5,3.0	SCK ^a
FcyRIIA				
Anti-	1.6	542	24,49,98,195,	
Fc (G1)			391,781,1563,3125	SSE
Anti-	62	1569	24,49,98,195,	
Fc (G2)			391,781,1563,3125	SSE⁵
Anti-	2.1	547	24,49,98,195,391,	1
Fc (G3)			781,1563,3125	SSE
Anti-	1.4	546	24,49,98,195,391,	
Fc (G4)			781,1563,3125	SSE
FcyRIIB				
Anti-	81.1	2584	26,52,104,208,	
Fc (G1)			417,833,1667,	aanh
	(a	1.5.00	3333,6666	SSE
Antı-	62	1569	26,52,104,208,417,	aarb
FC (G2)	0.1	5.40	833,166/,3333,6666	SSE
Antı-	2.1	542	26,52,104,208,417,	aarb
FC (G3)	1.4	546	833,100/,3333	SSE
Anti-	1.4	546	20,52,104,208,417,	CCEP
			855,1007,5555	SOF
Anti	16	524	0 17 24 60 120 278	
Anu-	1.0	524	556 1111 2222 AAAA	SSEp
Anti	62	1560	0 17 34 60 130 278	55E
Fe and	02	1509	556 1111 2222	SSEp
Δnti_{-}	2.1	547	9 17 34 69 139 278	SSL
Fe (cr)	2.1	547	556 1111 2222	SSEp
Anti-	14	546	9 17 34 69 139 278	SSL
Feren	1.4	540	556 1111 2222 4444	SSF ^b
FevRIIIR			,550,1111,2222,111	OOL
Anti-	16	542	16 31 63 125 250	
Fc (c)	1.0	0.2	500 100 2000	SSE^{b}
Anti-	62	18171	16.31.63.125.250	002
Fc (cr)			500,100,2000	SSE ^b
Anti-	2.1	546	16.31.63.125.250	~~~
Fc (G3)			500.100.2000	SSE ^b
Anti-	137	16098	16.31.63.125.250	
Fc (G4)	/		500,100,2000	SSE ^b
(04)				~~~

Single Cycle Kinetics^a, Steady State Equilibrium^b

2.6. Binding of Antibodies to FcyR by ELISA

Ni-NTA pre-coated plates (Qiagen, Cat#35061) were incubated with 50 μL well^-1 of His-tagged human FcyR I, IIb/c or III (R and D systems Cat#s1257-FC, 1875-CD, 4325-FC) at a receptor concentration of 5 μ g mL⁻¹ in PBS, overnight at 4°C. Following overnight incubation with receptor, the plates were washed 3 times with PBS buffer containing 0.02% Tween-20 using a multiwash advantage plate washer. After washing, 50 µL of complexed antibodies were diluted in PBS buffer containing 0.05% Tween-20 and incubated in the plate for 60 min. at room temperature. Complexed antibody was prepared by prior incubation of antibodies overnight with a biotinylated $F(ab')_2$ fraction of goat-anti-human F(ab')₂ (Jackson Immunolabs Cat# 109-066-006), at a 2:1 antibody: F(ab')₂ molar ratio in PBS. Following incubation of the plate wells with complexed antibody, the plates were washed as described above and followed by the addition of 50 μ L well⁻¹ of the secondary antibody streptavidin-HRP to detect biotinylated complexed antibodies (Zymed Cat#43-4323, diluted 1/2000 in PBS buffer containing 0.05% Tween-20). Incubation with secondary antibody was for 60 min. at room temperature. Following this incubation, wells were washed and color development initiated with 100 μ L well⁻¹ of *o*-phenylenediamine dihydrochloride (OPD,

Sigma Cat# P 9187). Reactions were stopped with 25 μ L well⁻¹ 12.5% H₂SO₄ and the absorbance read at 490 nm.

