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Abstract: The distribution of the probability density of a return index with 

stochastic volatility has been calculated. Here the stock index is assumed to 

follow geometric Brownian motion, while the variance is assumed to obey 

Ornstein-Uhlenbeck process as in Heston model. The distribution of the 

probability density of the return which is obtained by solving the Fokker-

Planck equation of two dimensional index and the variance have been 

compared with the probability density taken from Indonesian Stock 

Exchange (IDX). In this study, we use Jakarta Islamic Index (JII), LQ45 

and Jakarta Composite Index (JCI) data series from 2004 to 2012. We have 

shown that the theoretical probability density of return obtained from the 

calculation is in agreement with the empirical probability density. The 

theoretical probability density with stochastic volatility is closer to the 

empirical one than that of the Gaussian, particularly at the tail. The variance 

probability density at stationary state can be obtained by fitting the 

empirical probability density obtained from IDX data series with an integral 

expression obtained from quantum mechanical method. 
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Introduction  

The behaviour of a financial market is very 

interesting not only for economists but also for physicists 

and mathematicians. The financial market has abundant 

data that challenges physicists as well as mathematicians 

to give a suitable explanation. The application of the 

stochastic process in economics, especially in finance 

dates back to 1900 when Bachelier proposed a model in 

which stock price was assumed to have Gaussian 

distribution (Mantegna and Stanley, 2000). In 1963, 

Mandelbrot proposed another model of stock prices in 

which the stock price was assumed to obey log-normal 

distribution (Mandelbrot, 1963). One decade later, 

Black and Scholes (1973) proposed a stochastic model 

describing option price. He assumed that the option price 

follows a process called geometric Brownian motion 

with constant volatility (Black and Scholes, 1973). 

However, more careful studies on financial data series 

showed that the distribution associated with stock price 

is non-Gaussian where the tail of the probability density 

is fatter, i.e., decreases slower than that of the Gaussian 

distribution. Moreover, the tail of the probability density 

associated with stock price decreases as slow as a power 

law. The careful studies of the shape of the distribution 

density of stock price have been made recently by 

several scientists to understand the behaviour of financial 

data series (Nava et al., 2016; Carranco et al., 2016; 

Guhathakurta et al., 2006; Huang et al., 2003; 

Yamasaki et al., 2005). One of the proposed models to 

explain the fatness of the tail of the probability density 

associated with stock price assumes that the volatility of 

the distribution follows Ornstein-Uhlenbeck stochastic 

process (Hull and White, 1987; Stein and Stein, 1991; 

Heston, 1973; Belal, 2004). 

This work is the sequel to our former work   

(Palupi et al., 2014) and is in line with the work of 
(Dragulescu and Yakovenko, 2002). In this study, the 
stock price under consideration is assumed to follow 
geometric Brownian motion and the variance (the square 
of volatility) is assumed to follow Ornstein-Uhlenbeck 

process as in Heston model (Heston, 1993). The 
calculation of the probability density is carried out by 
involving two-dimensional Fokker-Planck equation for log-
return and solved by using the path integral method as 
already discussed deeply in (Palupi et al., 2014). In this 
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study, we compare the theoretic probability density with the 
probability density calculated from the data of IDX. Here 
we point out that the theoretic probability density is in 
agreement with the empirical probability density obtained 

from IDX data series. The variance of the stock price in 
IDX follows Ornstein-Uhlenbeck process. The variance 
probability density at stationary state can be obtained by 
fitting the empirical probability density obtained from IDX 
data series with an integral expression obtained from the 
quantum mechanical method. 

Materials and Methods  

Financial market can be considered as a many-

particle system in which stocks are regarded as particles 

and stock prices as the positions of particles in a price 

space. Stock particles move randomly as diffusion 

process obeying the stochastic differential: 

 

( ) ( ) ( ) SdS t S t dt S t dWφ σ= +   (1) 

 

Where: 

S = Particles position (stock price) 

φ = A parameter 

dWs = The Wiener standard process for the stock price 

σ = The volatility of stock price 

 

Equation 1 is stochastic differential equation for 

Brownian Geometric process, while the variance v 

(and the volatility, ν = σ
2
) obeys Ornstein-Uhlenbeck 

process described by the following stochastic 

differential equation: 

 

( ) ( ) v
dv t v dt vdWµ η κ= − − +   (2) 

 

where, the variance reaches η at a long time with speed µ, κ 

is the volatility of the stock price variance v,  dW
ν
 is 

Wiener standard process for the variance v. 

 

 The variance behaves as friction trying or tending to 

reverse to the average of variance.  

According to Ito’s formula of stochastic 

differential equation, if X(t) is an Ito stochastic 

process then X(t) satisfies dX(t) = f(t) dt + g (t) dW(t) 

(Kuo, 2006). Futher more when Y is a stochastic 

process depending on X(t), i.e., Y = Y(t, X(t)), then Y 

obeys the following stochastic differential equation 

( ) ( ) ( )
2

2

1
, ( ) ( ) ( )

2

Y Y Y Y
dY t X t f t g t dt g t dW t

t x xx

 ∂ ∂ ∂ ∂
= + + + 
 ∂ ∂ ∂∂ 

 (Kuo, 2006). 

