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Abstract: The evaluation of the stability of the excavation face is an important 

aspect in the design of a tunnel. When it is not possible to ensure excavation face 

stability in natural conditions, it is in fact necessary to intervene with remarkably 

costly reinforcement operations. The analysis of the stability conditions of an 

excavation face can be conducted, with a certain degree of detail, through 

numerical modelling. Simplified analytical models exist for shallow tunnels, but 

fewer are available for deep tunnels. One of the analytical methods most commonly 

used in the study of the stress conditions at the excavation face in deep tunnels is 

described in this study: The convergence-confinement method adapted to a 

spherical geometry. This method has here been extended to rock masses, which 

present a more complex rupture criterion (curved and not simply linear) than that of 

soils. The presented solution is of a finite difference numerical type. An extensive 

parametric analysis conducted on soils and rock masses has led to the estimation of 

the maximum lithostatic stress that still foresees the absence of a plastic zone 

around the hemisphere, which has been used to represent the excavation face. 

Therefore, this study makes it possible to obtain a preliminary estimation of the 

maximum depth of a tunnel in a certain type of soil or in a rock mass in which it is 

still possible to advance without the necessity of excavation face reinforcement 

operations. However, a more detailed and reliable analysis still requires more 

sophisticated instruments, such as numerical modelling. 
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Introduction 

The stability of an excavation face is one of the most 

important static problems in the tunneling field 

(Anagnostou and Kovari, 1996; Lunardi and Bindi, 

2004; Lunardi, 2008; Oreste, 2009; Oreste and Dias, 

2012; Oreste, 2013). A tunnel usually collapses 

nowadays because of the collapse of the excavation 

face. This phenomenon can involve both tunnels 

excavated in soil and those excavated in rock masses. 

Moreover, tunnel collapses have been recorded in both 

shallow and deep tunnels. 

It is therefore necessary to be able to know the 

excavation face stability conditions during the design 

phase and in particular to know whether it will be 

necessary to carry out reinforcement of the excavation 

face or not. An excavation face is reinforced through the 

introduction of cemented fiberglass dowels into 

boreholes positioned in a direction parallel to the tunnel 

axis. This kind of intervention, which may require an 

elevated number of dowels (up to 1 for each square 

meter of excavation face), could be very costly and 

should therefore only be used when instability of the 

excavation face occurs in natural conditions, that is, 

without reinforcement interventions. 

The stability of an excavation face can be evaluated 

through numerical calculation methods (with axial-

symmetric two-dimensional or three-dimensional 

geometries) (Dias et al., 1997; Dias and Kastner, 2005; 

Ng and Lee, 2002; Wong et al., 2004; Yoo, 2002; Yoo and 

Shin, 2003). Numerical methods allow to obtain a very 

detailed evaluation of the stress and strain conditions in 

the soil or in the rock mass and in the foreseen support 

structures and reinforcement elements (Do et al., 2013; 
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2014a; 2014b). Simplified analytical methods are widely 

used in tunneling because they are quicker for the 

calculation and interpretation of the results (Oreste, 

2007; Do et al., 2014c) and; moreover, they are 

particularly suitable to develop probabilistic calculations 

(Oreste, 2005a) and back-analysis studies (Oreste, 

2005b) due to their calculation speed. Some examples 

have been developed for the analysis of static conditions 

in shallow tunnels (Oreste, 2009; Oreste and Dias, 2012). 

However, specific calculation methods for the evaluation 

of face stability are not so common for deep tunnels 

(greater tunnel axis depths than 10-12 times the radius) 

(Leca and Panet, 1988; Leca and Dormieux, 1990; 

Kirsch, 2010; Kamata and Mashimo, 2003; Wong et al., 

2000; Boldini et al., 2004). 

In the past, some authors adopted the convergence-

confinement method, adapted to a spherical geometry 

(Lembo-Fazio and Ribacchi, 1986; Yu, 2000), in order to 

be able to study the stability conditions of an excavation 

face, using the Mohr-Coulomb linear rupture criterion. 

A detailed analysis of the stress state ahead of the 

excavation face is given in this study for a deep tunnel, 

utilizing the convergence-confinement method adapted 

to a spherical geometry, but also extending it to rock 

masses, for which a non-linear rupture criterion is valid. 