3. RESULTS

3.1. Physical and Structural Characterization of Recombinantly Expressed Monoclonal Antibody Subclass Variants

IEF analysis of the antibodies used in this study is shown in Fig. 1, from which the following pI values were obtained: $IgG_1 = 7.9$; $IgG_2 = 7.1$; $IgG_3 = 8.0$; $IgG_4 =$ 6.7. The appearance of multiple bands most likely reflects heterogeneity in post translational modifications. The electrospray ToF evaluation revealed а considerable difference in the molecular weight of the various subclasses in accordance with differences in the amino acid sequence and number of disulfide bonds (Fig. 2). The experimentally determined molecular weights were: $IgG_1 = 148,475(\pm 17 \text{ ppm})$; $IgG_2 = 147,982(\pm 24 \text{ ppm}); IgG_3 = 158,668(\pm 21 \text{ ppm});$ $IgG_4 = 148,025(\pm 21 \text{ ppm})$, with error calculated from a theoretically determined mass. The higher molecular weight of IgG₃ compared to the other IgG subclasses is attributed to the elongated hinge region.

1. Marker pH 3-10 Invitrogen Serva

- 2. IgG1
- 3 IgG₂ 4 IgG₃
- 5 IgG4

Fig. 1. The heterogeneity of mAb subclasses is shown by vertical IEF. The following pI values were

Rekha Patel et al. / American Journal of Biochemistry and Biotechnology 9 (3): 206-218, 2013

Rekha Patel et al. / American Journal of Biochemistry and Biotechnology 9 (3): 206-218, 2013

Fig. 2. Intact molecular weights of each of the IgG subclasses evaluated by Electrospray ToF. The experimentally determined molecular weights were: $IgG_1 = 148,475 (\pm 17 \text{ ppm})$; $IgG_2 = 147,982(\pm 24 \text{ ppm})$; $IgG_3 = 158,668(\pm 21 \text{ ppm})$; $IgG_4 = 148,025 (\pm 21 \text{ ppm})$

Science Publications

Rekha Patel et al. / American Journal of Biochemistry and Biotechnology 9 (3): 206-218, 2013

Fig. 3. Sensorgrams of mAb subclasses (G₁, G₂, G_{3 and} G₄) binding to antigen using a single cycle kinetics technique by Biacore. Each step in the sensorgram represents increasing concentration of antigen. The final concentration/step shows both association and dissociation of antibody binding to antigen

Science Publications

Rekha Patel et al. / American Journal of Biochemistry and Biotechnology 9 (3): 206-218, 2013

Fig. 4. Sensorgrams of mAb subclasses (G₁, G₂, G₃ and G₄) binding to FcγRI receptor by Biacore. mAb subclasses (G₁, G₃ and G₄) binding to FcγRI evaluated by single cycle kinetics. Each step represents increasing concentration of FcγRI. The final step/concentration shows both association and dissociation of the antibody binding to FcγRI. IgG₂ was evaluated by steady state eqilibrium. Each step represents increasing concentration of FcγRI Receptor

Fig. 5. Binding of cross linked humanized antibody subclasses $(G_1, G_2, G_3 \text{ and } G_4)$ to various Fc γ Receptors as immune complexes with F(ab')₂-anti-F(ab')₂, using an ELISA format. All IgG subtypes bind well to Fc γ RIIA and Fc γ RIIB, the inhibitory Fc γ R. IgG₃ binds to all Fc γ Rs

Table 2.	Kinetics of mAbs (G1, G2, G3 and G4) binding to
	antigen by Biacore

Table 3. Binding affinities of mAbs with diffe	erent Fc regions to human
Ea commo recontors by Discore	

antigen by Blacore					r e guinnia	receptors o	y blacole		
mAb Subclass	$k_a (M^{-1}s^{-1})$	$k_{d} \left(s^{-1} \right)$	$K_{D}(M)$	mAb	Receptor FcyRI	Receptor FcyRIIA	Receptor FcyRIIB	Receptor FcyRIIIA	Receptor FcyRIIIB
IgG ₁	6.91E+05	2.62E-05	3.80E-11	subclass	$K_D(M)$	$K_D(M)$	$K_D(M)$	$K_D(M)$	$K_D(M)$
IgG ₂	6.82E+05	4.01E-05	5.88E-11	IgG ₁	1.23E-10	8.00E-07	3.10E-06	8.50E-07	1.90E-06
IgG ₃	1.05E+06	3.63E-05	3.45E-11	IgG2	1.40E-06	3.78E-07 8.97E-08	6.80E-06	2.20E-06 3.90E-07	ND ^a 1.44E-06
IgG ₄	6.94E+05	2.81E-05	4.04E-11	IgG ₄	6.90E-10	6.00E-07	1.70E-06	3.46E-06	4.60E-06

