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Abstract: The image fusion technique is widely used in remote sensing. Its 

purpose is to provide comprehensive information without arte facts by 

combining the partial information from different source images. In this 

study, we propose a new model of images fusion with very high spatial 

resolution. We use the separation capacities of the Morphological 

Component Analysis (MCA) to extract the smooth and texture components 

of our images. These morphological components are then fused separately 

using the decomposition in the Laplacian pyramids for the smooth part and 

bivariate Hahn polynomials for texture part. Finally the image fusion is 

obtained through linear combination of merged smooth and texture 

components. The experiments carried out on IKONOS, LANDSAT and 

Quick Bird remote sensing images show the good performances of our 

method which has been compared to conventional methods. The 

performances obtained in our experiments are characterized by a small global 

metric such as ERGAS equals to 3.88 for IKONOS image and 3.65 for 

QuickBird image compared to 8.70 for IKONOS image and 6.97 for 

QuickBird for conventional HIS algorithms. We also have a mean loss of 

15% for spectral information com pare to those of the conventional methods 

which revolve around 25%. The degradation of spatial information in order of 

17% in contrast to conventional HIS algorithms which oscillate around 21%.  

 

Keywords: Image Pansharpening, Laplacian Pyramid, Bivariate Hahn 

Polynomials, Texture Analysis  

 

Introduction  

The data fusion techniques permit the extraction and 

the combination of the information from multiple 

heterogeneous sources to assess the targeted 

phenomenon to which there is interest. They help greatly 

to make a decision. The application fields of the data 

fusion are varied and diverse: Medical imaging 

(Magtibay et al., 2016; Adali et al., 2015), economy 

(Barenboim and Pearl, 2016), information theory 

(Gagolewski, 2016), image processing (Paris and 

Bruzzone, 2015), etc. In remote sensing where the nature 

and the resolution of sensors are various and different, 

methods of image fusion implement several types of 

images: Panchromatic (PAN), Multispectral (MS), 

Hyperspectral (HS) and Radar (SAR). These methods 

combine either panchromatic and SAR images (Joshi et al., 

2016), or panchromatic and HS images (Loncan et al., 

2015) or panchromatic and multi spectral images 

(Vivone et al., 2014).  

The fusion of the panchromatic and MS image 

known as pansharpening has been the subject of 

numerous publications in the literature (Joshi et al., 

2016; Pandit and Bhiwani, 2015). The proposed methods 

can be classified into methods with injection of high spatial 

frequencies, methods based on substitution of components 

and methods based on a multiresolution analysis.  

The first methods extract the details of PAN image 

by a high frequency filter and inject them into the MS 

image through a subtraction operation (Ranchin et al., 

2003). The second methods submit the MS image to a 

transformation and substitute the panchromatic image to 

one of the components of the MS images before forming 
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the fused image through the inverse transformation. The 

most common transformations are IHS (Intensity-Hue-

Saturation) transformation for RGB color image 

(Rahmani et al., 2010; Lari and Yazdi, 2016), Principal 

Components Analysis (PCA) for multispectral images 

(Dou et al. 2007) and Gram-Schmidt method (Aiazzi et al., 

2007) which is a generalization of the PCA. Finally, the 

third group of methods is based on a Multi Resolution 

Analysis (MRA) by Laplacian pyramids (Aiazzi et al., 

2012) or by Wavelet, curvelets and contourlets 

Transforms (Lari and Yazdi, 2016; Otazu et al., 2005; 

Amolins et al. 2007). In these latter methods, 

multiresolution analysis is conducted on the 

panchromatic and MS images up to a given level. The 

different types of images obtained are then fused 

following a precise rule before the inverse 

transformation starts.  

The IHS based algorithms have undergone many 

developments due to the simplicity of their 

implementation and are often used in the study of 

QuickBird and IKONOS images. Thus, Tu and et al. 

(2004) have proposed an extension of the IHS basic 

algorithm to promote vegetation zones that appear 

very dark in the green band (G Band) in IKONOS 

images because of their low power of reflectance. In 

their algorithm, a fourth component, the near infrared 

(NIR), is associated with the traditional components 

of the RGB colorimetric space for the transformation 

of the MS image in the colorimetric space IHS. The 

adjustment of the influence of different spectral bands 

is done thanks to coefficients of spectral adjustment. 

These are either fixed (Tu et al., 2004), either 

determined according to the value of parameters such 

as the Normalized Vegetation Index (NVI) and its 

variations (Tu et al. 2009; Choi, 2006; El-Mezouar, 

2012). The fusion of the images processed can be 

performed according to the simple rules or much more 

complex as the use of a genetic algorithm in the 

Generalized IHS-genetic algorithm (GIHS-GA)    

(Lari and Yazdi, 2016). These more complex 

operations permit to optimize the fusion of images.  