Extension of the method to rock masses has required the 

adoption of a simple solution of a finite difference 

numerical type. 
The results of an extensive parametric analysis are 

then presented in order to be able to evaluate the static 
conditions of the excavation face under the different 
geometric and geotechnical conditions that can be 
encountered during the excavation of a tunnel. 

Materials and Methods 

The stability of the excavation face in a deep tunnel 

can be assessed, with a certain degree of approximation, 

considering a hemisphere with a radius equal to the 

radius of the tunnel, positioned in the same way as 

shown in Fig. 1. Using this simplified hypothesis, it is 

possible to easily proceed with the evaluation of the 

stresses that develop in the ground ahead of the 

excavation face. Then, on the basis of the stress analysis, 

it is useful to verify whether the ground shows complete 

elastic behavior or whether there is a plastic portion 

(plastic cortex) in contact with the hemispheric surface 

that represents the excavation face. 
The presence of a plastic zone ahead of the 

excavation face generally indicates instability of various 
degrees (which depends on the thickness of the plastic 
zone), with the consequent possibility of the excavation 
face collapsing or at least showing the breakage of 
portions of material of various sizes. 

An approximation of the excavation face with a 

hemispheric geometry makes it possible to proceed with 

the evaluation of the radial and circumferential stresses 

as it is possible to take advantage of the spherical 

symmetry (Fig. 2). 

Among the various hypotheses of the convergence-

confinement method utilized for the analysis of the 

stresses in the ground (Rechsteiner and Lombardi, 1974; 

Ribacchi and Riccioni, 1977; Panet and Guenot, 1982; 

AFTES, 1993; Panet, 1995; AFTES, 2001; Oreste, 

2003a; 2003b; Osgoui and Oreste, 2010; Oreste, 2008; 

Wong et al., 2006), there is that of homogeneous and 

isotropic lithostatic stresses: The stresses existing in the 

medium before the creation of the hemispheric void are 

equal to p0 in all directions. On the basis of this 

hypothesis, it is possible to describe the radial stresses σr 

and the circumferential stresses σϑ, under elastic 

behavior conditions of the medium around a sphere, 

using the following simple equations (Lembo-Fazio and 

Ribacchi, 1986), when a nil radial pressure is applied to 

the hemispherical surface: 
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Where: 

p0 = The lithostatic stress that exists at a tunnel depth; 

R = The radius of the sphere; 

r = The distance from the center of the sphere. 

 

Legend: (R): Radius of the hemisphere and of the 

tunnel; α and δ: Polar coordinate angles. The axis of the 

tunnel coincides with the x axis of the Cartesian system. 

The radial stresses σr are those that act in the direction of 

the connection to the center of the sphere, while the 

circumferential stresses σϑ are directed perpendicularly to 

the direction of the connection to the center of the sphere. 

In the presence of a plastic zone around the hemi-

sphere, whose extension (if it exists) is from R to the 

plastic radius Rpl, the medium beyond the plastic zone 

(r>Rpl) has elastic behavior and the radial and 

circumferential stresses are expressed by the following 

equations (Lembo-Fazio and Ribacchi, 1986): 
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Where: 

σRpl = The radial stress at the plastic radius Rpl. 
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Fig. 1. Approximation of the excavation face with a hemispherical geometry with a radius equal to the tunnel radius. The position of the 

center of the hemisphere is moved back by ⅔·R with respect to the excavation face, where R stands for the radius of the tunnel 

 

 
 

Fig. 2. Spherical symmetry used in the study to approximate the stress conditions ahead of the excavation face 

 

The Mohr-Coulomb linear strength criterion, whose 

expression, in terms of principle stresses, has the 

following form, is generally used for soil: 
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Where: 

σ1,lim = The maximum principle stress upon breaking of 

the rock mass; 

σ3 = The minimum principle stress (confinement); 

c = The soil cohesion; 

ϕ = The soil friction angle. 
 

