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ABSTRACT 

A non-iterative method of factorizing a 4×4 positive matrix, with the application to image compression is 
explained using an example. The procedure is applied to all the 4096 number of 4×4 pixel sub-blocks of a 
256×256 image for compression. The proposed compression technique can be applied to the Discrete Wavelet 
Transform (DWT) coefficients of the test image. The 16 Pixel Intensity Values (PIV) or their DWT coefficients 
of a 4×4 pixels sub-block of the image can be represented by the outer product of a 4×1 column matrix and a 1×4 
row matrix, with Least Mean Square Error (LMSE) criterion. Hence, instead of transmitting the 16 PIVs or their 
DWT coefficients, the values of the 4 elements of the column matrix and the 4 elements of the row matrix 
alone are transmitted resulting in a maximum compression ratio of 2 (16/4+4). The receiver can recreate the 
4×4 pixels sub-block or their DWT coefficients, by calculating the outer products of 4 values of column matrix 
with 4 values of row matrix. In case of DWT coefficients inverse DWT is applied to recreate the pixels. This 
principle is extended to all the sub-blocks of the 256×256 image to compress and later reconstruct the image. 
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1. INTRODUCTION  

Data compression for fast transmission with 
minimum error is desirable to save data transmission 
time and data storage requirements, two of the 
important parameters of any data processing system. 
The above requirements are more significant in image 
data processing. A number of image compression 
methods based on outer product expansion and tensor 
decomposition have been proposed in the past 
(O’Leary and Peleg, 1983; Tucker, 1996; Kolda and 
Bader, 2009; Welling and Weber, 2001; Cichocki et al., 
2011; Karami et al., 2012).  

Let us consider a 256×256 monochrome image, 
which is normally divided into blocks of 8×8 pixels 

for processing. The gray level intensities of the pixels 
will range from the minimum of black to the 
maximum of white. Assuming 8 bits are used to 
represent the gray levels, we have 256 levels. In this 
study, for the convenience of explanation we consider 
a sub-block of 4×4 pixels with 16 gray scale 
intensities numbered from 1 to 16. Thus the 16 PIVs 
of the sub image are in the range from 1 to 16. 
Normally either the 16 PIVs of each and every sub-
image of an image or their Harr wavelet based DWT 
coefficients are to be transmitted as such for lossless 
transmission. In either case we shall refer them as 16 
Numerical Values (NV). If the 16 NVs of a sub-image 
are represented as a 4×4 matrix, it will be a positive 
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matrix, in which all the 16 elements will have positive 
values. Using a method of factorization, explained in 
2.1, the 4×4 matrix can be represented as the outer 
product of one 4×1 column matrix and one 1×4 row 
matrix. In most cases a factorization may not be exact 
and hence a best match approximation based on Least 
Mean Square Error (LMSE) criterion is adopted. After 
factorization the 4 elements of the column matrix along 
with the 4 elements of the row matrix alone are 
transmitted. At the receiving end the best match of 
16NVs are estimated as the outer products of 4 elements 
of the column matrix and the 4 elements of the row 
matrix. This will result in a maximum compression ratio 
of 2 (16/4+4). Because of the approximation in 
factorization, the compression is lossy with LMSE.  

2. MATERIALS AND METHODS 

This section deals about the matrix factorization 
method for positive matrix of size 4×4 with numerical 
example and generalized matrix factorization. 

2.1. Numerical Example for Positive Matrix 

Factorization of 4×4 Matrix 

Step1: 4×4 sub-block 
Either the intensity values of the 16 pixels of the 

4×4 sub image or their DWT coefficients, commonly 
called as Numerical Values (NVs), forming a 4×4 
matrix are represented in a 4×4 grid as shown in Fig. 

