

© 2015 Antonella Certa, Toni Lupo and Gianfranco Passannanti. This open access article is distributed under a Creative

Commons Attribution (CC-BY) 3.0 license.

American Journal of Applied Sciences

Original Research Paper

A New Innovative Cooling Law for Simulated Annealing

Algorithms

Antonella Certa, Toni Lupo and Gianfranco Passannanti

Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica (DICGIM),
Università Degli Studi di Palermo, Viale Delle Scienze, 90128, Palermo, Italy

Article history

Received: 13-04-2015
Revised: 27-06-2015
Accepted: 04-07-2015

Corresponding Author:
Toni Lupo
Dipartimento di Ingegneria
Chimica, Gestionale,
Informatica, Meccanica
(DICGIM), Università Degli
Studi di Palermo, Viale Delle
Scienze, 90128, Palermo, Italy
Email: toni.lupo@unipa.it

Abstract: The present paper proposes an original and innovative cooling

law in the field of Simulated Annealing (SA) algorithms. Particularly, such

a law is based on the evolution of different initial seeds on which the

algorithm works in parallel. The efficiency control of the new proposal,

executed on problems of different kind, shows that the convergence

quickness by using such a new cooling law is considerably greater than that

obtained by traditional laws. Furthermore, it is shown that the

effectiveness of the SA algorithm arising from the proposed cooling law is

independent of the problem type. This last feature reduces the number of

parameters to be initially fixed, so simplifying the preliminary calibration

process necessary to optimize the algorithm efficiency.

Keywords: Simulated Annealing, Cooling Law, Job-Shop, Project Crashing

Introduction

Complex nonlinear optimization problems require

specific resolution techniques. These problems are

often characterized by a solution space that presents

many local optima (for the sake of simplicity it will be

made reference to a cost function minimization). In

these cases, local search algorithms, as the classical

descent neighborhood search method, have a heavy

drawback: The optimization algorithm generally

converges towards a local minimum.

To avoid getting trapped in a local minimum, the

optimization algorithm must allow to accept worse

solutions than the current one. Several kinds of

algorithms have been developed for this purpose and

they differ for the acceptance criteria of a pejorative

solution. Among such algorithms it is possible to

remember the Taboo Search (TS) and the Simulated

Annealing (SA). Another class of algorithms, i.e., the

Genetic Algorithms (GAs), is based on the evolution of a

set (population) of initial solutions. Such classes of

algorithms have been applied to several different fields

of research. Our interest is addressed to the SA

algorithms, in particular to the cooling law, which is

fundamental for the SA efficiency.

The reminder of the paper is organized as follows:

The most recent proposed cooling laws for SA are

presented first, followed by a detailed description of the

new proposed cooling law; the effectiveness and

efficiency of the new proposal are evaluated next.

Meanwhile, several testing problems of the proposed law

are presented in detail. Hence, conclusion of this study is

provided as well.

Simulated Annealing and Cooling Schedule

The logic of a SA algorithm is well known by the

literature. We briefly recall its steps, drawn by

(Kirkpatrick et al., 1983) and inspired to the previous

studies of (Metropolis et al., 1953). An initial feasible

solution, called seed, is perturbed and replaced by the

new one if better. If the new solution is worse, then it

is accepted with a probability calculated by the well-

known law: Prob = exp{-∆F/T}, where ∆F is the cost

increment. The procedure is iterated on the current

seed and at the same time the “temperature” T is

reduced. This progressive reduction makes less

probable the acceptance of a more expensive solution,

until this probability is practically reduced to zero. In

the last case, a state called “frozen” is reached and the

algorithm is stopped. From a theoretical point of view,

an opportune choice of the SA parameters and

functions can lead to the optimal solution

independently of the initial seed. In particular, one

refers to the initial temperature, T
o
 and the cooling

law that, as shown by some researchers (Geman and

Geman, 1984; Hajek, 1988), should assume the form:

()
r

T = C / ln 1+ r (1)

Antonella Certa et al. / American Journal of Applied Sciences 2015, 12 (6): 370.381

DOI: 10.3844/ajassp.2015.370.381

371

Being r the progressive number of the analyzed

solutions and C an opportune constant depending on

the maximum cost difference between a random

solution and its neighborhood. Nevertheless, apart from

the difficulty to determine the value of C, the

achievement of the frozen state could require

unacceptable run-times. Some proposals of

modification of the cooling law attempt to compensate

for such a drawback. For example, Lundy and Mees

(1986) propose the following cooling law:

()r r -1 r -1
T = T / 1+ Tβ (2)

However, the simplification does not assure the

achievement of the optimal solution. In order to further

on simplify, the temperature is not usually reduced at

each new solution, namely the algorithm is articulated in

cycles characterized by a constant temperature and a

given number of solutions, nrep, is analyzed for each

cycle. Within the generic c
th

cycle, the probability of

transaction from a state to another one (i.e., the

acceptance of a new solution from the current one) is

constant and it only depends on the two involved states.

