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Abstract: The present paper proposes an original and innovative cooling 

law in the field of Simulated Annealing (SA) algorithms. Particularly, such 

a law is based on the evolution of different initial seeds on which the 

algorithm works in parallel. The efficiency control of the new proposal, 

executed on problems of different kind, shows that the convergence 

quickness by using such a new cooling law is considerably greater than that 

obtained by traditional laws. Furthermore, it is shown that the 

effectiveness of the SA algorithm arising from the proposed cooling law is 

independent of the problem type. This last feature reduces the number of 

parameters to be initially fixed, so simplifying the preliminary calibration 

process necessary to optimize the algorithm efficiency. 
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Introduction 

Complex nonlinear optimization problems require 

specific resolution techniques. These problems are 

often characterized by a solution space that presents 

many local optima (for the sake of simplicity it will be 

made reference to a cost function minimization). In 

these cases, local search algorithms, as the classical 

descent neighborhood search method, have a heavy 

drawback: The optimization algorithm generally 

converges towards a local minimum. 

To avoid getting trapped in a local minimum, the 

optimization algorithm must allow to accept worse 

solutions than the current one. Several kinds of 

algorithms have been developed for this purpose and 

they differ for the acceptance criteria of a pejorative 

solution. Among such algorithms it is possible to 

remember the Taboo Search (TS) and the Simulated 

Annealing (SA). Another class of algorithms, i.e., the 

Genetic Algorithms (GAs), is based on the evolution of a 

set (population) of initial solutions. Such classes of 

algorithms have been applied to several different fields 

of research. Our interest is addressed to the SA 

algorithms, in particular to the cooling law, which is 

fundamental for the SA efficiency. 

The reminder of the paper is organized as follows: 

The most recent proposed cooling laws for SA are 

presented first, followed by a detailed description of the 

new proposed cooling law; the effectiveness and 

efficiency of the new proposal are evaluated next. 

Meanwhile, several testing problems of the proposed law 

are presented in detail. Hence, conclusion of this study is 

provided as well. 

Simulated Annealing and Cooling Schedule 

The logic of a SA algorithm is well known by the 

literature. We briefly recall its steps, drawn by 

(Kirkpatrick et al., 1983) and inspired to the previous 

studies of (Metropolis et al., 1953). An initial feasible 

solution, called seed, is perturbed and replaced by the 

new one if better. If the new solution is worse, then it 

is accepted with a probability calculated by the well-

known law: Prob = exp{-∆F/T}, where ∆F is the cost 

increment. The procedure is iterated on the current 

seed and at the same time the “temperature” T is 

reduced. This progressive reduction makes less 

probable the acceptance of a more expensive solution, 

until this probability is practically reduced to zero. In 

the last case, a state called “frozen” is reached and the 

algorithm is stopped. From a theoretical point of view, 

an opportune choice of the SA parameters and 

functions can lead to the optimal solution 

independently of the initial seed. In particular, one 

refers to the initial temperature, T
o
 and the cooling 

law that, as shown by some researchers (Geman and 

Geman, 1984; Hajek, 1988), should assume the form: 

 

( )
r

T = C / ln 1+ r  (1) 
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Being r the progressive number of the analyzed 

solutions and C an opportune constant depending on 

the maximum cost difference between a random 

solution and its neighborhood. Nevertheless, apart from 

the difficulty to determine the value of C, the 

achievement of the frozen state could require 

unacceptable run-times. Some proposals of 

modification of the cooling law attempt to compensate 

for such a drawback. For example, Lundy and Mees 

(1986) propose the following cooling law: 

 

( )r r -1 r -1
T = T / 1+ Tβ  (2) 

 

However, the simplification does not assure the 

achievement of the optimal solution. In order to further 

on simplify, the temperature is not usually reduced at 

each new solution, namely the algorithm is articulated in 

cycles characterized by a constant temperature and a 

given number of solutions, nrep, is analyzed for each 

cycle. Within the generic c
th 

cycle, the probability of 

transaction from a state to another one (i.e., the 

acceptance of a new solution from the current one) is 

constant and it only depends on the two involved states. 