With the change of variable z = lr - φt and lr = In 

(S(t)/S(0)) Ito’s formula, Equation 1 can be written as: 

2
S

v
dz dt vdW= − +   (3) 

 

where, z is Log natural-return relative to the parameter φ. 

 

Since particles of stock follow a diffusion process, 

the probability density equation of return associated to 

Equation 1 and 3 satisfies: 

 

( ) ( )

( ) ( ) ( )
2 2 2

2 2

1

2

1

2 2

P
v P vP

t v z

vP vP vP
z v z v

µ η

κ
ρκ

∂ ∂ ∂
 = − + ∂ ∂ ∂

∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂

  (4) 

 

The detail of the derivation of Equation 4 can be 

found in (Kuo, 2006). Equation 4 is referred to as 

two-dimensional Fokker-Planck equation, where P = 

P(z, v|vi) is the probability density of the transition 

from initial state at z = 0 with variance vi to jump to 

state at arbitrary z with variance v. Equation 4 can be 

converted to the following Schroedinger-like equation 

as in quantum mechanics: 

 

( )
( )

|
ˆ |

i

i

P v v
HP v v

t

∂
= −

∂

ɶ
ɶ   (5) 

 

where: 

 

( )
22

2ˆ ˆ ˆ ˆ ˆ ˆ
2 2

ˆ ˆ

z z

v v

z v

p ip
H p v i p v v

i p p v

κ
µ η

ρκ

−
= − − +

+

  (6) 

 

And ˆ
v
p id dv= −  is momentum operator being a canonic 

conjugate of v̂  and satisfying commutation relation 

ˆ ˆ,
v

v p i=    and ( ), | ,
i i

P P v t v t=
ɶ ɶ  is the probability density 

of transition from the initial state at t = ti with variance νi 

to final state with variance v at t. The solution of 

Equation 6 is written as: 

 

( ) ( )ˆ, | , expi i f iP v t v t v Ht v= −
ɶ  (7) 

 

The path integral formulation for the return 

probability density in Equation 7 is given by: 

 

( ), | , D D
S

i i v
P v t v t v p e= ∫ɶ   (8) 

 

where, the action S is given by: 
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( )
2

2
1 1

2

1

1

i i

i i

2

i

2

i

vM M vi i

M vj vj vj vj

j

z zj
z vj

M

vj

j

p v p v

p p p p

v

p p
p p

p

S

κ
ε εµ

ε ρκ

εµ η

−
−

=

=

− +

− − +

−

− −∈

−

=

 
 
 
 
 
 

∑

∑

  (9) 

 
Integrating Equation 8 yields: 

 

( )
( )

( )
( )

2

2

2 2

i i
| exp

coth

sinh cosh
2 2 2

exp ln

2

z x x i

i
t

p z

z
p p v

z v

t t

t

dp e
P

ω
ω

ω ω
ω

µη µη

ωκ κ

π

∞

−∞

− −

=

Γ +

Γ +

Γ
× −

 
 
 
 

     
     
     +

 
 
 

∫

 (10) 

 

where, χ = µ + iρκpz and ( )2 2 2

z z
p ipω χ κ= + − . The 

variance or volatility does not appear explicitly from 

data series. The probability density of the variance at 

stationary state can be obtained from Equation 2 as: 
 

( )

1

*( ) exp( )
1

i i i
v v v

β
βα

α
β

+

Π = −
Γ +

  (11) 

 

where, α = 2µ/κ
2 and β  = αη-1, ΓI*(vi) probability density 

of variance at sationary state Γ gamma function. 
 

If we assumed that the probability density of volatility is 
stationer, the probability density that the value of log return 
is z for every value of volatility is given by: 
 

( )
( )

( )

2 2

2 2

1

2

2

exp 2
ln sinh cosh

2 2 2

z
ip z

zP z dp e

t

t t

π

µη µη

κ κ

ω µ
ω ω

ωµ

∞

−∞

=

Γ 
− 

 
 ×  −Γ + Γ    +       

  

∫

 (12) 

 

Results and Discussion 

The parameter µ, η and κ in Equation 1 and Equation 
2 can be determined by fitting the empirical probability 
density obtained from IDX data series with Equation 12. 
We use Jakarta Composite Index (JCI), LQ45 and Jakarta 
Islamic Index (JII) data series in time interval 2004-2012 
in which every index contains 2187 points data. Each 
point of data is the stock price at closing. The data series 
of the stock price at closing is shown Fig. 1a shows JCI 
data series and Fig. 1b shows data series for LQ45 and JII. 

Figure 1a and 1b show that the JCI index has higher 
values than that of LQ45 and JII. However, JCI, LQ45 and 
JII data series have the same shape of fluctuation. The 
values of the indexes are different because the indexes 
have different initial values.  