Therefore, it is a homogenous Markov’s process and the

value of nrep should be such that steady conditions are

reached before temperature reduction. This reduction

implies a contemporary reduction of the transition

probability and thus the achievement of stationary

conditions is always slower. Then the nrep value should

be progressively increased. Even if constant temperature

cycles are employed, a cooling law is however necessary

and it should determine a trend of temperature similar to

the slow downgrade arising from the relation (1).
Interesting proposals have been suggested by

(Huang et al., 1986):

()c c-1 c-1 c-1
T = T exp T /β σ− (3)

and by (Aarts and Korst, 1989):

() ()/
c c-1 c-1 c -1

T = T / 1+T ln 1+ 3 δ σ
 (4)

These relations also take into account the evolution

of the algorithm by means of the term σc-1, that is the

standard deviation of the cost values at the (c-1)
th

Markov chain. Both these cooling laws could be

connected with the concept of the specific heat

introduced by (Kirkpatrick et al., 1983). The specific

heat is related to the costs variance at a given

temperature. A high variance is index of high distance

from the convergence conditions and thus the

temperature can be more rapidly reduced. However, a

simple geometric law is usually preferred:

c c-1
T = Tα (5)

with 0< α<1.

About the choice of the parameters involved in

Equation (5), exact rules do not exist, but just sensible

indications. So, the initial value of temperature, T
o
, is

chosen in order to accept a strongly pejorative solution

with a high probability that allows, at least at the

beginning, “to wander” in the overall solutions space and

thus the final solution results to be independent of the

initial seed. Usually, in a preliminary tuning phase, the

value of T
o is determined so that the fraction of accepted

pejorative solutions is very high (for example 0.9).

A very gradual reduction of the temperature

requires an α value very close to the unity. Used

values usually belong to the range [0.8, 0.99]. For

increasing α values, the achievement of the frozen state

requires an increasing number of cycles and

consequently an increasing run time. Obviously, the latter

also depends on the value of nrep and thus it is fixed with

relation to the other parameters and consistently with the

available elaboration time.

A different interesting temperature control scheme is

proposed by (Azizi and Zolfaghari, 2004). It is a

particular cooling law (or better, a heating law) that

dynamically modifies the temperature on the base of the

search path. The control function of the temperature is

the following:

()
c o

T = T + λln 1+ r (6)

where, T
o is the minimum value that the temperature can

assume, λ is a coefficient that determines its increase rate

and r the number of consecutive solutions having a

greater cost than the current one. When an improvement

is obtained, r is set equal to zero.

Dowsland (1993) takes contemporaneously into

account two different functions for the temperature

control: Besides a cooling law, a heating law is considered

to gradually increase the temperature, if necessary.

To our knowledge, the most recent literature has

not proposed new cooling laws. The literature about

the SA is wide, but it deals with some specific

applications (Kia et al., 2012; Leung et al., 2012), as

well for multi-objective problems (Lin and Ying,

2013), or proposals of utilization of SA matched with other

heuristics, as the Ant Colony (AC) algorithms (Sitarz,

2009), the TS or, more often, the GAs (Rong-Ceng, 2006;

Zahrani et al., 2008).

The New Cooling Law

Our proposal arises from the idea of the specific
heat (Kirkpatrick et al., 1983). For some kind of
problems (for example unimodal problems), a little

Antonella Certa et al. / American Journal of Applied Sciences 2015, 12 (6): 370.381

DOI: 10.3844/ajassp.2015.370.381

372

value of σ, standard deviation of costs at a given
temperature, can correctly induce to suppose to be close
to the minimum value of cost. The closer the
neighborhood of a solution to the same solution is, the
truer this supposition could be. In such cases, the laws
(3) and (4) find full justification. For other classes of
problems, for example for combinatorial optimization
problems, a high or a little value of σ could not be
meaningful of the particular reached conditions. For
example, let consider the function represented in Fig. 1
(Michalewicz, 1999).

The more the solution approaches the minimum (or

the maximum) of the function, the more its

neighborhood is characterized by a high variability.

On the contrary, if the neighborhood is very extended,

the variability is nearby constant, whatever the reached

solution is. In our opinion, the cost variability among the

solutions is very important, even if the variability to be

taken into account is not that related to the solutions

visited at a given temperature.

Specifically, once a final solution of the problem has

been obtained, a method to look for obtaining a better

solution consists of repeating the overall procedure by

beginning from a different seed, if the available time

permits that. The repetition of the procedure, eventually

simplified by acting on α, nrep, T
o and on the final

temperature, can present more benefits than an unique

prolonged procedure.