Hybrid methods have also been proposed in the 

literature, including those that combine IHS base 

methods and multire solution analysis. Thus, the 

Additive Wavelet Proportional Luminance (AWLP) 

algorithm proposed by Otazu et al. (2005), transforms 

the MS image in the colorimetric space IHS. The 

details of the PAN image are then injected in each 

spectral band in proportionally to a weight which 

depends on the luminance of the MS original band. In 

the method described by Lari and Yazdi (2016), the 

Generalized Laplacian Pyramid with Spectral 

Distortion Minimization (GLP-SDM), the 

multiresolution analysis uses a Laplacian pyramid and 

the injection is carried out according to a weight which 

depends on the MS image band and the high frequency 

component of the PAN image (Lari and Yazdi, 2016). 

The main limitation of the pansharpening methods and 

in particular those IHS based is that they realize the 

fusion by taking into account only a part of the 

information sources. In the classical IHS methods 

(IHS, FIHS, GIHS), the treatments are only based on 

an analysis at the level of the pixels taken 

individually. This analysis is focused upon the 

intensities of the pixels for the PAN image and the 

MS image. The different extensions of these methods 

only take into account the spatial information that 

only the PAN component contains. This information 

is usually extracted by a high frequency filtering. 

Unfortunately, in the images with very high spatial 

resolution, the increase of the spatial resolution is 

reflected by a decrease in the spectral resolution. In 

addition, this type of images presents a large intra-

class spectral variability. The consequence of this is 

that there is a high spectral distortion of the image 

fusion doubled with spatial distortion, which is 

characterized by the presence of blurring effects and 

artefacts. To overcome these limits, some authors 

(Palsson et al., 2014; He et al., 2014) have recently 

used the parsimonious analysis of signals which 

realizes the full extraction of the information contained 

in an image. The advantage in using the parsimonious 

analysis to fuse images is that a decimation of the fused 

image permits to completely rebuild the multispectral 

image while the panchromatic image can be viewed as a 

linear combination of the components of the image 

fusion (Palsson et al., 2014). It leads to a linear system 

under-determined (the matrix representing the linear 

system is a rectangular matrix with a more important 

number of columns than rows) which is resolved by the 

total variational methods (Rudin et al., 1992). The 

results are highly superior to the conventional algorithms 

of image fusions. However, this new approach is 

limited the one hand by the complexity of 

implementation of algorithms used (Basis Pursuit, 

Orthogonal Matching Pursuit, Chambolle-Pock) and on 

the other hand limited by the need to have a dictionary of 

functions complete enough. Moreover, the choice of the 

dictionary is an important factor in getting good 

performance during the merger of the images. The 

morphological components analysis (Starck et al., 

2005) is a method of parsimonious representation that 

leans on the morphological diversity of an image and 

resolves the problems of complexity in algorithm 

implementations and that of the choice of the 

dictionary (Xu et al., 2016).  
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In this study, we propose a new method which 

belongs to the family of IHS based algorithms and 

which is based on the morphological components 

analysis. In the new approach, the MS image is 

transformed in the IHS colorimetric space before the 

PAN and MS images are be divided into smooth 

components and texture parts using the Morphological 

Components Analysis (MCA). The interest of this 

decomposition is double. On the one hand it provides 

descriptors both robust to noise and to the 

transformations that the images may undergo and on 

the other hand, it permits to take into account 

simultaneously the spectral and spatial information 

contained in each of the images sources. The images 

of the smooth component are fused with the help of 

the Laplacian pyramid and bivariate Hahn 

polynomials are applied on the texture component in 

order to provide an efficient description of the texture. 

The image fusion result is obtained by linear 

combination of the images of the smooth components 

and texture components from the different treatments.  

The rest of the paper is as follows: In section 2 we 

describe the analysis in morphological components of our 

approach. Section 3 presents the fusion method proposed. 

Section 4 is devoted to the phase of experimentation and the 

presentation of the results obtained. Finally, we terminate 

this paper by a conclusion.  

Decomposition of Images by Morphological 

Components Analysis (MCA)  

An efficient analysis of very high spatial resolution 

remote sensing images must take into account both the 

spectral content and the spatial content of the images. 