Therefore, it is a homogenous Markov’s process and the 

value of nrep should be such that steady conditions are 

reached before temperature reduction. This reduction 

implies a contemporary reduction of the transition 

probability and thus the achievement of stationary 

conditions is always slower. Then the nrep value should 

be progressively increased. Even if constant temperature 

cycles are employed, a cooling law is however necessary 

and it should determine a trend of temperature similar to 

the slow downgrade arising from the relation (1). 
Interesting proposals have been suggested by 

(Huang et al., 1986): 

 

( )c c-1 c-1 c-1
T = T  exp T /β σ−  (3) 

 

and by (Aarts and Korst, 1989): 

 

( ) ( )/
c c-1 c-1 c -1

T = T / 1+T ln 1+ 3 δ σ 
   (4) 

 

These relations also take into account the evolution 

of the algorithm by means of the term σc-1, that is the 

standard deviation of the cost values at the (c-1)
th 

Markov chain. Both these cooling laws could be 

connected with the concept of the specific heat 

introduced by (Kirkpatrick et al., 1983). The specific 

heat is related to the costs variance at a given 

temperature. A high variance is index of high distance 

from the convergence conditions and thus the 

temperature can be more rapidly reduced. However, a 

simple geometric law is usually preferred: 

c c-1
T =  Tα  (5) 

 

with 0< α<1. 

About the choice of the parameters involved in 

Equation (5), exact rules do not exist, but just sensible 

indications. So, the initial value of temperature, T
o
, is 

chosen in order to accept a strongly pejorative solution 

with a high probability that allows, at least at the 

beginning, “to wander” in the overall solutions space and 

thus the final solution results to be independent of the 

initial seed. Usually, in a preliminary tuning phase, the 

value of T
o is determined so that the fraction of accepted 

pejorative solutions is very high (for example 0.9). 

A very gradual reduction of the temperature 

requires an α value very close to the unity. Used 

values usually belong to the range [0.8, 0.99]. For 

increasing α values, the achievement of the frozen state 

requires an increasing number of cycles and 

consequently an increasing run time. Obviously, the latter 

also depends on the value of nrep and thus it is fixed with 

relation to the other parameters and consistently with the 

available elaboration time. 

A different interesting temperature control scheme is 

proposed by (Azizi and Zolfaghari, 2004). It is a 

particular cooling law (or better, a heating law) that 

dynamically modifies the temperature on the base of the 

search path. The control function of the temperature is 

the following: 

 

( )
c o

T = T + λln 1+ r  (6) 

 

where, T
o is the minimum value that the temperature can 

assume, λ is a coefficient that determines its increase rate 

and r the number of consecutive solutions having a 

greater cost than the current one. When an improvement 

is obtained, r is set equal to zero. 

Dowsland (1993) takes contemporaneously into 

account two different functions for the temperature 

control: Besides a cooling law, a heating law is considered 

to gradually increase the temperature, if necessary. 

To our knowledge, the most recent literature has 

not proposed new cooling laws. The literature about 

the SA is wide, but it deals with some specific 

applications (Kia et al., 2012; Leung et al., 2012), as 

well for multi-objective problems (Lin and Ying, 

2013), or proposals of utilization of SA matched with other 

heuristics, as the Ant Colony (AC) algorithms (Sitarz, 

2009), the TS or, more often, the GAs (Rong-Ceng, 2006; 

Zahrani et al., 2008). 

The New Cooling Law 

Our proposal arises from the idea of the specific 
heat (Kirkpatrick et al., 1983). For some kind of 
problems (for example unimodal problems), a little 
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value of σ, standard deviation of costs at a given 
temperature, can correctly induce to suppose to be close 
to the minimum value of cost. The closer the 
neighborhood of a solution to the same solution is, the 
truer this supposition could be. In such cases, the laws 
(3) and (4) find full justification. For other classes of 
problems, for example for combinatorial optimization 
problems, a high or a little value of σ could not be 
meaningful of the particular reached conditions. For 
example, let consider the function represented in Fig. 1 
(Michalewicz, 1999). 