Let the procedure can be iterated Nseed times. Instead

of repeated runs, the iterations can be simultaneously

carried out. For example, at the c
th
step, nrep(c) moves

could be executed on each one of the Nseed solutions

that constitute the evolution of as many original random

seeds. The analysis of the contemporary evolution from

the original seeds could supply information that might

be lost if each seed is singly developed till the end. In

particular, at each step, Nseed solutions are available,

arising from different original seeds characterized by

very different costs. They are converging to solutions

that, even if not optimal, could be near to the optimal one.

Hence one can rightly think that their costs are mutually

approaching. The mutual “distance” among the Nseed

solutions at the end of the c
th

step can be used as

indirect measure of how much the optimal solution is

still faraway to be reached. On the other hand, when a

solution is far from the optimal one, the probability to

accept worse solutions should be high whereas it should

decrease as much as nearer it is to the optimal one. Thus

the acceptance probability can be linked to the distance

among the current solutions and this distance could be

measured by the standard deviation, η, related to the

Nseed cost values. After all, the use of the following

cooling law is here proposed:

c c-1
T = kη (7)

where, η

o is the standard deviation of the costs of the
original random solutions and k is a constant
opportunely chosen as explained in the next section. It
is possible to think of more complex relations between
temperature and η but the optimal results obtained by
the proposed law do not justify their use.

Fig. 1. Drawing of the function f(x1, x2) = 21.5 + x1 sin (4πx1) + x2 sin (20πx2) with x2 = 0

Antonella Certa et al. / American Journal of Applied Sciences 2015, 12 (6): 370.381

DOI: 10.3844/ajassp.2015.370.381

373

Note that both η and σ are the costs standards

deviations. A different symbol has been used since the

value of σ in Equation (3) and (4) is calculated on costs

related to the solutions visited during a cycle, whereas

η is the standard deviation of the current Nseed

solutions at the end of a cycle.

About the Values to Assign to the Parameters

Implementing a SA with the new cooling law
requires to fix some parameters, Nseed, nrep, k and a
closing criterion. Generally, the selection of the values to

be assigned to the parameters of a heuristic algorithm
is not based on rigid laws. In the following, general
suggestions are just proposed. The authors hope to have
been guided by the common sense.

A closing criterion, whatever it may be, can not

disregard the time available for the solution search. On

the other hand, this time allows at analyzing a limited

number of solutions. Then, the closing criterion can

explicitly refer to the global number of solutions, S
tot
,

that one wants to analyze.

As for the population of a GA, the value of Nseed

could be binded to the solutions space dimension to

have information about different zones. However, this

fact is not important for an SA, since, as it has been

shown, it is able to be free from the initial solution and

the final result should be independent of it. Moreover,

since Stot must be divided among the original seeds, the

higher the value of Nseed is, the less extensive the search

on each seed can be. After all, a relation of the following

kind is proposed as a good compromise among the

various exigencies shown:

0.2

tot
Nseed S≅ (8)

As to nrep, this parameter is not very critical. An

its low value imposes a frequent, but probably

superfluous, up-to-dating of η. Its value could be

fixed about some hundred: The analysis of nrep·Nseed

solutions could show a more or less significant change

of the standard deviation.

The most critical parameter certainly is k and it isn’t

possible to make hypotheses about its right value. All

researchers emphasize the importance of a careful

tuning of the parameters. Such a tuning phase often is

laborious and time consuming, while this time could be

profitably spent for a longer run of the algorithm. Well,

the proposed algorithm does not require such a set-up

phase. Really, authors are positively persuaded that k is

a constant independent of the kind of the specific faced

problem. At the moment, they could not propose a

proof for this assertion and so it is just a conjecture. A

formal proof could be the object of a subsequent

research during which a better value of k than that one

used in this study could be determined.

Effectiveness and Efficiency of the New Proposal

The Authors do not propose a new algorithm for the

resolution of a specific problem, but a change, of general

validity, on the traditional cooling law used within the

SA algorithms. Therefore, the verification of the

effectiveness of the proposal should be made with

relation to algorithms of the identical type, in terms of

formulation except for the cooling rule. Hence, one

should consider an algorithm already researched in

literature and it should be implemented in two versions,

namely with and without the change. Unfortunately, the

literature proposals on SA (not existing for the problem

of crashing) do not specify the values of the different

parameters to be chosen, but intervals. Their setting

depends on the user that has to determine their best

combination with relation to the specific data of the

faced problem. Therefore, we had to search for the

optimal parameters in order to successively state that our

proposal is much better. As it is obvious, the procedure

would have been widely questionable. We believed to

operate in a different way.

Specifically, we developed a SA algorithm for a

given job-shop scheduling problem and we implemented

it twice, namely one with the traditional cooling rule and

another one with the new proposal, unchanging the other

parameters. Authors believe improbable that an

unreasonable change within an ineffective algorithm can

considerably improve its performance. Nevertheless,

ordering to prevent a possible and rightful criticism in

this sense, Authors tested the algorithm in its “classical”

formulation by comparing its results with the ones

obtained by means of Monte Carlo simulation.