The by now universally used strength criterion for 

rock masses is that of Hoek and Brown, in its updated 

version (Hoek and Brown, 1980; Carranza-Torres and 

Fairhurst, 2000; Hoek et al., 2002): 
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Where: 

σci = The uniaxial compression strength of the 

intact rock; 

mb and s = The strength parameters, which depend on 

the Geological Strength Index (GSI) 

(Marinos et al., 2005; Hoek et al., 2013; 

Marinos and Hoek, 2000) and on the D 

parameter (Ribacchi and Riccioni, 1977): 
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D = A parameter that varies between 0 and 1, 

which considers the disturbance of the rock 

mass due to the excavation operations (D = 0 

for non-disturbed mass; D = 1 for intensely 

disturbed mass); 

mi = A strength parameter that refers to intact rock 

and which depends on the typology of the 

rock (Hoek et al., 2002); 

a = The exponent that is present in Equation 6:  
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15 3
1

0.5
6

GSI

a e e

− − 
= + ⋅ − 

 
. 



Pierpaolo Oreste / American Journal of Applied Sciences 2014, 11 (12): 1995-2003 

DOI: 10.3844/ajassp.2014.1995.2003 

 

1998 

The above mentioned strength criteria can be applied to 

both the peak conditions (elastic behavior limit conditions) 

and to the residual conditions (conditions in the plastic 

field) (the subscript p refers to the peak conditions, while 

the subscript res refers to the residual conditions): 
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The radial stress σRpl at the plastic radius (r = Rpl) is 

obtained by introducing the equivalences of Equation 4 

(valid for the elastic behavior zone) with the peak 

strength criterion (Equations 7a and 8a): 
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Equation 10 can be resolved directly (if the 

cohesion and friction angles in peak conditions are 

known as well as the lithostatic stress p0), Equation 

10b is resolved numerically. 

If σRpl is below zero, no plastic zone will form 
around the sphere and the entire medium will have 
elastic behavior. If, instead, σRpl is above zero, a plastic 
zone will form (between r = R and r = Rpl), inside of 
which the radial stresses will reduce from σr = σRpl for r 
= Rpl to σr = 0 for r = R. 

The trend of the radial stresses in the plastic zone is 
dictated by the following differential equation (Lembo-
Fazio and Ribacchi, 1986): 
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By substituting Equations 7b or 8b (strength criterion 

of the medium in residual conditions, which is valid 
inside the plastic zone) in Equation 11 and knowing that 
the radial stresses are the minimum principle stresses and 
the circumferential ones are the maximum principle 
stresses, we obtain: 

For Mohr-Coulomb strength criterion (Equations 
12-15): 
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From which, by proceeding with the integration 

between the radius of the sphere and the plastic 
radius, we obtain: 
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Finally, by resolving the integral of Equation 13, the 

searched for plastic radius is obtained: 
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Which, re-written in extended form, becomes: 
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For Hoek-Brown strength criterion (Equations 16-17): 
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As Equation 16 cannot be resolved analytically, a 

numerical solution must be obtained. It can therefore be 
re-written in incremental terms as follows: 
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The numerical procedure (finite difference method) 

foresees the division of the plastic zone around the sphere 
into concentric cortexes and the following calculation steps: 
σr is increased by a very small ∆σr value for aninternal 
pressure value σR = 0, starting from the hemispherical 
surface (r = R). From the new calculated radial stress, it is 
then possible, utilizing Equation 17, to determine the 
increment of radius r and associate this value to the radial 
stress previously obtained. It is then necessary to proceed in 
this way until σr reaches the value σRpl (Equation 10b); at 
this point, the associated radius corresponds to the searched 
for plastic radius of the rock mass. 

Results 

The formulations reported in section 2 have been 

used to develop a parametric analysis, which has been 
conducted while varying all the parameters of influence 
in the ambit of typical tunnel variability intervals. In 
particular, nine different types of rock masses in a GSI 

interval of between 30 and 90 and 186 types of soil 
characterized by different pairs of strength parameter values 
(cp, ϕp) have been considered. Moreover, 4 different 

compression strength values of intact rock (σci = 25, 55, 85, 
115 MPa) and 3 different types of D parameters (D = 0, 0.5, 
1) have also been considered for the studied rock masses 
(Hoek et al., 2002). The parameter mi proved to be not of 
influence and was therefore made equal to an 
intermediate value (16) of its typical field of variability 

(6-26) (Hoek et al., 2002). The parametric study for the 
rock masses was conducted considering 252 cases. 