Like the conventional approaches commonly 

encountered in the literature28 and especially in the 

analysis of the images with very high spatial 

resolution, we propose to decompose the 

Panchromatic image (PAN) and Multispectral image 

(MS) into Smooth component (STRUCT) and Textural 

component (TEXT). The Morphological Components 

Analysis (MCA), proposed by Starck and Donoho (2005), 

offers a parsimonious representation based on the use 

of dictionaries. It allows to realize the decomposition 

of PAN and MS images in their components SRUCT 

and TEXT. According to the formalism of MCA, any 

image X possibly affected by noise, can be written as 

a linear combination of its K different morphological 

components different morphological components {xi | 
i ∈1,2,…, K} :  

 

1,2,...,

i

i K

X x ε

=

= +∑   (1) 

Each component xi is parsimoniously represented in a 

dictionary of Φi basis of wave atoms. xi = Φi αi, i ∈ 

1,2,…,K where αi is a parsimonious vector that 

corresponds to the projection of the vector xi in the 

orthogonal basis Φi. The choice of the dictionary 

functions is important for, it affects the reparability level 

between the different morphological components. In 

effect, the component xi is sparse in one dictionary Φi but 

not in another dictionary Φj (j ≠i).  

The research of the components corresponds to the 

resolution of the following optimization problem: The 

search of functions xi = Φi αi i ∈ 1,2,…,K such as:  

 

2

2

{0;1}

xk k

k

T

k k p

k

argmin X x

x pλ

−

+ Φ ∈

∑

∑
  (2) 

 

λ is the constant of penalty usually determined during 

the algorithm by different thresholding techniques. The 

most used method is that of the mean of max (MoM 

method) proposed by Candes et al. (2006)  

In practice, two types of dictionaries are chosen. The 

first one is the Undecimated Wavelet Transform 

(UDWT) for the construction of the STRUCT image 

(smooth part) because it permits to compensate the lack 

of invariance to the lost translation observed in the case 

of the classical wavelet transform. Moreover it is 

parsimonious for image with isotropic characteristics and 

non-parsimonious for images with anisotropic 

characteristics. The second one is the Discrete Cosine 

Transform (DCT) for the construction of the Component 

TEXT because it permits to focus the relevant 

information on a small number of coefficients. The 

following Fig. 1 shows the STRUCT and TEXT 

components of a multispectral CEBRS image with 19.5 

m spatial resolution and captured in B3 band (0.63 to 

0.69 µm), B2 band (0.52 to 0.59 µm) and B1 band (0.45 

to 0.52 µm) . 

Related Work  

The aim of pan sharpening is to combine Pan 

image and MS image, to produce MS imagery with a 

higher spatial resolution by using suitable algorithm. 

The classical pan sharpening algorithms are pixel 

level fusion techniques. In the case of very high 

resolution image like QuickBird or IKONOS image, 

their efficient analysis needs to pay attention 

simultaneously to their spectral characteristics and 

their textural characteristics (Chen et al., 2012). This 

assumption is the main idea that guides the novel approach.  
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 (a) (b) (c) 

 
Fig. 1. Smooth/Texture image decomposition with morphological component analysis (a) Original image in false colours, (b) 

Smooth component, (c) Texture component 
 

The rest of the paragraph presents in detail the rules 

of decision used in the different stages of our algorithm.  

In the following, the smooth and texture components 

of PAN and MS images obtained by the MCA, are 

respectively noted: S

X
I  and t

X
I  with x = PAN or MS.  

Fusion Rule for Smooth Components  

According the general principle of the image fusion 

techniques, one tries to inject into the MS image the 

information coming from the high spatial resolution 

PAN image, without degrading the initial information 

contained in the MS. The approach used to fuse the 

smooth components of the two types of images is 

adapted to our problem by the algorithm proposed in 

2012 by Saleem et al. (2012) This algorithm constructs a 

fused image while improving the contrast. This permits 

to better distinguish the objects present in the image at 

the initial level. In this algorithm the fused image is 

carried out using a multiresolution analysis based on the 

Laplacian and Gaussian pyramids. The weight matrices 

relating to each level of resolution are estimated by 

Gaussian pyramids decomposition of an original matrix. 

They are defined on the basis of the calculation of metrics 

upon the contrast and the brightness of the original image.  

In our method, we propose to determine the own metrics 

at each resolution. This leads to some multi resolution 

metrics that take into account the specific characteristics of 

the image obtained at a given level of decomposition in the 

Laplacian pyramids. For the implementation of our 

algorithm, we determine the matrices of contrast and 

luminance relating to a given level of decomposition. To 

build contrast matrix, we use the gradient magnitude. The 

magnitude of the gradient of an image is strongly 

correlated to its contrast. Thus, the coefficients of our 

contrast matrix C are the magnitude of gradient Cx,y 

determined in each pixel (x, y) of a given image I:  

, 1, , , 1
,

xy x y

x x y x y y x y x y

C G G

withG I I G I I
+ +

= +

= − = −

  (3) 