 Table 4. Affinity ranking for the binding of mAbs with varying

 Fc regions to Fc-gamma receptors as determined by

 Biacore and an FLISA format

Diac	ore and an ELISA Iormat	
Fc-receptor	Rank order	Rank order
type	by SPR	by ELISA
FcγRI	$IgG_2 <\!\!<\!\!IgG_4 <\!\!IgG_1 <\!\!IgG_3$	IgG ₃
Fcγ	$IgG_1 \sim IgG_4 << IgG_2 < IgG_3$	IgG ₄ <igg<sub>2</igg<sub>
RIIA		<IgG ₁ $<$ IgG ₃
Fcγ	$IgG_1 \sim IgG_2 \sim IgG_3 \sim IgG_4$	IgG ₁ ~
RIIB		IgG ₂ ~IgG ₃ ~IgG ₄
Fcγ	$IgG_2 \sim IgG_4 < IgG_1 < IgG_3$	IgG ₃
RIIIA		(bound poorly)
Fcγ	$IgG_1 \sim IgG_2 \sim IgG_3 \sim IgG_4$	IgG ₄ < IgG ₃
RIIIB		(both bound poorly)

3.2. Binding of the Monoclonal Antibody Subclass Variants to the Antigen Protein

The sensorgrams from single cycle kinetics are shown in **Fig. 3**. All four subclass variant antibodies bound with high affinity to the endogenous human protein antigen. Negligible difference was observed in K_D values among the variants (**Table 2**). The observed K_D values were: $IgG_1 = 38 \text{ pM}$, $IgG_2 = 59 \text{ pM}$, $IgG_3 = 35 \text{ pM}$, $IgG_4 = 40 \text{ pM}$ (**Table 2**). The association (k_a) and dissociation (k_d) rate constants were also similar. These data clearly show that changes in the Fc type do not result in conformational changes in the variable region that affect antigen protein binding.

3.2. Affinity of Binding of the Monoclonal Antibody Subclass Variants to FcγR:

The binding affinities of the four subclass variant antibodies to each of FcyRI, FcyRIIA (R131), FcyRIIB, FcyRIIIA (V158) and FcyRIIIB as determined by SPR were significantly different (Table **3**). As an example the sensorgrams of $Fc\gamma RI$ binding to each mAb are shown in Fig. 4 and the affinity rankings derived from all of the single cycle kinetics and steady state equilibrium experiments for all mAbs binding to each of the gamma receptors are summarized in Table 4. With the exception of IgG_2 , the subclass variants had the strongest affinity for Fc γ RI with the following K_D values: IgG₁ = 123 pM, $IgG_3 = 79 \text{ pM}, IgG_4 = 690 \text{ pM}. IgG_2 \text{ had the strongest}$ affinity for Receptor FcyRIIA (378nM). IgG3 had comparatively high affinity for FcyRIIA (K_D =90 nM) and Fc γ RIIIA (K_D = 390 nM). The binding affinities for all other receptor-antibody binding combinations were in the much weaker micromolar range.

3.3. Avidity driven Binding of the Monoclonal Antibody Subclass Variants to FcyR

Multivalent immune complexes were generated by cross linking each mAb with a $F(ab')_2$ fraction of goatanti-human $F(ab')_2$. The avidity of the complexed mAbs for binding to each surface immobilized FcR was determined by ELISA (**Fig. 5**). The complexed mAbs were all able to bind to Fc γ RIIB, the inhibitory receptor, whereas Fc γ RI only bound IgG₃. Fc γ RIIA bound all subclasses, with G₃> G₁> G₂>G₄. Fc γ RIIIB showed minimal binding to IgG₃. (**Table 4**).

4. DISCUSSION

These studies are the first to evaluate $Fc\gamma R$ binding to all IgG subclasses using functional humanized mAbs with identical variable regions. Several other studies have evaluated the binding of particular subclasses to some of these receptors including a study by Maenaka *et al.* (2001) where the binding of Fc γ receptors RIIA, RIIB and RIII to IgG₁ was evaluated. Bruhns *et al.*, (2009) undertook a comprehensive assessment of the relationship between mAb subclass and binding to FcRs that also incorporated the consideration of receptor polymorphism, but the study used mouse/human chimeric monoclonal and polyclonal antibodies.