One can state that the new proposal is valid just

because of the dealt problem (scheduling with sequence

dependent setup times). In order to prevent such a criticism,

the whole procedure has been repeated even for a class of

problems with different features (project crashing).

Therefore, the verifications have been articulated in

more steps:

• Development of two “classic” algorithms, named by

the acronyms of the two problems: Sequence

Dependent Setup (SDS) and Project Crashing (PC)

• Monte Carlo simulations with the same kind of coding

and decoding employed in the previous algorithms

• Implementation of SDS and PC and comparison

with the Monte Carlo simulation results

• Implementation of the new cooling law for the two

typologies of problems (New_SDS and New_PC)

and comparison with the previous results

Testing Problems

As just said, the proposal advanced in the present paper

has been tested on two different classes of problems: (a) the

Antonella Certa et al. / American Journal of Applied Sciences 2015, 12 (6): 370.381

DOI: 10.3844/ajassp.2015.370.381

374

job shop scheduling with sequences-dependent set-up times

and (b) the project crashing problem.

A brief presentation of the two kinds of problem is

given.

Job Shop Scheduling with Sequences-Dependent

Set-Up Times, SDS

The SDS is a typical industrial problem. The set-up

consists in those operations, as fixturing and tooling, that

are needed to prepare a workstation. The optimization

usually aims at determining the schedule that implies the

minimum completion time (makespan). The problem is

NP-hard (Pinedo, 2002). The interest of the industry for

the problem and the challenge represented by its

difficulty, have led many researchers to face such class of

problems for various typologies of production systems

(Low, 2005; Jin et al., 2009). In the following we will

pay our attention to the job-shop scheduling problem. In

literature, this field has not been very widely researched.

Apart from some proposals that usually utilize the mixed

integer programming for specific production systems

(Luh et al., 1998; Mason et al., 2005), problems of big

dimensions are usually solved by heuristics. Therefore,

resolution proposals with TS (Hertz and Widmer,

1996), with dispatching rules (Kim and Bobrowski,

1997), with GA (Sun et al., 2003; Cheng et al. 1996),

with AC (Timur et al., 2012), with integration of GA

and dispatching rules (Cheung and Zhou, 2002) can be

found in the literature. Lin et al. (2009) propose an

application of SA for the problem of our interest but

in the flow-shop field. A wide bibliography about

scheduling with SDS is given in the paper of Zhu and

Wilhelm (2006).

The Project Crashing Problem

In the project management field, the PC concerns the

determination of the length of each activity, so that the

project completion time L does not overcome a

maximum value, UpL, with the aim of minimizing the

sum of the direct costs related to the activities, C. No

hypothesis on the resource availability is introduced. The

problem is then formulated as follows:

min C (9)

Subject to:

L UpL≤ (10)

The crashing technique for the dual of the previous

problem can be described as a specific type of project

schedule compression technique. The latter is

performed to decrease the total project schedule length

after analyzing a number of alternatives to determine

how to get the maximum schedule duration

compression for the least additional cost (PMI, 2013).

In the last case, typical approaches for crashing a

schedule include reducing activity durations and

increasing the assignment of resources.
As to the approaches proposed to solve such a

kind of problems, GAs are widely employed for
linear (Li and Love, 1997; Leu and Yang, 1999), or
quadratic (Li et al., 1999) or discrete (Feng et al., 1997)
time-cost relations.

Among the more recent approaches it is possible to

cite (Tung, 2007), who develops and tests a particle

swarm optimization algorithm, Aghaie and Mokhtari

(2009) whose approach is based on the AC optimization

metaheuristic and Monte Carlo simulation technique,

Liberatore and Pollack-Johnson (2006) who propose a

quadratic mixed integer programming approach for

reducing the project completion time.

The SDS Algorithm

A brief description of the algorithm is given in

Appendix A1.

The SDS has been applied to the SWV01 problem,

10 machines and 20 jobs, proposed by (Storer et al.,

1992). The setup times, absent in SWV01, have been

simulated by an integer uniform distribution U[1;20].

Due to the utilized coding, the dimension of the

solution space is greater than 10
191
. The Monte Carlo

simulation stretches up to N
1 = 10

7
solutions. The

results are reported in Fig. 2.

Note that the minimum value obtained is equal to

2056. An unbiased non parametric estimate of the

probability of obtaining values lower than 2056 is given

by the ratio 1/(N1+1) and then this probability takes the

value P1=10
−7
. Moreover, the standard deviation of the

frequency distribution is equal to s = 85.7.

By assuming that 3s is a good approximation of the

maximum difference between a random solution and its

neighborhood, relation (1) allows to calculate T
1 = 370.

Obviously the parameter s (or other useful parameters)

can be evaluated with a less number of random solutions.