 
The improvement of the contrast is reflected by a 

deterioration of the brightness. To reduce this effect, we 
determine the coefficients Lx,y of the luminance matrix L. 
These coefficients will be used for weighting the 
degradation of the brightness of the image I. The 
coefficients Lx,y of the luminance matrix will be determined 
using a Gaussian kernel. They are estimated as follow:  
 

2

,

, 2

( )
exp

2

x y I

x y

I

I m
L

σ

 −
= −  

 
  (4) 

 
With mI the average and σI, the variance of the image 

I. Subsequently, each pixel (x, y) of an image at the 

resolution d, is affected by the weight
,

d

x yP  defined by:  

 

( ) ( )
, , ,

a
d d d

x y x y x yP C L
β

=   (5) 

 

This weight reflects the level of contribution of each 

pixel of images sources in the fused image. And the 

parameters α and β are true constants. The weight used 

afterwards will be the normalized one, such as the sum 

of the components 
,

d

x yP  of the weight matrix P
d
 at a given 

resolution d, be equal to 1.  
Thus, the fused image STRUCT of smooth 

component of PAN and MS images at a given resolution 
d is obtained by Equation 6. Finally, the smooth image 
fusion is obtained through reconstruction by Laplacian 
pyramid from the fused images at different levels of 
decomposition. In practice a maximum level of 
decomposition fixed at 5 gives fairly good results: 
 

{ } { }d d d d d

fus PAN PAN MS MSSTRUCT STRUCT
I P I P I= × + ×   (6) 
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Fusion Rule for Texture Components  

The fusion of the texture components from PAN and 

MS images is based on a calculation of the texture 

descriptors in each image. These descriptors are 

determined through discrete orthogonal moments that are 

obtained from bivariate Hahn polynomials. These 

polynomials recently introduced by Wu and Yan (2014) 

characterize the local variations of an image and the 

moments deriving from it, are robust to noises. In 

addition, these moments present a numerical stability, 

what permits to construct algorithms numerically stable 

(Wu and Yan, 2014).  

For each texture component TEXT ( )t t

PAN MS
I and I , we 

calculate the descriptors matrix of texture. Thus, if we 

consider a 5×5 neighbourhood centred on a pixel (x, y) of 

the image t t

PAN MS
I I or I= , then the bivariate Hahn moment 

of order p, q with 0≤�, �≤4 is defined by:  

 
�1 4

0 0
( , , , , ) ( , )

pq pqx y
MH H N N x y I x yη γ

= =

=∑ ∑   (7) 

 

ˆ ( , , , , )

ˆ ( , , , , )

ˆ ˆ ( , , 1, )

pq

pq

q pq

H N N x y

H N N x y

h H x N x N y

η γ

η γ

η γ

=

× + − + −

  (8) 

 

The bivariate Hahn polynomials are thus written as a 

tensor product of two Hahn polynomial with one 

variable x ∈[0; N-1] of order N. The unidimensional 

Hahn polynomial verify the following recurrence:  
 

1

2

( 1)ˆ ˆ( , , ) ( , , )
( )

( 2) ˆ ( , , ), 2,3,..., 1
( )

n n

n

n
h N x A h N x

n

n
B h N x n N

n

ρ
η γ η γ

ρ

ρ
η γ

ρ

−

−

−

= −

−

= −

  (9) 

 

0

( )ˆ ( , , )
(0)

x
h N x

ω
η γ

ρ
=   (10) 

 

1

2 ( )ˆ ( , , ) 1
( 1) (1)

x
h N x x

N

η γ ω
η γ

η ρ

 + +
= − 

+ 
  (11) 

 

(2 1)(2 2)
1

( 1)( 1)( )

( )( 1)(2 2)

(2 )( 1)( 1)( )

n n
A B x

n n N n

n n N n n
B

n n n N n

η γ η γ

η γ η

γ η γ η γ

η γ η γ η

− + + + + +

= + −

+ + + + + −

+ + + + + + + +

=
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  (12) 

 

1

( 1) ( 1)
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( )! !

( 1) !( 1) ( 1)
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x N x

n

n N

n n

x
N x x

n n
n

N n N

η γ
ω

γ η γ
ρ

η γ η

−

+

+ +

=

−

− + + + +

− + + + +

  (13) 

The term (α)x represents the symbol of Pochammer. 

Constants η and γ influence the form and the symmetry 

of the Hahn polynomial. The details of the calculation of 

these polynomials are available in Wu and Yan (2014).  