Monovalent binding of Fc receptors and the mAbs, as measured by SPR, indicated affinities for $Fc\gamma RI$ in the high pM range with G_3 having the highest affinity, followed by G_1 . These affinities were stronger than those observed by Canfield and Morrison (1991) and Gessner et al. (1998) although the same rank order was observed in each case. Interaction of monovalent antibodies of each subclass with the low affinity FcyRII and FcyRIII receptors, which normally rely on multivalent complexing, were measurable by SPR in our study with G₃ having the strongest affinity for FcyRIIA and FcyRIIIA (K_D of 89 and 390nM, respectively). This was consistent with Bruhns et al., (2009) concerning low affinity FcyRIIIA bound by monomeric G₃. Each of the four subclasses of mAb bound to FcyRI, FcyRIIA, FcyRIIB and FcyRIIIA as determined by SPR. FcyRIIIB, which did not appear to bind to IgG₂ in either monovalent format or multivalent format, was the only exception.

Our study also showed IgG_1 bound human $Fc\gamma R$ with affinities (K_D) ranging from pM in the case of

FcyRI (123pM) and FcyRIIA (800nM) to µM as seen with FcyRIIB, FcyRIIIA and FcyRIIIB (all close to 1 μ M). The IgG₂ monoclonal antibody also bound Fc γ R with a narrower range than that seen for IgG_1 . Most of the affinities were in the single digit micromolar range, with the exception of FcyRIIA which had an affinity of 0.38µM and FcγRIIIB, which was not determined. IgG₃ was able to bind all $Fc\gamma R$'s, with a very broad range of affinities. The strongest affinity was for FcyRI, with a K_D of 79pM. As with IgG₁, IgG₃ had nanomolar affinity for FcyRIIA (90nM). Low affinity receptors FcyRIIB, FcyRIIIA and FcyRIIIB had K_D values in the low micromolar range. IgG₄ exhibited a similar pattern of affinities for all FcyR, with K_D values of 690pM for FcyRI, 600nM for FcyRIIA and values in the low micromolar range for low affinity receptors FcyRIIB, FcyRIIIA and FcyRIIIB.

Overall, SPR assessment of monovalent interactions between humanized IgG and Fc γ R support published studies by Bruhns *et al.* (2009) in which Fc γ RI has strong affinity for IgG₁, G₃ and G₄ subtypes, with K_D values in the picomolar range. Fc γ RIIA has moderate affinity for all subtypes, including IgG₂, with K_D values in the nanomolar range. The remaining Fc γ Rs which were evaluated (Fc γ RIIB, Fc γ RIIIA and Fc γ RIIB) had affinities in the micromolar range.

Fc γ RIIB, Fc γ RIIIA and Fc γ RIIIB, as well as Fc γ RIIA are considered low affinity receptors and exert their regulatory functions in a multivalent format, via immune complexing. Affinity rankings of the humanized monoclonal antibodies, in immune complexes with F(ab)'₂-anti-F(ab)'₂, are compared with monomeric SPR derived affinities in **Table 4**.

In this avidity driven format, IgG_1 and IgG_2 bound to $Fc\gamma RIIA$ and $Fc\gamma RIIB$, the inhibitory $Fc\gamma R$. IgG_3 showed association with all $Fc\gamma Rs$ and was the only subtype which associated with $Fc\gamma RI$ and $Fc\gamma RIIA$. Rank order of IgG_3 and $Fc\gamma Rs$ show that the strongest affinity is for $Fc\gamma RIIA$ followed by $Fc\gamma RIIB>Fc\gamma RI$ for $Fc\gamma RIIA>Fc\gamma RIIB$. IgG_4 had no affinity for $Fc\gamma RIIB$. It did associate strongly with $Fc\gamma RIIA$ and $Fc\gamma RIIB$, the inhibitory receptors.

Low affinity, inhibitory receptors, $Fc\gamma RIIB$ and $Fc\gamma RIIA$, bound all mAb subclasses, with IgG_3 having a

Science Publications

greater binding than IgG_1 in both monomeric and multimeric formats. This is in agreement with Bruhns *et al.* (2009) who also examined interactions both in monomeric and multimeric conditions. The low affinity receptor $Fc\gamma RIIIA$ had discernible binding to all IgG subtypes, with K_D values in the micromolar range as determined by SPR. Using similar SPR studies; Bruhns *et al.* (2009) reported affinities for $Fc\gamma RIIIA$ with only IgG_1 and IgG_2 . In our study using SPR, $Fc\gamma RIIIB$ was found to have a weak affinity for IgG_1 , IgG_3 and IgG_4 . No affinity was seen for IgG_1 or IgG_2 with $Fc\gamma RIIIB$ using multimeric ELISA.