For example, Xinchao (2010) generates ten random

solutions and calculates the difference ∆ between the

worst and the best solution. Afterwards To is calculated by

the relation To = -∆/lnPo, where Po is equal to the selected

initial acceptance rate for the worse solution.
As final condition, a probability P

fin = 0.005 has

been fixed for the acceptance of a solution that is

worse for more than a unit of makespan. From the last

consideration arises a final temperature T
fin ≅ 0.4. By

assuming a geometric cooling law with α = 0.99, a

number of Markov chains equal to 680 is obtained. If

nrep grows according to the relation nrep
c = nrep

c-1 /α
0.1

and one wants to analyze 10
6
solutions, then nrep

1 =

1026. Figure 3 reports the mean value of makespan over

10 independent runs (central line).

Antonella Certa et al. / American Journal of Applied Sciences 2015, 12 (6): 370.381

DOI: 10.3844/ajassp.2015.370.381

375

Fig. 2. Monte Carlo simulation for the SDS problem

Fig. 3. Results for the classic SA algorithm

The two external lines define the range which

includes the best values achieved in the ten simulations.

The considerable reduction of makespan, in comparison

with the best value obtained by the simulation, is

evident. Although P1 is very small and each run of the

algorithm has only analyzed 10
6
 solutions, all the final

results are better than 2056, that is the best value

obtained by analyzing 10
7
 random solutions. From a

probabilistic point of view, considering that the value of

2056 is reached after 450000 moves, the probability that

it could casually occur within a run is around equal to

0.043 (already not significant at a level α = 5%),

whereas the probability that it occurs in 10 successive

runs is around 2.10
−14
. Therefore, one can certainly

affirm that the proposed algorithm is highly effective.

The PC Algorithm

A brief description of the algorithm is given in

Appendix A2.
The precedence graph reported in the paper of

(Arikan and Gungor, 2001) including 80 activities and
62 paths has been utilized (however, the related meaning
was different from that attributed in the present work).
The number of duration alternatives for each activity was

Antonella Certa et al. / American Journal of Applied Sciences 2015, 12 (6): 370.381

DOI: 10.3844/ajassp.2015.370.381

376

simulated from U[3;6]. In particular, 17 activities
resulted to be characterized by 3 alternatives, 31 by 4, 16
by 5 and 16 by 6. Consequently, the dimension of the
solution space is 2.56·10

50
. The time lengths were

simulated by means of the relations:

() [] ()

() [] ()

1 20;40

1 10;20 2

L a, = U L a, j

= L a, j - + U with j = to y a

and the costs by:

() () ()c a, j = 1000 / L a, j j = 1 to y a

The minimum duration of the project results to be Lmin =

852 and the maximum one Lmax = 2213. To the maximum

duration corresponds a minimum cost Cmin = 1049.

The objective to be achieved is that expressed by the

relation (9) and (10). UpL is fixed by: UpL(τ) = Lmin + τ .

(Lmax-Lmin) and two different values of the parameter τ

have been considered: τ1 = 0.4 and τ2 = 0.8.

The Monte Carlo simulation has been limited to N2

= 10
6
 solutions (the solutions space is considerably

smaller than that one of the scheduling problem). The

results are reported in Fig. 4.

Particularly:

() () ()1 1 1
1629 1859.90 62.47

min mean
C = C = s =τ τ τ

() () ()2 2 2
1401 1731.15 77.41

min mean
C = C = s =τ τ τ

For the implementation of the PC, initial and final

values of the temperature have been determined by

reasoning as for the scheduling problem, so obtaining:

() ()1 1
 1 270 2 335 0.4finT T Tτ τ= = =

Furthermore, by assuming α = 0.98:

()1
 323Markov’s chains τ =

()2 333Markov’s chains τ =

Assuming nrep as constant and limiting the analyzed

solutions to 10
5
, then:

() ()1 2
 310 300nrep and nrepτ τ= =

1 2
 6Moreover s s were assumed= =

Ten independent runs have been executed and the

results are reported in Fig. 5 and 6.

As for the SDS, the central line is referred to the

medium cost. The two external lines indicate the

interval within which the best values reached during the

simulations are included. It is possible to affirm that the

algorithm is very efficient: For both the cases (τ1 and

τ2) the best value obtained by the simulation is reached

just after the first cycles and the final costs are notably

lower. The probability that such results casually happen

is even lower than those of the SDS problem (<0.1%

for a single run and <10
30
 for the set of 10 runs) and

then absolutely not significant. Furthermore, it is

interesting to note that the final range of variability

among the different solutions is very narrow and this

suggests that the optimal solutions, even if not reached,

are very near to the obtained results.