The 25 texture’s descriptors built in each pixel 

represent the correlation between the frequency 

variations of the region of the considered image and the 

Hahn basis polynomials. They permit to determine the 

signature vector of the texture at this pixel. This vector 

has s = 2n-2 components, with n, as the size of the 

neighbourhood. This vector is based on the amplitudes 

of the moments MHpq(.,.) of order s = p+q, that contain 

the whole information texture. The properties of 

discrimination of this vector in the classification of 

textures have been studied by Marcos and Cristobal 

(2013) for the discrete Tchebychev moments, which are 

a particular case of the Hahn moments. For n = 5, the 

signature vector corresponding to each pixel (x, y) has 8 

components and it is given by:  
 

( , ) ( , )
s pq

p q s

M x y MH x y
+ =

= ∑   (14) 

 
With s = 0,1,2,…,8 and s = p+q, 0≤ p,q ≤4 Matrices 
PAN

s
M  and MS

S
M  (0≤s≤8) characterize the textures present 

in the PAN and MS images according to the order of 

Hahn moments and estimates according Equation 14. The 

process of fusing the texture components is as follows.  

First we built the similarity matrix using the inner 

product between the elements of the matrices 
PAN

s
M and MS

S
M . This inner product represents the 

absolute value of the angle between the directions of the 

two vectors. The lower this angle is, the more the two 

vectors move in the same direction. If we call ν = 

{ν1,ν2,ν3,…,ν8} the vector such as ( , )PAN

s S
M x yν = with s 

= 0,1,2,…,8 and w = {w1, w2, w3,…, w8} the vector such 

as ( , )MS

S
ws M x y=  with s = 0,1,2,…,8 we have:  

 

1

,

,

x y

W
S COS

w

ν

ν

−

 < >
=  

 
 

  (15) 

 

In a second time, we apply the fusion rule according 

to the value of the similarity matrix Sx,y.  

If Sx,y ≥ θ then the pixel value (x, y) of the image 

fusion is given by:  

 

( , ) ( , ) ( , )T T T

fus a PAN b MSI x y w I x y w I x y= +   (16) 

 
The weight being respectively determined by: 

 

1 1

1 1
1 1

,
| | | |

PAN MS

S S

a b
PAN MS PAN MS

S S S S

M M

w w

M M M M

= =

+ +

  (17) 
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where, ||.||1 represents the standard L
1
 norm.  

If Sxy < θ then the value of the pixel (x, y) of the 

image fusion is obtained by:  

 

1 1

( , )
( , )

( , )

T PAN MS

PAN s sT

fus
T

MS

I x y si M M
I x y

I x y else

 ≥
= 


  (18) 

 

The threshold θ is estimated by the calculation of the 

average of the similarities on the vicinity of the pixel (x, y).  

Flowchart of Our Method  

To take care all information contained in Pan image 

with high spatial resolution and MS image with high 

spectral resolution, let us consider the MS image noted 

IMS represented in true colors (R, G and B) and the high 

spatial resolution PAN image noted IPAN. Our algorithm 

evolves according to the following steps:  

 

Step 1: Mapping of the MS image with the PAN image by 

resizing the MS image to the size of the PAN 

image using the Iterative Algorithm Curvature 

Based Interpolation (ICBI) proposed by 

Giachetti and Asuni (2008). The choice of this 

algorithm is explained by the fact that it eliminates 

the blur effect introduced by conventional 

methods while preserving the spectral 

information (El-Mezouar, 2012). Transforming 

MS image in IHS space colour and retained the 

intensity component (I). The Calculation of the 

image intensity from RGB components of the 

image IMS according Equation 19: 
 

3

R G B
I

+ +

=   (19) 

 
Step 2: We use morphological components analysis to 

extract smooth part and textural parts of each 

image. We get on the one hand, the images 
S

PAN
I and t

PAN
I and on the other hand, the images 

S

MS
I and t

MS
I  

Step 3: We fuse each morphological component to 

obtain the grey level fused image. We obtain 

the smooth and texture fused images, 

respectively referred to as s

fusI  and t

fusI . 

Creation of the fused image in grey level by the 

following relationship:  

 

2

s t

fus fus

fus

I I
I

+

=   (20) 

 

Step 4: We estimate the difference image between grey 

level fused image and the intensity component 

(I) obtained in Step 1  

Step 5: The color fused image is reconstruct by linear 

combination of MS image and difference 

image the colored image fusion is creating by 

the help of the following relations which gives 

the color image fusion matrix. Some 

coefficients will be injected in accordance 

with the approach proposed by Tu et al. (2009) 

and El-Mezouar (2012) in order to adjust our 

algorithm to the spectral response of the sensors 

like Quick Bird and IKONOS. So we have:  

 

3

3

3

fus R

fus G

Bfus

R R

G G

BB

ω δ

ω δ

ω δ

   +
   

= +   
   

+    

  (21) 

 

The experiments carried out by El-Mezouar (2012) 

show that the values of the coefficients ωR = 0.6, ωV = 

0.82, ωB = 0.37 give the best results.  