The more the solution approaches the minimum (or 

the maximum) of the function, the more its 

neighborhood is characterized by a high variability. 

On the contrary, if the neighborhood is very extended, 

the variability is nearby constant, whatever the reached 

solution is. In our opinion, the cost variability among the 

solutions is very important, even if the variability to be 

taken into account is not that related to the solutions 

visited at a given temperature. 

Specifically, once a final solution of the problem has 

been obtained, a method to look for obtaining a better 

solution consists of repeating the overall procedure by 

beginning from a different seed, if the available time 

permits that. The repetition of the procedure, eventually 

simplified by acting on α, nrep, T
o and on the final 

temperature, can present more benefits than an unique 

prolonged procedure. 

Let the procedure can be iterated Nseed times. Instead 

of repeated runs, the iterations can be simultaneously 

carried out. For example, at the c
th 
step, nrep(c) moves  

could be executed on each one of the Nseed solutions 

that constitute the evolution of as many original random 

seeds. The analysis of the contemporary evolution from 

the original seeds could supply information that might 

be lost if each seed is singly developed till the end. In 

particular, at each step, Nseed solutions are available, 

arising from different original seeds characterized by 

very different costs. They are converging to solutions 

that, even if not optimal, could be near to the optimal one. 

Hence one can rightly think that their costs are mutually 

approaching. The mutual “distance” among the Nseed 

solutions at the end of the c
th 

step can be used as 

indirect measure of how much the optimal solution is 

still faraway to be reached. On the other hand, when a 

solution is far from the optimal one, the probability to 

accept worse solutions should be high whereas it should 

decrease as much as nearer it is to the optimal one. Thus 

the acceptance probability can be linked to the distance 

among the current solutions and this distance could be 

measured by the standard deviation, η, related to the 

Nseed cost values. After all, the use of the following 

cooling law is here proposed: 
 

c c-1
T = kη  (7) 

 
where, η

o is the standard deviation of the costs of the 
original random solutions and k is a constant 
opportunely chosen as explained in the next section. It 
is possible to think of more complex relations between 
temperature and η but the optimal results obtained by 
the proposed law do not justify their use.

 

 
 

Fig. 1. Drawing of the function f(x1, x2) = 21.5 + x1 sin (4πx1) + x2 sin (20πx2) with x2 = 0 
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Note that both η and σ are the costs standards 

deviations. A different symbol has been used since the 

value of σ in Equation (3) and (4) is calculated on costs 

related to the solutions visited during a cycle, whereas 

η is the standard deviation of the current Nseed 

solutions at the end of a cycle. 

About the Values to Assign to the Parameters 

Implementing a SA with the new cooling law 
requires to fix some parameters, Nseed, nrep, k and a 
closing criterion. Generally, the selection of the values to 

be assigned to the parameters of a heuristic algorithm 
is not based on rigid laws. In the following, general 
suggestions are just proposed. The authors hope to have 
been guided by the common sense. 

A closing criterion, whatever it may be, can not 

disregard the time available for the solution search. On 

the other hand, this time allows at analyzing a limited 

number of solutions. Then, the closing criterion can 

explicitly refer to the global number of solutions, S
tot
, 

that one wants to analyze. 

As for the population of a GA, the value of Nseed 

could be binded to the solutions space dimension to 

have information about different zones. However, this 

fact is not important for an SA, since, as it has been 

shown, it is able to be free from the initial solution and 

the final result should be independent of it. Moreover, 

since Stot must be divided among the original seeds, the 

higher the value of Nseed is, the less extensive the search 

on each seed can be. After all, a relation of the following 

kind is proposed as a good compromise among the 

various exigencies shown: 
 

0.2

tot
Nseed  S≅  (8) 

 
As to nrep, this parameter is not very critical. An 

its low value imposes a frequent, but probably 

superfluous, up-to-dating of η. Its value could be 

fixed about some hundred: The analysis of nrep·Nseed 

solutions could show a more or less significant change 

of the standard deviation. 