5. CONCLUSION

This study evaluated the interaction of four subclass variant antibodies both to the antigen protein and to the repertoire of human Fc γ Rs. Comparable affinities with K_D values ranging between 35 and 59 pM were observed for the binding of all four antibodies to the antigen, showing that the differing Fc regions did not impart conformational changes to the variable region associated with altered antigen protein binding. In contrast, the subclass variants exhibited significantly different affinities for each of the Fc γ receptors Fc γ RI, Fc γ RIIA, Fc γ RIIB, Fc γ RIIIA and Fc γ RIIIB. Since the subclass variants each had the exact same VH, VL and CL regions the differences seen were attributable solely to the Fc regions known to be involved in Fc γ R binding.

6. ACKNOWLEDGEMENT

The authors thank Michelle Giannoni for plasmid construction and Jeffrey Hunter and Patricia Bento for cell line work.

7. REFERENCES

- Allen, J.M. and B. Seed, 1989. Isolation and expression of functional high-affinity Fc receptor complementary DNAs. Science, 243: 378-381.
 PMID: 2911749
- Anderson, C.L., L. Shen, D.M. Eicher, M.D. Wewers and J.K. Gill, 1990. Phagocytosis mediated by three distinct Fc gamma receptor classes on human leukocytes. J. Expt. Med., 171: 1333-1345. DOI: 10.1084/jem.171.4.1333

- Anegon, I., M.C. Cuturi, G. Trinchieri and B. Perussia, 1998. Interaction of FC receptor (CD16) ligands induces transcription of interleukin 2 receptor (CD25) and lymphokine genes and expression of their products in human natural killer cells. J. Expt. Med., 167: 452-472. DOI: 10.1084/jem.167.2.452
- Bruhns, P., B. Iannascoli, P. England, D.A. Mancardi and N. Fernandez *et al.*, 2009. Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. Blood, 113: 3716-3725. PMID: 19018092
- Canfield, S.M. and S.L. Morrison, 1991. The binding affinity of human IgG for its high affinity FC receptor is determined by multiple amino acids in the CH2 domain and is modulated by the hinge region. J. Exp. Med., 173: 1483-1491.
- Carter, P.J., 2006. Potent antibody therapeutics by design. Nat. Rev. Immunol., 6: 343-357. DOI: 10.1038/nri1837
- Chowdhury, P.S. and H. Wu, 2005. Tailor-made antibody therapeutics. Methods, 36: 11-24. DOI: 10.1016/j.ymeth.2005.01.002
- Fanger, M.W., R.F. Graziano, L. Shen and P.M. Guyre, 1989. FC gamma R in cytotoxicity exerted by mononuclear cells. Chem. Immunol., 47: 214-253. PMID: 2532893
- Fridman, W.H., 1993. Regulation of B-cell activation and antigen presentation by FC receptors. Curr. Opin. Immunol., 5: 355-360. DOI: 10.1016/0952-7915(93)90053-U
- Gessner, J.E., H. Heiken, A. Tamm and R.E. Schmidt, 1998. The IgG Fc receptor family. Ann. Hematol., 76: 231-248. DOI: 10.1007/s002770050396
- Horton, H.M., M.J. Bernett, E. Pong, M. Peipp and S. Karki *et al.*, 2008. Potent in vitro and in vivo activity of an fc-engineered Anti-CD19 monoclonal antibody against lymphoma and leukemia. Cancer Res., 68: 8049-8057. DOI: 10.1158/0008-5472.CAN-08-2268
- Hudson, P.J. and C. Souriau, 2003. Engineered antibodies. Nat. Med., 9: 129-134. DOI: 10.1038/nm0103-129
- Karlsson, R., P.S. Katsamba, H. Nordin, E. Pol and D.G. Myszka, 2006. Analyzing a kinetic titration series using affinity biosensors. Anal. Biochem., 349: 136-147. PMID: 16337141