The Fig. 2 in the previous page shows the flowchart 

of the novel method.  

Experimentations and Results  

The qualitative evaluation of the results of our 

experiments was conducted by calculating different 

parameters. These are: (1) The Q4 parameter 

(Universal Index Quality Image) which combines in a 

single parameter the correlation between the fused 

image and the MS image, the spectral distortion 

between the two images and the contrast distortion, 

(2) the QNR which assesses the quality of an 

algorithm of fusion without reference image, (3) the 

spatial distortion Ds, (4) the spectral distortion Dλ, (5) 

the Bias, (6) the relative global-dimensional error 

(ERGAS), (7) the spectral Correlation Coefficient 

(CC), (8) its spatial version (sCC) and (9) the absolute 

mean Squared Error (RASE). The exact calculation of 

these different parameters is available in (Lari and Yazdi, 

2016). Some of them such as Ds and sCC measures the 

ability of the algorithm to preserve the spatial 

information contained in the panchromatic image 

while CC and Dλ allow to evaluate the quality of the 

conservation of the Spectral information contained in 

the multispectral image. Bias measures the difference 

between the mean of original image and fused image 

whereas RASE and ERGAS are global measure index. 

RASE expressed in percentage characterizes the 

average performance of the method of image fusion in 

the spectral bands considered. ERGAS is a global 

quality index sensitive to mean shifting and dynamic 

range change. Q4 index measures the local 

correlation, luminance and contrast between two 

images whereas QNR index expresses the 

combination of spectral and spatial distortion.  
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Fig. 2. Flowchart of the novel method 
 

The smaller the values of the bias, ERGAS and 

RASE, are, the more effective the algorithm is. In the 

other direction, the larger the QNR and the Q4 values 

are, the more the algorithm gives good results. As for the 

coefficients of correlations, some values close to 1 

indicate that the spectral and space information are really 

quite present in the merged image.  

In practice, the parameters η and γ used in the 

fusion Rule of the texture components, are chosen 

equal (Wu and Yan, 2014). For our applications, we 

choose η = γ = 25. The parameters α and β were made 

respectively equal to 1.5 and 2.5 in our application for 

the fusion Rule of the smooth components. Our first 

experiments have concerned the fusion of: 

 

• A panchromatic image acquired by the IKONOS 

satellite with 1 m spatial resolution and 1024×1024 

pixels (Fig. 3a) and a multispectral image of 

256×256 pixels size provided by the satellite 

LANDSAT ETM+ (Fig. 3.b)  

• Two images acquired by the Landsat satellite ETM+ 

(Fig. 3c and 3d). The PAN image size is 512×512 

pixels and the MS image is of 256×256 pixels size 

and is represented in false colors 

 

In all our experiments, the MS images have been 

resized to the size of the PAN image using the Iterative 

Curvature Based Interpolation (ICBI) algorithm 

proposed by Giachetti and Asuni (2008).  
The proposed method has been compared to 3 

other methods of images fusion classified among the 
most efficient (Alparone et al., 2008) in HIS based family 
algorithms. These are the GIHS algorithms-GA, AWLP and 
GLP-SDM which have been previously described. Figure 4 
shows the results of the image fusion tests and Table 1 
contains the values obtained through the assessment 
of the Q4, DS, Dλ and QNR parameters. 



Georges Laussane Loum et al. / American Journal of Applied Sciences 2017, 14 (8): 795.807 

DOI: 10.3844/ajassp.2017.795.807 

 

802 

   
 (a) (b) (c) (d) 

 
Fig. 3. Test images: (a) and (c) panchromatic images; (b) and (d) multispectral images 

 

   
 (a) (b) (c) (d) 

 

  
 (e) (f) (g) (h) 

 
Fig. 4. Results of different pan sharpening algorithms (a) and (e): AWLP; (b) and (d) GLP-SDM; (c) and (g)/ GIHS-GA; (d) 

and (h): Our method 
 

We can notice that the images obtained with the 

AWLP show an excellent distribution of colors (Fig. 4a 

and 4e) even if they are slightly blurred. This reflects the 

ability of this algorithm to retain the spectral 

information. This image is however somewhat slightly 

blurred. Fig. 4b and 4f indicate that the GLP-SDM really 

preserves the spectral characteristics of the MS image 

with a mean level of spatial details conservation. As for 

the results of the image fusion by GIHS-GA (Fig. 4c and 

4g), the details of spatial and spectral features are quite 

well drawn but we notice a degradation of colors 

distribution, which reflects a strong spectral distortion as 

Lari has noticed (Lari and Yazdi, 2016). The result 

obtained by our method (Fig. 4d and 4h) shows the 

presence of a slight effect of blurriness. In contrast, the 

spectral and spatial details are relatively well preserved. 