The maximum lithostatic stress value p0 for which no 
plastic zone formed around the hemispheric surface, that 
is, the limit stability condition of the excavation face due 
to the absence of a plastic zone ahead of it, was obtained 

for all the analyzed cases. This p0maxvalue resulted to be 
independent of the tunnel radius and it was diagrammed 
for different GSI values (rock masses) and for different 
cohesion values cp (soils). 

The results of the parametric study are reported in 

Fig. 3 (soils) and in Fig. 4-5 (rock masses). 

Discussion 

From an analysis of the figure it is possible to note 
that, for the different types of soil, p0max increases 
linearly with the cohesion. Moreover, for each specific 
cohesion value, p0max also increases almost linearly in 
function of the friction angle. The plasticization of the 
ground at the border of the hemisphere, which represents 
the excavation face, occurs for modest depths (at about 
30 m for ground with a high friction angle and at about 
20 m for ground with a low friction angle) in average 
cohesive soil, i.e., cp = 0.2 MPa. 

 

 
 
Fig. 3. Trend of the maximum lithostatic stress p0that can guarantee the absence of a plastic zone at the border of the hemisphere 

which represents the excavation face, with variations of the peak cohesion of the soil, for different peak friction angles 
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Fig. 4. Trend of the maximum lithostatic stress p0 that can guarantee the absence of a plastic zone at the edge of the hemisphere 

which represents the excavation face, with variations of the GSI of the rock mass, for different uniaxial compression strength 

values of the intact rock (σci) and of parameter D (disturbance factor). Key: (A) σci = 115 MPa; (B) σci = 85 MPa; (C) σci = 55 

MPa; (D) σci = 25 MPa; (1) D = 0; (2) D = 0,5; (3) D = 1 

 

 
 

Fig. 5. Details of Fig. 4. Key: (A) σci = 115 MPa; (B) σci = 85 MPa; (C) σci = 55 MPa; (D) σci = 25 MPa; (1) D = 0; (2) D = 0,5; (3) D = 1 

 

Instead, in rock masses, p0max grows with a similar trend 

to that of a parabola as the GSI is varied. Greater values 

were observed for higher intact rock strength values and for 

lower disturbance factor D values. The relation between 

p0max and σci is almost linear for a given GSI and the same D 

value. The D parameter produces a percentage reduction of 

p0max with respect to the D = 0 case, regardless of the GSI or 

σci. The excavation face in rock masses with an elevated 

GSI and σci can still be stable at depths of 1500 m (that is, 

for p0 almost equal to 45MPa). 
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Conclusion 

The stability of an excavation face is one of the most 

important aspects in the design of a tunnel. In the case in 

which the excavation face is not naturally stable, it is 

necessary to carry out reinforcement interventions, such 

as doweling with fiberglass bars. Because of the elevated 

cost of reinforcements, these operations should only be 

introduced after establishing the instability of the 

excavation face in natural conditions. 

The analyses of the stability conditions of the 

excavation face can be conducted, with a certain degree 

of detail, through numerical modelling. An approximate 

analytical method that allows a rough idea to be obtained 

in a short time for deep tunnels is the convergence-

confinement method in which a spherical geometry is 

used to represent the excavation face. 

In this study, after having presented the most important 

relations that allow the stress state at the border of a 

hemisphere to be described for the case in which the 

strength criterion is of a linear type, a numerical solution 

is presented to describe the stress state and the plastic 

radius in rock masses in which the strength criterion is 

curved (Hoek-Brown strength criterion). 

An extended parametric analysis has been conducted 

for different types of soil and rock masses and this has 

allowed a maximum lithostatic value p0max to be obtained 

which still allows the absence of a plastic zone around 

the hemisphere for variations of the geometric and 

geotechnical parameters that condition the problem. This 

p0max value was then plotted in function of the cohesion 

(soils) and of the GSI (rock masses). 

The reported graphs make it possible to obtain a 

preliminary estimation of the maximum depth of the 

tunnel where no plastic zone occurs at the border of the 

hemisphere which, with a certain degree of 

approximation, represents the excavation face. However, 

a more detailed evaluation would require the use of axial 

symmetric bi-dimensional or even three-dimensional 

numerical modelling. 
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