The most critical parameter certainly is k and it isn’t 

possible to make hypotheses about its right value. All 

researchers emphasize the importance of a careful 

tuning of the parameters. Such a tuning phase often is 

laborious and time consuming, while this time could be 

profitably spent for a longer run of the algorithm. Well, 

the proposed algorithm does not require such a set-up 

phase. Really, authors are positively persuaded that k is 

a constant independent of the kind of the specific faced 

problem. At the moment, they could not propose a 

proof for this assertion and so it is just a conjecture. A 

formal proof could be the object of a subsequent 

research during which a better value of k than that one 

used in this study could be determined. 

Effectiveness and Efficiency of the New Proposal 

The Authors do not propose a new algorithm for the 

resolution of a specific problem, but a change, of general 

validity, on the traditional cooling law used within the 

SA algorithms. Therefore, the verification of the 

effectiveness of the proposal should be made with 

relation to algorithms of the identical type, in terms of 

formulation except for the cooling rule. Hence, one 

should consider an algorithm already researched in 

literature and it should be implemented in two versions, 

namely with and without the change. Unfortunately, the 

literature proposals on SA (not existing for the problem 

of crashing) do not specify the values of the different 

parameters to be chosen, but intervals. Their setting 

depends on the user that has to determine their best 

combination with relation to the specific data of the 

faced problem. Therefore, we had to search for the 

optimal parameters in order to successively state that our 

proposal is much better. As it is obvious, the procedure 

would have been widely questionable. We believed to 

operate in a different way. 

Specifically, we developed a SA algorithm for a 

given job-shop scheduling problem and we implemented 

it twice, namely one with the traditional cooling rule and 

another one with the new proposal, unchanging the other 

parameters. Authors believe improbable that an 

unreasonable change within an ineffective algorithm can 

considerably improve its performance. Nevertheless, 

ordering to prevent a possible and rightful criticism in 

this sense, Authors tested the algorithm in its “classical” 

formulation by comparing its results with the ones 

obtained by means of Monte Carlo simulation. 

One can state that the new proposal is valid just 

because of the dealt problem (scheduling with sequence 

dependent setup times). In order to prevent such a criticism, 

the whole procedure has been repeated even for a class of 

problems with different features (project crashing). 

Therefore, the verifications have been articulated in 

more steps: 

 

• Development of two “classic” algorithms, named by 

the acronyms of the two problems: Sequence 

Dependent Setup (SDS) and Project Crashing (PC) 

• Monte Carlo simulations with the same kind of coding 

and decoding employed in the previous algorithms 

• Implementation of SDS and PC and comparison 

with the Monte Carlo simulation results 

• Implementation of the new cooling law for the two 

typologies of problems (New_SDS and New_PC) 

and comparison with the previous results 

 

Testing Problems 

As just said, the proposal advanced in the present paper 

has been tested on two different classes of problems: (a) the 
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job shop scheduling with sequences-dependent set-up times 

and (b) the project crashing problem. 

A brief presentation of the two kinds of problem is 

given. 

Job Shop Scheduling with Sequences-Dependent 

Set-Up Times, SDS 

The SDS is a typical industrial problem. The set-up 

consists in those operations, as fixturing and tooling, that 

are needed to prepare a workstation. The optimization 

usually aims at determining the schedule that implies the 

minimum completion time (makespan). The problem is 

NP-hard (Pinedo, 2002). The interest of the industry for 

the problem and the challenge represented by its 

difficulty, have led many researchers to face such class of 

problems for various typologies of production systems 

(Low, 2005; Jin et al., 2009). In the following we will 

pay our attention to the job-shop scheduling problem. In 

literature, this field has not been very widely researched. 

Apart from some proposals that usually utilize the mixed 

integer programming for specific production systems 

(Luh et al., 1998; Mason et al., 2005), problems of big 

dimensions are usually solved by heuristics. Therefore, 

resolution proposals with TS (Hertz and Widmer, 

1996), with dispatching rules (Kim and Bobrowski, 

1997), with GA (Sun et al., 2003; Cheng et al. 1996), 

with AC (Timur et al., 2012), with integration of GA 

and dispatching rules (Cheung and Zhou, 2002) can be 

found in the literature. Lin et al. (2009) propose an 

application of SA for the problem of our interest but 

in the flow-shop field. A wide bibliography about 

scheduling with SDS is given in the paper of Zhu and 

Wilhelm (2006). 