In addition, the dynamics of the image and therefore the 

contrast are the best. The details and the forms of our 

images are much better designed.  

The qualitative analysis as shown in Table 1 confirms 

the visual impression. The results obtained by our 

algorithm are better as regards to the spectral distortion 

Dλ, Ds, QNR and Q4. This indicates that the spectral 

information contained in the multispectral image is well 

preserved in the image fusion of our method. The values 

taken by the Q4 parameter in our case are substantially 

equal to those of the AWLP method even though this last 

one presents the best results. As for the spatial distortion, 

our method is effective on the first type of images and 

less good on the Land sat images where it nevertheless 

supplants the GIHS-GA which is the one of the reference 

algorithms on the IHS family methods.  
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The effectiveness of our algorithm was also assessed 
on the two other types of images. The first image shows 
a rural region acquired by the Quick Bird satellite. This 
is an image scene on the Kokilai Lagoon, a Marine 
Protected Area in Sri Lanka, taken by the Quick Bird 
satellite sensor on April 2005 (El-Mezouar, 2012). The 
image size is approximately 2600×3200 pixels. These 
images is much more complex with different classes of 
soil occupation. Fig. 5a and 5b show the panchromatic 
image and multispectral images.  
The other images (Fig. 6a and 6b) show an urban 

area provided by the IKONOS satellite. This image 
shows a mixed area combined vegetation areas and 
urban area. The image size is 256×256 pixel. Our 
algorithm can be classified among the IHS based 
methods family and has been here compared to 4 
conventional algorithms of this family: The Classic IHS 
(SA-IHS) and the algorithms proposed by TU (2009; 
Choi, 2006; El-Mezouar, 2012).  

The different results of images fusion are presented 

in Fig. 7a and 7e for the images provided by the Quick 

Bird satellite and Fig. 8a and 8e for those from the 

IKONOS satellite.  

The visual analysis of Fig. 7 shows us that the image 

fused by SA-IHS (Fig. 7c) presents a high spectral 

distortion compared to the other methods. Our method 

(Fig. 7g) really preserves the spectral information while 

improving the contrast of the original multispectral image. 

The results of Fig. 8 confirm the previous results. The 

image obtained by our method really retains the spectral 

information and the contrast is strengthened in it.  

The dynamics of the image is more highlighted in our 

approach compared to the other algorithms (Fig. 8a and 

8e). The algorithm of Choi (Fig. 8c) provides an image 

fusion with a green excessive hue.  

 

  
 (a) (b) 
 

Fig. 5. Quick Bird image of rural region. (a) Panchromatic image, (b) Multispectral image 
 

  
 (a) (b) 

 

Fig. 6. IKONOS Image of urban region (a) Panchromatic image, (b) Multispectral image 
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 (a) (b) (c) 

 

  
 (d) (e) 

 

Fig. 7. Results of different pansharpening algorithms: (a) SA-IHS; (b) Tu method ;( c) Choi method; (d) El-Mezouar method; 

(e) Our method 

 

  
 (a) (b) (c) 
 

  
 (d) (e) 

 
Fig. 8. Results of different pan sharpening algorithms: (a) SA-IHS; (b) Tu method ;( c) Choi method; (d) El-Mezouar method; 

(e) Our method 
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Table 1. Qualitative evaluation for different images fusion algorithms 

Parameters algorithm Q4  Ds  Dλ QNR  

IKONOS and LANDSAT images  

AWLP  0.9535  0.0857  0.1722  0.7568  

GLP-SDM  0.9024  0.1332  0.2335  0.6644  

GIHS-GA  0.8941  0.1881  0.2025  0.6474  

IHS-ACM  0.9637  0.0447  0.0510  0.9728  

LANDSAT images  

AWLP  0.9800  0.1120  0.120  0.7800  

GLP-SDM  0.9610  0.1630 0.145  0.7150  

GIHS-GA  0.9620 0.2420  0.146  0.6480  

IHS-ACM  0.9700 0.19 0 0.070 0.8014  

 

Table 2. Qualitative evaluation of different pan sharpening algorithms for Quickbird images 

Metric  Band  SA-IHS  TU  CHOI  El-Mezouar  Our method  

CC  R  0.8176  0.8354  0.8614  0.8941  0.8446  

 G  0.6614  0.7397  0.7767  0.7381  0.8213  

 B  0.3716  0.5311  0.5736  0.6209  0.7932  

Bias  R  0.0435  0.0464  0.0385  0.0218  -0.0815  

 G  0.0492  0.0464  0.0385  0.0261  -0.0738  

 B  0.0556  0.0464  0.0385  0.0257  -0.0634  

Q4  -  0.5224  0.5841  0.6522  0.6340  0.7105  

RASE  -  107.98  101.15  92.194  86.6140  85.0580  

ERGAS  -  6.9703  6.1965  5.1628  4.5090 3.6476  

 