1. The sum of the NVs in each row and column are 
shown separately. The highest sum among these eight 
sum values is identified as 43 corresponding to the 
second column:  

Step 2: The sixteen NVs of the sub image are to be 
factorized as the outer products of 4 values of 
row factors (x1,x2,x3,x4) and 4 values of column 
factors (y1,y2,y3,y4). Normally, after factorization 
the NVs of 2nd column which has the maximum 
column sum is likely to contribute maximum 
error. To avoid this error, the NVs of column 2 
are taken as the row factors (x1,x2,x3,x4) and y2 is 
taken as 1, resulting in zero error from the 4 NVs 
of this column 

Step 3: The unknown column factors y1,y3 and y4 are 
estimated in such a way that the estimated 
product NVs of corresponding columns 1,3 and 
4 result in minimum error in their respective 

columns. For example, considering column 1, 
the estimated squared error will be [(5-12y1)

2 + 
(8-2y1)

2 + (7-14y1)
2 + (4-15y1)

2]. Differentiating 
this squared error with respect to y1 and 
equating the differentiated expression to zero 
we get the value of y1 for minimum squared 
error in column 1. Thus the value of y1 is 
calculated to be 0.4112 giving a minimum of 
the squared error. Likewise the value of y3 and 
y4 are calculated to be 0.4059 and 0.8189 
respectively to have minimum squared error in 
column 3 and column 4: 

 
x1 = 12 ; x2 = 2; x3 = 14 ; x4 = 15 
Y1 = (5×12)+ (8×2)+(7×14)+ (4×15)/(122 + 22+142 

+152) = 234/569 = 0.4112 
Y2 = (12×12)+ (2×2)+(14×14)+ (15× 15)/(122 + 22+142 

+152)= 569/569 = 1 
Y3 = (7×12)+ (9×2)+(6X14)+ (3× 15)/(122 + 22+142 

+152) = 231/569 = 0.4059 
Y4 = (11×12)+ (1×2)+(13×14)+ (10× 15)/(122 + 22+142 

+152) = 466/569  = 0.8189 
 

The row factor x1(12), x2(2), x3(14) and x4(15), along 
with the column factors of y1 (0.4112), y2(1), y3(0.4059) 
and y4(0.8189) are transmitted to the receiver Fig. 2. The 
receiver will calculate the 16 outer products of the 4 
number of row factors and 4 number of column factors. 
These 16 values are the reconstructed pixels or their 
DWT coefficients at the receiving end. Inverse DWT is 
applied to the DWT coefficients to obtain the pixel 
intensity values: 

Step 4: Reconstructed 4×4 sub-block with original NVs 
shown in brackets Fig. 3 

Step 5: RMSE Calculation: Making use of the 16 
numbers of original pixel intensities at the 
transmitting end and the 16 values of intensity 
values are reconstructed at the receiving end, the 
RMSE is calculated: 

 
RMSE = {[(5- 4.9344)2 + (12-12)2 + (7-4.8708)2 +(11-
9.8268)2 + (8-0.8224)2 + (2-2)2 + (9-0.8118)2 + (1-
1.6378)2 + (7-5.7568)2 + (14-14)2 + (6-5.6826)2 + (13-
11.4646)2 + (4-6.1680)2 + (15-15)2 + (3-6.0885)2 + (10-
12.2835)2] / 16 } ½ = 3.0448 

 

In 2.2, we describe the procedure to factorize a 4×4 
general matrix. 
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Fig. 1. 16 NVs of a sub-block of 4×4 pixels shown in a grid form 
 

 
 
Fig. 2. Choosing the row factor values 
 

 
 
Fig. 3. Reconstructed NVs along with original values for 

comparison 
 

2.2. The General Procedure for Factorization 

with Minimum RMSE  

Step 1: Let us consider a 4×4 sub-block of an image with 
NVs I11, I12, ….. I44 as shown in the Fig. 4 below. 
The sum SR1, SR2, SR3 and SR4 of the 4 rows of the 
NVs of the sub image and the sum SC1, SC2, SC3 

and SC4 of the NVS of the 4 columns of the sub 
image are calculated and indicated as shown in 

the Figure. The 16 NVs are to be factorized as 
the outer products of 4 row factors (x1, x2, x3, x4) 
and 4 column factors (y1, y2, y3, y4). Therefore, 
ideally I11 = x1y1; I12 = x1y2 …… I44 = x4y4. 
However, in practice the factorization may not be 
exact and hence the factorization should be 
optimized resulting in minimum error. The 
minimum error is estimated as the Least Mean 
Squared error. 