The Project Crashing Problem 

In the project management field, the PC concerns the 

determination of the length of each activity, so that the 

project completion time L does not overcome a 

maximum value, UpL, with the aim of minimizing the 

sum of the direct costs related to the activities, C. No 

hypothesis on the resource availability is introduced. The 

problem is then formulated as follows: 

 

min C  (9) 

 

Subject to: 

 

L UpL≤  (10) 

 

The crashing technique for the dual of the previous 

problem can be described as a specific type of project 

schedule compression technique. The latter is 

performed to decrease the total project schedule length 

after analyzing a number of alternatives to determine 

how to get the maximum schedule duration 

compression for the least additional cost (PMI, 2013). 

In the last case, typical approaches for crashing a 

schedule include reducing activity durations and 

increasing the assignment of resources. 
As to the approaches proposed to solve such a 

kind of problems, GAs are widely employed for 
linear (Li and Love, 1997; Leu and Yang, 1999), or 
quadratic (Li et al., 1999) or discrete (Feng et al., 1997) 
time-cost relations. 

Among the more recent approaches it is possible to 

cite (Tung, 2007), who develops and tests a particle 

swarm optimization algorithm, Aghaie and Mokhtari 

(2009) whose approach is based on the AC optimization 

metaheuristic and Monte Carlo simulation technique, 

Liberatore and Pollack-Johnson (2006) who propose a 

quadratic mixed integer programming approach for 

reducing the project completion time. 

The SDS Algorithm 

A brief description of the algorithm is given in 

Appendix A1. 

The SDS has been applied to the SWV01 problem, 

10 machines and 20 jobs, proposed by (Storer et al., 

1992). The setup times, absent in SWV01, have been 

simulated by an integer uniform distribution U[1;20]. 

Due to the utilized coding, the dimension of the 

solution space is greater than 10
191
. The Monte Carlo 

simulation stretches up to N
1 = 10

7 
solutions. The 

results are reported in Fig. 2. 

Note that the minimum value obtained is equal to 

2056. An unbiased non parametric estimate of the 

probability of obtaining values lower than 2056 is given 

by the ratio 1/(N1+1) and then this probability takes the 

value P1=10
−7
. Moreover, the standard deviation of the 

frequency distribution is equal to s = 85.7. 

By assuming that 3s is a good approximation of the 

maximum difference between a random solution and its 

neighborhood, relation (1) allows to calculate T
1 = 370. 

Obviously the parameter s (or other useful parameters) 

can be evaluated with a less number of random solutions. 

For example, Xinchao (2010) generates ten random 

solutions and calculates the difference ∆ between the 

worst and the best solution. Afterwards To is calculated by 

the relation To = -∆/lnPo, where Po is equal to the selected 

initial acceptance rate for the worse solution. 
As final condition, a probability P

fin = 0.005 has 

been fixed for the acceptance of a solution that is 

worse for more than a unit of makespan. From the last 

consideration arises a final temperature T
fin ≅ 0.4. By 

assuming a geometric cooling law with α = 0.99, a 

number of Markov chains equal to 680 is obtained. If 

nrep grows according to the relation nrep
c = nrep

c-1 /α
0.1 

and one wants to analyze 10
6 
solutions, then nrep

1 = 

1026. Figure 3 reports the mean value of makespan over 

10 independent runs (central line). 
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Fig. 2. Monte Carlo simulation for the SDS problem 
 

 
 

Fig. 3. Results for the classic SA algorithm 
 

The two external lines define the range which 

includes the best values achieved in the ten simulations. 

The considerable reduction of makespan, in comparison 

with the best value obtained by the simulation, is 

evident. Although P1 is very small and each run of the 

algorithm has only analyzed 10
6
 solutions, all the final 

results are better than 2056, that is the best value 

obtained by analyzing 10
7
 random solutions. From a 

probabilistic point of view, considering that the value of 

2056 is reached after 450000 moves, the probability that 

it could casually occur within a run is around equal to 

0.043 (already not significant at a level α = 5%), 

whereas the probability that it occurs in 10 successive 

runs is around 2.10
−14
. Therefore, one can certainly 

affirm that the proposed algorithm is highly effective. 