Table 3. Qualitative evaluation of different pan sharpening algorithms for IKONOS images 

Metric Band SA-HIS Choi Tu El-Mezouar Our method 

Bias  R  0.320  0.2465  0.3593  0.1972  0.0547  

 G  0.266  0.2047  0.6171  0.1830  0.0402  

 B  0.303  0.2331  0.3397  0.1645  0.0496  

Variance  R  1.118  0.5252  0.8793  0.2238  0.0257  

 G  0.994  0.4249  5.3392  0.0952  0.0257  

 B  2.523  1.1099  1.8889  0.6156  0.0257  

Std  R  0.194  0.1763  0.2643  0.1744  0.1606  

 G  0.169  0.1512  0.4746  0.1618  0.1606  

 B  0.2220  0.1710  0.2802  0.1313  0.1606  

CC  R  0.9371  0.9338  0.8780  0.9313  0.9358  

 G  0.9299  0.9286  0.7684  0.9122  0.9325  

 B  0.8785  0.8915  0.7747  0.9242  0.8776  

sCC  R  0.8138  0.8130  0.8128  0.8086  0.8350  

 G  0.7964  0.7970  0.7777  0.7779  0.8313  

 B  0.7480  0.7565  0.7466  0.7671  0.8285  

ERGAS  -  8.7092  6.9788  13.344  5.9993  3.8784  

Q4  -  0.7158  0.7768  0.5871  0.8107  0.7801  

 

A qualitative analysis of the QuickBird test image are 

presented in Table 2. They confirm the results of the 

visual analysis previously observed. The analysis of Table 

2 shows that our method is effective at the level of all the 

quality parameters with the exception of the correlation 

coefficient for which Choi and El-Mezouar methods give 

best results, mainly in the Red spectral band.  

In table 3, our method remains effective at the level 
of the quality parameters used in the different spectral 
bands with the exception of the spectral correlation 
coefficient. The algorithm SA-IHS gives best results in 
the red spectral band for the correlation coefficient and 
surpasses a little bit our algorithm. The algorithm of El 
Mezouar obtains the best Q4. Moreover, the first results 

in Bias, Variance and Standard Deviation show that our 
algorithm does not favour any spectral band in the multi 
spectral image (IKONOS MS image) in contrast to the 
algorithms such as those of Choi, TU and El-mezour 
algorithms which generally favour the Green spectral 
band by degrading the spectral information contained in 
the Red and Blue bands. 

Conclusion  

We have proposed in this study a new method of 

image fusion for panchromatic and multispectral images. 

The diversity of the sensors makes it necessary to the 

development of such methods in order to be able to have 
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a global vision and a synthetic view of the information 

contained in various data sources. The proposed 

approach which is a hybrid approach IHS-multi-

resolution, provides encouraging results, when we see the 

first experiments. After transforming transformation the 

original multi spectral image in IHS color space, this novel 

approach uses morphological component analysis to 

separate PAN and MS images in smooth part and texture 

part and fused each morphological parts of them to obtain 

the fused image. To evaluate the accuracy of our method, 

we compare performance of the novel approach to the most 

useful HIS based family algorithms like AWLP, GIHS-GA, 

GLP-SDM, Tu and Choi algorithms SAIHS and EL-

Mezouar algorithms. We use qualitative assessments that 

allow to predict quality of the algorithm to preserve spatial 

information containing in panchromatic image and spectral 

information containing in multi spectral image. For all 

experiments we made in different type of remote sensing 

images like QuickBird PAN and MS Image, IKONOS and 

LANDSAT images. The proposed method gives the best 

fused images in terms of CC, Q, bias, RASE and ERGAS. 

The results obtained show a better conservation of the 

spectral information characterized by a high spectral 

Correlation Coefficient (CC) which translates a loss of 15% 

for spectral information compare to those of the 

conventional methods which revolve around 25%. As for 

the degradation of spatial information (sCC) it is of the 

order of 17% in contrast to conventional algorithms which 

oscillate around 21%. The contrast of the fused image is 

improved and the MS image is virtually retained. This fact 

is shown by the smallest value of Q4 (> 70%), QNR 

(>80%) and ERGAS equals to 3.88 for IKONOS image and 

3.65 for QuickBird image compared to 8.70 for IKONOS 

image and 6.97 for QuickBird for conventional IHS 

algorithms in all of our experiments.  
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