Fig. 4. Monte Carlo simulation for the PC problem

Antonella Certa et al. / American Journal of Applied Sciences 2015, 12 (6): 370.381

DOI: 10.3844/ajassp.2015.370.381

377

Fig. 5. Results for the classic SA algorithm (τ1 = 0.4)

Fig. 6. Results for the classic SA cost algorithm (τ2 = 0.8)

The New_SDS Algorithm

In order to have a fair comparison with the SDS, the

total number of analyzed solutions for each run test must be

equal to the previously utilized value, that is 10
6
. Following

the suggestions earlier expressed, the value of Nseed has

been determined making use of the relation (8), namely

Nseed = (Stot)
0.2
 = (10

6
)
0.2

≅ 16. Stot has been subdivided

among the 16 seeds and partitioned in 150 cycles, each one

including a constant number of moves nrep = 416.

About the value of k, the novelty of the approach

does not allow to have indications coming from previous

implementations. On the other hand, even if k is

supposed to be independent of the considered problem,

since its value can not be derived from previous

theoretical considerations, it has to be determined by

some experiments on the base of a specific problem.

Then, some preliminary tests have been carried out to

individuate the k value that supplies the best results. By

these tests, referred to the SDS problem, the most

suitable value for the parameter k seems to be 0.08. This

value was used in the subsequent analyses.

Resuming, the values utilized to implement

New_SDS have been:

Antonella Certa et al. / American Journal of Applied Sciences 2015, 12 (6): 370.381

DOI: 10.3844/ajassp.2015.370.381

378

16; 416; 150; 0.08Nseed nrep number of cycles k= = = =

Figure 7 reports, as before, the mean value of the

makespan over 10 independent runs (central line, a)

and the interval in which all the best values are

included. The analogous results (curves a’, b’, c’)

related to the SDS and already seen in Fig. 3 are

reported for an easier comparison.

Note that:

• The mean makespan value obtained by the

New_SDS (curve a) always results better than the

best results obtained by the SDS (curve b’)

• The worst values obtained by the New_SDS (curve

c) result better than the mean value (curve a’)

related to the SDS

Actually, the comparison between two means

needs to be performed by a statistical test (i.e., the t

test) to verify that the difference is not just a random

result. Considering that the two means position

changes at the algorithm running, the test should be

repeated at increasing the number of cycles, to also

verify if differences exist in the convergence speed. In

alternative, we preferred to compare 10 couples of

profiles by means of a non-parametric test (i.e., the

sign test, a very conservative criterion for the

comparison of whole profiles). As it is possible to

note in Fig. 7, the two sets of results are disjointed.

As consequence, an empirical significance level of

(1/2)
10
 is obtained, significantly smaller than the

classical α = 5%.

The fact that the results obtained by means of the

New_SDS undoubtedly are better than those obtained

by the SDS probably is the least significant result.

What is surely remarkable is the fact that the final

mean value of the SDS (1976.5) obtained after 10
6

trials is reached by the New_SDS after 80000 trials

alone. Thus the most meaningful result is the

greatest convergence speed of the new algorithm, that

permits to reduce the run time of an order of

magnitude at least.

The New_PC Algorithm

By reasoning as before made, the following

parameters are assumed:

5 .2

(10) 10;

100; 100; k 0.08

Nseed

nrep number of cycles

= =

= = =

Note that the value of k is just alike to that one

utilized in the scheduling problem. Results in Fig. 8

and 9.

For the sake of simplicity the curves related to the

mean values are not reported and the extreme

conditions for the New_PC (curves a and b) and PC

(curves a’ and b’) are only drawn. Even in such a case,

comparing the two series of profiles, the sign test

assures that differences between the series of results are

highly significant and, as before, the most significant

matter to be observed is the greatest convergence speed

obtained by the new cooling law.

Fig. 7. Comparison between the new SA Vs the classic SA

Antonella Certa et al. / American Journal of Applied Sciences 2015, 12 (6): 370.381

DOI: 10.3844/ajassp.2015.370.381

379

Fig. 8. Comparison between the new SA Vs the classic SA (τ = 0.4)

Fig. 9. Comparison between the new SA Vs the classic SA (τ = 0.8)

Conclusion

In the present paper a new cooling law has been
proposed for an optimization procedure based on the

use of the SA algorithms. Such a law has been tested
on two different kind of problem taking into account
two cases study already treated in the literature. The
results show that its utilization allows at obtaining a
very higher convergence quickness than that one
arising from the use of the traditional cooling law of

the SA algorithms.
Assuming as valid the hypothesis about the only

parameter involved in the new formulation, the

implementation of algorithms based on its use does not

require any previous tuning phase so determining a

further reduction of the global run-time.

Funding Information

This work was supported by the Università degli

Studi di Palermo.

Author’s Contributions

This study is the result of the full and equal

collaboration of all the authors.

Antonella Certa et al. / American Journal of Applied Sciences 2015, 12 (6): 370.381

DOI: 10.3844/ajassp.2015.370.381

380

Ethics

The authors have no conflicts of interest in the

development and publication of the this research.