The PC Algorithm 

A brief description of the algorithm is given in 

Appendix A2. 
The precedence graph reported in the paper of 

(Arikan and Gungor, 2001) including 80 activities and 
62 paths has been utilized (however, the related meaning 
was different from that attributed in the present work). 
The number of duration alternatives for each activity was 



Antonella Certa et al. / American Journal of Applied Sciences 2015, 12 (6): 370.381 

DOI: 10.3844/ajassp.2015.370.381 

 

376 

simulated from U[3;6]. In particular, 17 activities 
resulted to be characterized by 3 alternatives, 31 by 4, 16 
by 5 and 16 by 6. Consequently, the dimension of the 
solution space is 2.56·10

50
. The time lengths were 

simulated by means of the relations: 
 

( ) [ ] ( )

( ) [ ] ( )

1 20;40

1 10;20 2

L a,  = U  L a, j  

= L a, j -  + U with j =  to y a
 

 
and the costs by: 
 

( ) ( ) ( )c a, j = 1000 / L a, j j = 1 to y a
 

 
The minimum duration of the project results to be Lmin = 

852 and the maximum one Lmax = 2213. To the maximum 

duration corresponds a minimum cost Cmin = 1049. 

The objective to be achieved is that expressed by the 

relation (9) and (10). UpL is fixed by: UpL(τ) = Lmin + τ . 

(Lmax-Lmin) and two different values of the parameter τ 

have been considered: τ1 = 0.4 and τ2 = 0.8. 

The Monte Carlo simulation has been limited to N2 

= 10
6
 solutions (the solutions space is considerably 

smaller than that one of the scheduling problem). The 

results are reported in Fig. 4. 

Particularly: 
 

( ) ( ) ( )1 1 1
1629 1859.90 62.47

min mean
C = C =  s =τ τ τ

 
 

( ) ( ) ( )2 2 2
1401 1731.15 77.41

min mean
C = C =  s =τ τ τ

 
 

For the implementation of the PC, initial and final 

values of the temperature have been determined by 

reasoning as for the scheduling problem, so obtaining: 

( ) ( )1 1
 1 270 2 335 0.4finT T Tτ τ= = =

 
 

Furthermore, by assuming α = 0.98: 

 

( )1
 323Markov’s chains τ =

 
 

( )2 333Markov’s chains τ =

 
 

Assuming nrep as constant and limiting the analyzed 

solutions to 10
5
, then: 

 

( ) ( )1 2
 310  300nrep  and nrepτ τ= =

 
 

1 2
 6Moreover s s were assumed= =

 
 

Ten independent runs have been executed and the 

results are reported in Fig. 5 and 6. 

As for the SDS, the central line is referred to the 

medium cost. The two external lines indicate the 

interval within which the best values reached during the 

simulations are included. It is possible to affirm that the 

algorithm is very efficient: For both the cases (τ1 and 

τ2) the best value obtained by the simulation is reached 

just after the first cycles and the final costs are notably 

lower. The probability that such results casually happen 

is even lower than those of the SDS problem (<0.1% 

for a single run and <10
30
 for the set of 10 runs) and 

then absolutely not significant. Furthermore, it is 

interesting to note that the final range of variability 

among the different solutions is very narrow and this 

suggests that the optimal solutions, even if not reached, 

are very near to the obtained results.
 

 
 

Fig. 4. Monte Carlo simulation for the PC problem 
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Fig. 5. Results for the classic SA algorithm (τ1 = 0.4) 

 

 
 

Fig. 6. Results for the classic SA cost algorithm (τ2 = 0.8) 

 

The New_SDS Algorithm 

In order to have a fair comparison with the SDS, the 

total number of analyzed solutions for each run test must be 

equal to the previously utilized value, that is 10
6
. Following 

the suggestions earlier expressed, the value of Nseed has 

been determined making use of the relation (8), namely 

Nseed = (Stot)
0.2
 = (10

6
)
0.2 

≅ 16. Stot has been subdivided 

among the 16 seeds and partitioned in 150 cycles, each one 

including a constant number of moves nrep = 416. 