Step 2: Let us assume that the estimated row factors 
(x1, x2, x3, x4) and the estimated column factors 
(y1, y2, y3, y4) result in x1y1= Ī11 , x1y2 = Ī12 . . . . 
x4y4 = Ī44. Hence sum of the squared errors of 
the 16 NVs will be equal to [(I11 - Ī11)

2 + (I12 - 
Ī12)

2 + . . . . + (I44– Ī44)
2]. Considering the logic 

that the larger values of NVs are likely to 
contribute large errors, we identify the largest 
value among the SR1, SR2, SR3, SR4, SC1, SC2, SC3 

and SC4. For example let SC2 be the largest sum. 
To have no error in this column 2, it is taken 
that x1= I12, x2 = I22, x3 = I32, x4 = I42 and y2 = 1. 
The remaining column factors y1, y3 and y4 are 
estimated in such a way as to give minimum 
sum of squared errors in their respective 
columns 1, 3 and 4. 

Step 3: We shall now illustrate the method of estimating 
y1 and the same procedure will be adopted to 
estimate y3 and y4 column 1: 

 
 error2 = E = [(I11 - Ī11)

2 + (I21 - Ī21)
2 + (I31 – Ī31)

2 + (I41 
– Ī41)

2] 
   = [(I11 – x1y1)

2 + (I21 – x2y1)
2 + (I31 – 

x3y1)
2 + (I41 – x4y1)

2] 
   = [(I11 – I12y1)

2 + (I21 – I22y1)
2 + (I31 – 

I32y1)
2 + (I41 – I42y1)

2] 
 

Differentiating E with respect to y1 and equating it to 
zero we get: 

 

 
dE

dy1
2[(I11 – I12y1) (- I12) + (I21 – I22y1) (– I22) + (I31 – 

I32y1)
 (– I32) + (I41 – I42y1) (- I42)] = 0 

 
Solving this equation we get: 

 
Y1 = [I11 I12 + I21 I22+ I31 I32 + I41 I42]/[(I12)

2 + (I22)
2 + 

(I32)
2 + (I42)

2] 
 
Similarly: 
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Y3 = [I13 I12+I23 I22+I33 I32+I43 I42]/[(I12)
2+(I22)

2+(I32)
2 + 

(I42)
2]Y4 = [I14 I12+I24 I22+I34 I32+I44 

I42]/[(I12)
2+(I22)

2+(I32)
2 + (I42)

2] 
 

For image compression instead of transmitting the 
16 NVs of I11, I12….. I44, the 4 values of row factors 
(x1, x2, x3, x4) and the 4 values of column factors (y1, 
y2, y3, y4) are transmitted, using which the receiver is 
ble to estimate the 16 NVs Ī11 , Ī12 . . . Ī44 . Of these 16 
values the four values corresponding to column 2 will 
be with no error since Ī12 = I12; Ī22 = I22; Ī32 = I32; Ī42 = 
I42. The remaining 12 NVs alone will contribute to the 
error. The estimation of error is possible only at the 
transmitting end, which has the 16 original NVs I11, 

I12, ….. I44 and the 16 estimated NVs Ī11 , Ī12 . . . Ī44 
which are the outer products of row factors (x1, x2, x3, 
x4) and the column factors (y1, y2, y3, y4).  

The compression ratio is 2, since 8 values of factors 
are transmitted instead of 16 NVs. 
 

 
 
Fig. 4. Sub-block of 4x4 pixels with general NVs 

 

      
 (a) (b) 
 

Fig. 5. (a). Original image (b). Reconstructed image 
 

                
 (a) (b) 
 

Fig. 6. (a). Original image (b). Reconstructed image 
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 (a) (b) 
 

Fig. 7. (a). Original image (b). Reconstructed image 
 

Table 1. Processing parameters  
  Pixel intensity based compression DWT of the pixel intensity based compression 
 ------------------------------------------------- ------------------------------------------------------------ 
 Name of the image PSNR (dB) Time (sec) PSNR (dB) Time (sec) 

Cameraman (256×256) 10.4066 0.6432 45.3712 0.9752 
 Barbara (512×512) 17.7321 2.2556 56.8010 3.4945  
MRI (512×512)  23.4940  1.9883  71.4597  3.1107 

 

3. RESULTS AND DISCUSSION 

The proposed method of image compression based 
on factorization, as explained in the previous sections, 
is applied to a set of images, using MATLAB. The 
results are shown below in Fig. 5-7. The comparative 
analysis of the PSNR and the processing time values 
are listed in Table 1. 

4. CONCLUSION 

Based on the reconstructed images it is observed that 
the DWT based compression is better in terms of 
increased PSNR. The approximation in the factorization 
process results in noisy patches in the reproduced image 
which can be minimized by suitable filters. 
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