- Maenaka, K., P.A.V.D. Merwe, D.I. Stuart, E.Y. Jones and P. Sondermann, 2001. The human low affinity Fcγ receptors IIa, IIb and III bind IgG with fast kinetics and distinct thermodynamic properties. J. Biol. Chem., 276: 44898-44904. DOI: 10.1074/jbc.M106819200
- Natsume, A., R. Niwa and M. Satoh, 2009. Improving effector functions of antibodies for cancer treatment: Enhancing ADCC and CDC. Drug Des. Dev. Ther., 3: 7-16. PMID: 19920917
- Nimmerjahn, F. and J.V. Ravetch, 2005. Divergent immunoglobulin g subclass activity through selective fc receptor binding. Science, 310: 1510-1512. DOI: 10.1126/science.1122009
- Nissim, A. and Y. Chernajovsky, 2008. Historical development of monoclonal antibody therapeutics. Therapeutic Antibodies, 181: 3-18. DOI: 10.1007/978-3-540-73259-4_1
- Oganesyan, V., M.M. Damschroder, R.M. Woods, K.E. Cook and H. Wu *et al.*, 2009. Structural Characterization of a human FC fragment engineered for extended serum half-life. Mol. Immunol., 46: 1750-1755.
- Piggee, C., 2008. Therapeutic antibodies coming through the pipeline. Anal. Chem., 80: 2305-2310. DOI: 10.1021/ac086033v
- Presta, L.G., R.L. Shields, A.K. Namenuk, K. Hong and Y.G. Meng, 2002. Engineering therapeutic antibodies for improved function. Biochem. Soc. Trans., 30: 487-490. DOI: 10.1042/BST0300487
- Salfield, J.G., 2007. Isotype selection in antibody engineering. Nat. Biotech., 25: 1369-1372. DOI: 10.1038/nbt1207-1369
- Sautes, F.C., L. Cassard, S.J. Cohen and W.H. Fridman, 2003. FC gamma receptors: A magic link with the outside world. ASHI Q. Four. Q.
- Shields, R.L, A.K. Namenuk, H. Kyu, Y.G. Meng and J. Rae *et al.*, 2001. High resolution mapping of the binding site on human IgG1 for FcγRI, FcγRII, FcγRIII and FcRn and design of IgG1 variants with improved binding to the FcγR. J. Biol. Chem., 276: 6591-6604. DOI: 10.1074/jbc.M009483200
- Sisto, M., S. Lisi, S. D'Amore and M. D'Amore, 2009. Autoantibodies, human Fcγ receptors and autoimmunity. J. Recep. Ligand Chann. Res., 2 45-57.
- Sorge, N.M.V., W.L.V.D. Pol and J.G.J.V.D. Winkel, 2003. FcγR polymorphisms: Implications for function, disease susceptibility and immunotherapy. Tissue Antigens, 61: 189-202. DOI: 10.1034/j.1399-0039.2003.00037.x

- Stavenhagen, J.B., S. Gorlatov, N. Tuaillion, C.T. Rankin and H. Li *et al.*, 2007. Fc optimization of therapeutic antibodies enhances their ability to kill tumor cells in vitro and controls tumor expansion in vivo via low-affinity activating Fc γ receptors. Cancer Res., 67: 8882-8890. DOI: 10.1158/0008-5472.CAN-07-0696
- Stockwin, L.H. and S. Holmes, 2003. The role of therapeutic antibodies in drug discovery. Biochem. Soc. Trans., 31: 433-436.
- Strome, S.E., E.A. Sausville and D. Mann, 2007. A mechanistic perspective of monoclonal antibodies in cancer therapy beyond target-related effects. Oncologist, 12: 1084-1095. DOI: 10.1634/theoncologist.12-9-1084
- Wypych, J., M. Li, A. Guo, Z. Zhang ans T. Martinez *et al.*, 2008. Human IgG2 antibodies display disulfidemediated structural isoforms. J. Biol. Chem., 283: 16194-16205. DOI: 10.1074/jbc.M709987200
- Zalevsky, J., I.W.L Leung, S. Karki, S.Y. Chu and E.A. Zhukovsky *et al.*, 2009. The impact of Fc engineering on an anti-CD₁₉ antibody: Increased Fcγ receptor affinity enhances B-cell clearing in nonhuman primates. Blood, 113: 3735-3743. DOI: 10.1182/blood-2008-10-182048
- Zhang, Q., G. Chen. X. Liu and Q. Qian, 2007. Monoclonal antibodies as therapeutic agents in oncology and antibody gene therapy. Cell Res., 17: 89-99. DOI: 10.1038/sj.cr.7310143