The return probability density for each index is shown 

respectively in Fig. 2-4. On every figure, the solid line 

represents the theoretical probability density which is 

calculated from Equation 12, whereas the dots represent the 

empirical probability density. The values of µ, η and κ 

which are obtained from the fitting are presented in Table 1. 
Figure 2-4 show that the theoretical probability densities 

are in agreement with the empirical probability density 
obtained from LQ45, JII and JCI data series at IDX. So the 
assumption that variance is not constant but changes 
stochastically is seemingly acceptable for data series at 
IDX. Since stock price and the associated variance respect a 
two-dimensional diffusion process, it permits us to 
construct a Fokker-Planck equation governing the 
probability density for the diffusion process. The 
Fokker-Planck equation must be solved in order to get 
the return probability density for stock price as well as 
variance. The Fokker-Planck equation describes the 
dynamics or time evolution of the return probability 
density, while Schroedinger equation determines the time 
evolution of the quantum mechanical state of a system, 
i.e., the time evolution of probability amplitude from 
which we obtain the time evolution of the probability 
density. In this study, we solve the equation by making 
use of the quantum mechanical method described in 
(Palupi et al., 2014). The solution is given as integral in 
Equation 12. To calculate the integral numerically we 
need the values of parameters given in Table 1. 

From Fig. 2-4, we can see that the theoretical return 

probability density with stochastic variance is closer to 

the empirical one than that of the Gaussian (with 

constant volatility). Both the theoretic and the empirical 

return probability density have Gaussian distribution at 

peak, but the tail of both probability density is fatter than 

that of the Gaussian. The tail of JCI return probability 

density is shown in Fig. 2b and. 2c, the tail of LQ45 return 

probability is shown in Fig. 3b and 3c and that of JII is 

shown in Fig. 4b and 4c. The tail of each return probability 

density is closer to that of our theoretical return probability 

density than that of the Gaussian distribution. 

In Fig. 2-4, we can see that the empirical (and the 

theoretical) return probability densities are not symmetric as 

in the Gaussian distribution, so we can conclude that this 

stochastic variance model is more comparable to data series 

than that of the Gaussian. 

 
Table 1. The value of parameter constants 

 µ(/day)  η(/day) κ(/day) 

JCI 0.00090 0.00056 0.00013 

LQ45 0.00051 0.00082 0.00010 

JII 0.00200 0.00076 0.00035 
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 (a) (b) 
 

Fig. 1. JCI, LQ45 and JII time evolution at closing day 
 

   
 (a) (b) (c) 
 
Fig. 2. Probability density of JCI. The dots are empiric probability and the black solid is theoretic probability and the blue is 

Gaussian (a) full probability density of JCI (b) the left tail of probability density (c) the right tail of probability density. 

The theoretical probability density with stochastic volatility is closer to the empirical one than that of the Gaussian, 

especially at the tail probability density 
 

   
 (a) (b)  (c) 
 
Fig. 3. Probability density of LQ45. The dots are empiric probability and the black solid is theoretic probability and the blue is 

Gaussian (a) Full probability density of LQ45 (b) The left tail of probability density (c) the right tail of probability 

density. As at JCI, the theoretic probability density with stochastic volatility is closer to the empirical one than that of 

the Gaussian, particularly at the tail probability density 
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 (a) (b) (c) 

 
Fig. 4. Probability density of JII. The dots are empiric probability and the black solid is theoretic probability and the blue is 

Gaussian (a) full probability density of JII (b) the left tail of probability density (c) the right tail of probability density. 

As at JCI and LQ45, the theoretic probability density with the stochastic volatility of JII is closer to the empirical one 

than that of the Gaussian, particularly at the tail probability density 

 

  
 (a) (b) 
 

Fig. 5. JCI variance and volatility probability density 
 

  
 (a) (b) 
 

Fig. 6. LQ45 variance and volatility probability density 
 

Each index has different constant parameters even 

though the indexes follow the same diffusion process. 

Moreover, each index has different fluctuation. The 

probability density of variance and volatility for each 

index at stationary state is presented on Fig. 5-7, 

determined by making use of Equation 11 with 

parameters given in Table 1. 

The probability density of variance in Fig. 5-7 

reach their maximum value at η. It means that the 

distribution was maximum at long time variance. 
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 (a) (b) 
 

Fig. 7. JII variance and volatility probability density 
 

Conclusion 

The theoretical return probability density is in 

agreement with the empirical return probability density 

obtained from Indonesian Stock Exchange (IDX) data 

series. The theoretical return probability density with 

stochastic variance is closer to the empirical one than 

that of the Gaussian, especially at the tail of return 

probability density. Both the theoretical and the 

empirical return probability density have Gaussian 

distribution at peak, but the tail of both probability 

density is fatter than that of the Gaussian. The tail of 

each empirical return probability density is closer to that 

of our theoretical return probability density than that of 

the Gaussian distribution. The empirical (and the 

theoretical) return probability densities are not 

symmetric as in the Gaussian distribution. This 

theoretical stochastic variance model is more comparable 

to data series than that of the Gaussian. 

The variance of the stock price in Indonesian Stock 

Exchange IDX follows Ornstein-Uhlenbeck process. The 

variance probability density at stationary state can be 

obtained by fitting the empirical probability density 

obtained from Indonesian Stock Exchange IDX data 

series with an integral expression obtained from the 

quantum mechanical method.  
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