About the value of k, the novelty of the approach 

does not allow to have indications coming from previous 

implementations. On the other hand, even if k is 

supposed to be independent of the considered problem, 

since its value can not be derived from previous 

theoretical considerations, it has to be determined by 

some experiments on the base of a specific problem. 

Then, some preliminary tests have been carried out to 

individuate the k value that supplies the best results. By 

these tests, referred to the SDS problem, the most 

suitable value for the parameter k seems to be 0.08. This 

value was used in the subsequent analyses. 

Resuming, the values utilized to implement 

New_SDS have been: 
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16;  416;  150;  0.08Nseed nrep number of  cycles k= = = =  

 

Figure 7 reports, as before, the mean value of the 

makespan over 10 independent runs (central line, a) 

and the interval in which all the best values are 

included. The analogous results (curves a’, b’, c’) 

related to the SDS and already seen in Fig. 3 are 

reported for an easier comparison. 

Note that: 

 

• The mean makespan value obtained by the 

New_SDS (curve a) always results better than the 

best results obtained by the SDS (curve b’) 

• The worst values obtained by the New_SDS (curve 

c) result better than the mean value (curve a’) 

related to the SDS 

 

Actually, the comparison between two means 

needs to be performed by a statistical test (i.e., the t 

test) to verify that the difference is not just a random 

result. Considering that the two means position 

changes at the algorithm running, the test should be 

repeated at increasing the number of cycles, to also 

verify if differences exist in the convergence speed. In 

alternative, we preferred to compare 10 couples of 

profiles by means of a non-parametric test (i.e., the 

sign test, a very conservative criterion for the 

comparison of whole profiles). As it is possible to 

note in Fig. 7, the two sets  of results are disjointed. 

As consequence, an empirical significance level of 

(1/2)
10
 is obtained, significantly smaller than the 

classical α = 5%. 

The fact that the results obtained by means of the 

New_SDS undoubtedly are better than those obtained 

by the SDS probably is the least significant result. 

What is surely remarkable is the fact that the final 

mean value of the SDS (1976.5) obtained after 10
6
 

trials is reached by the New_SDS after 80000 trials 

alone. Thus the most meaningful  result  is the 

greatest convergence speed of the new algorithm, that 

permits to reduce the run time of an order of 

magnitude at least. 

The New_PC Algorithm 

By reasoning as before made, the following 

parameters are assumed: 

 
5 .2

(10 ) 10; 

100;  100;  k 0.08

Nseed

nrep number of  cycles

= =

= = =

 

 

Note that the value of k is just alike to that one 

utilized in the scheduling problem. Results in Fig. 8 

and 9. 

For the sake of simplicity the curves related to the 

mean values are not reported and the extreme 

conditions for the New_PC (curves a and b) and PC 

(curves a’ and b’) are only drawn. Even in such a case, 

comparing the two series of profiles, the sign test 

assures that differences between the series of results are 

highly significant and, as before, the most significant 

matter to be observed is the greatest convergence speed 

obtained by the new cooling law.

 

 
 

Fig. 7. Comparison between the new SA Vs the classic SA 
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Fig. 8. Comparison between the new SA Vs the classic SA (τ = 0.4) 
 

 
 

Fig. 9. Comparison between the new SA Vs the classic SA (τ = 0.8) 

 

Conclusion 

In the present paper a new cooling law has been 
proposed for an optimization procedure based on the 

use of the SA algorithms. Such a law has been tested 
on two different kind of problem taking into account 
two cases study already treated in the literature. The 
results show that its utilization allows at obtaining a 
very higher convergence quickness than that one 
arising from the use of the traditional cooling law of 

the SA algorithms. 
Assuming as valid the hypothesis about the only 

parameter involved in the new formulation, the 

implementation of algorithms based on its use does not 

require any previous tuning phase so determining a 

further reduction of the global run-time. 
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