References

Aarts, E. and J. Korst, 1989. Simulated Annealing And
Boltzmann Machines: A Stochastic Approach to
Combinatorial Optimization and Neural
Computing.1st Edn., John Wiley and Sons,

 ISBN-10: 0471921467, pp: 272.
Aghaie, A. and H. Mokhtari, 2009. Ant colony

optimization algorithm for stochastic project
crashing problem in PERT networks using MC
simulation. Int. J. Adv. Manufacturing Technol., 45:
1051-1067. DOI: 10.1007/s00170-009-2051-6

Arikan, F. and Z. Gungor, 2001. An application of fuzzy
goal programming to a multiobjective project
network problem. Fuzzy Sets Syst., 119: 49-58.
DOI: 10.1016/S0165-0114(99)00119-0

Azizi, N. and S. Zolfaghari, 2004. Adaptive temperature
control for simulated annealing: A comparative
study. Comput. Operat. Res., 31: 2439-2451.

 DOI: 10.1016/S0305-0548(03)00197-7
Cheng, R., M. Gen and Y. Tsujimura, 1996. A tutorial

survey of job-shop scheduling problems using
genetic algorithms-I representation. Comput.
Industrial Eng., 30: 983-997.

 DOI: 10.1016/0360-8352(96)00047-2
Cheung, W. and H. Zhou, 2002. Using genetic

algorithms and heuristics for job shop scheduling
with sequence-dependent setup times. Annals
Operat. Res., 107: 65-81.

 DOI: 10.1023/A:1014990729837

Dowsland, K., 1993. Some experiments with simulated

annealing techniques for packing problems. Eur. J.

Operat. Res., 68: 389-399.

 DOI: 10.1016/0377-2217(93)90195-S

Feng, C.W., L.Y. Liu and S.A. Burns, 1997. Using

genetic algorithms to solve construction time-cost

trade-off problems. J. Comput. Civil Eng., 11:

184-189.

 DOI: 10.1061/(ASCE)0887-3801(1997)11:3(184)
Geman, S. and D. Geman, 1984. Stochastic relaxation,

Gibbs distribution and the Bayesian restoration of
images. IEEE Trans. Patt. Analysis Machine
Intellig., 6: 721-741.

 DOI: 10.1109/TPAMI.1984.4767596
Hajek, B., 1988. Cooling schedules for optimal

annealing. Math. Operat. Res., 13: 311-329.
 DOI: 10.1287/moor.13.2.311

Hertz, A. and M. Widmer, 1996. An improved tabu

search approach for solving the job shop scheduling

problem with tooling constraints. Discrete Applied

Math., 65: 319-345.

 DOI: 10.1016/0166-218X(95)00040-X

Huang, M., F. Romeo and A. Sangiovanni-Vincetelli,

1986. An efficient general cooling schedule for

simulated annealing. Proceedings of the IEEE

International Conference on Computer Aided Design,

(Nov. 11-13), Santa Clara, CA. pp: 381-384.

Jin, F., S. Song and C. Wu, 2009. A simulated annealing

algorithm for single machine scheduling problems

with family setups. Comput. Operat. Res., 36:

2133-2138. DOI: 10.1016/j.cor.2008.08.001

Kia, R., A. Baboli, N. Javadian, R. Tavakkoli-

Moghaddam and M. Kazemi et al., 2012. Solving a

group layout design model of a dynamic cellular

manufacturing system with alternative process

routings, lot splitting and flexible reconfiguration by

simulated annealing. Comput. Operat. Res.

 DOI: 10.1016/j.cor.2012.01.012

Kim, S.C. and P.M. Bobrowski, 1997. Scheduling jobs

with uncertain setup times and sequence

dependency. Omega, 25: 437-447.

 DOI: 10.1016/S0305-0483(97)00013-3

Kirkpatrick, S., C.D. Gelatt and M.P. Vecchi, 1983.

Optimization by simulated annealing. Science, 220:

671-680. DOI: 10.1126/science.220.4598.671

Leu, S.S. and C.H. Yang, 1999. GA-based multicriteria

optimal model for construction scheduling. J.

Construct. Eng. Manage., 125: 420-427.

 DOI: 10.1061/(ASCE)0733-9364(1999)125:6(420)

Leung, S.C.H., D. Zhang, C. Zhou and T. Wu, 2012. A

hybrid simulated annealing metaheuristic algorithm

for the two-dimensional knapsack packing problem.

Comput. Operat. Res., 39: 64-73.

 DOI: 10.1016/j.cor.2010.10.022

Li, H. and P. Love, 1997. Using improved genetic

algorithms to facilitate time-cost optimization. J.

Construct. Eng. Manage., 123: 233-237.

 DOI: 10.1061/(ASCE)0733-9364(1997)123:3(233)

Li, H., J.N. Cao and P. Love, 1999. Using machine

learning and GA to solve time-cost trade-off

problems. J. Construct. Eng. Manage., 125: 347-353.

DOI: 10.1061/(ASCE)0733-9364(1999)125:5(347)

Liberatore, M.J. and B. Pollack-Johnson, 2006.

Extending project time-cost analysis by removing

precedence relationships and task streaming. Int. J.

Project Manage., 24: 529-535.

 DOI: 10.1016/j.ijproman.2006.04.004

Lin, S.W. and K.C. Ying, 2013. Minimizing makespan

and total flowtime in permutation flowshops by a bi-

objective multi-start simulated annealing algorithm.

Comput. Operat. Res.

 DOI: 10.1016/j.cor.2011.08.009

Lin, S.W., J.N.D. Gupta, K.C. Ying and Z.J. Lee, 2009.

Using simulated annealing to schedule a flowshop

manufacturing cell with sequence-dependent family

setup times. Int. J. Product. Res., 47: 3205-3217.

DOI: 10.1080/00207540701813210

Antonella Certa et al. / American Journal of Applied Sciences 2015, 12 (6): 370.381

DOI: 10.3844/ajassp.2015.370.381

381

Low, C., 2005. Simulated annealing heuristic for flow

shop scheduling problems with unrelated parallel

machines. Comput. Operat. Res., 32: 2013-2025.

DOI: 10.1016/j.cor.2004.01.003

Luh, P.B., L. Gou, Y. Zhang, T. Nagahora and M Tsuji

et al., 1998. Job shop scheduling with group-

dependent setups, finite buffers and long time

horizon. Annals Operat. Res. Math. Industrial Syst.,

76: 233-259. DOI: 10.1023/A:1018948621875

Lundy, M. and A. Mees, 1986. Convergence of an

annealing algorithm. Math. Programm., 34: 111-124.

DOI: 10.1007/BF01582166

Mason, S.J., J.W. Fowler, W.M. Carlyle and D.C.

Montgomery, 2005. Heuristics for minimizing total

weighted tardiness in complex job shops. Int. J.

Product. Res., 43: 1943-1963.

 DOI: 10.1080/00207540412331331399

Metropolis, N., A.W. Rosenbluth, M.N. Rosenbluth,

A.H. Teller and E. Teller, 1953. Equation of state

calculations by fast computing machines. J. Chem.

Phys., 21: 1087-1092. DOI: 10.1063/1.1699114

Michalewicz, Z., 1999. Genetic Algorithms + Data

Structures = Evolution Programs. 1st Edn., Springer

Science and Business Media, Berlin,

 ISBN-10: 3540606769, pp: 387.

Pinedo, M., 2002. In Englewood Cliffs. NJ: Prentice

Hall. Scheduling: Theory, Algorithms and Systems:

2nd Edn.

PMI, 2013. A Guide to the Project Management Body of

Knowledge (PMBOK® Guide). 5th Edn., Project

Management Institute, Pennsylvania,

 ISBN-10: 1935589679, pp: 589.

Rong-Ceng, L., 2006. A new method for unit

maintenance scheduling considering reliability and

operation expense. Electrical Power Energy Syst.,

28: 471-481. DOI: 10.1016/j.ijepes.2006.02.009

Sitarz, S., 2009. Ant algorithms and simulated annealing

for multicriteria dynamic programming. Comput.

Operat. Res., 36: 433-441.

 DOI: 10.1016/j.cor.2007.09.011

Storer, R.H., S.D. Wu and R. Vaccari, 1992. New search

spaces for sequencing problems with application to

job shop scheduling. Manage. Sci., 38: 1495-1509.

DOI: 10.1287/mnsc.38.10.1495

Sun, J.U., S.R. Yee and H. Hwang, 2003. Job shop

scheduling with sequence dependent setup times to

minimize makespan. Int. J. Industrial Eng. Theory

Applicat. Practice, 10: 455-461.

Timur, K., Y. Mehmet and B. Mehmet, 2012. An ant

colony optimization algorithm for load balancing in

parallel machines with sequence-dependent setup

times. Comput. Operat. Res., 39: 1225-1235.

 DOI: 10.1016/j.cor.2010.12.003

Tung, Y.I., 2007. Performing complex project crashing

analysis with aid of particle swarm optimization

algorithm. Int. J. Project Manag., 25: 637- 646.

 DOI: 10.1016/j.ijproman.2006.11.001

Xinchao, Z., 2010. Simulated annealing algorithm with

adaptive neighborhood. Applied Soft Comput. J.,

11: 1827-1836. DOI: 10.1016/j.asoc.2010.05.029

Zahrani, M.S., M.J. Loomes, J.A. Malcolm, A.Z.M.

Dayem Ullah and K. Steinhofel et al., 2008. Genetic

local search for multicast routing with pre-

processing by logarithmic simulated annealing.

Comput. Operat. Res., 35: 2049-2070.

 DOI: 10.1016/j.cor.2006.10.001

Zhu, X. and W.E. Wilhelm, 2006. Scheduling and lot

sizing with sequence-dependent setup: A literature

review. IIE Transact., 38: 987-1007.

 DOI: 10.1080/07408170600559706

