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ABSTRACT 

In computer vision, the edge detection is an essential and difficult problem to study. For this reason, 

many detectors were developed for gray-level and color images. However, these edge detectors may 

miss some parts of the edges. In the aim, to deal with this problem, a new approach is proposed. It is 

based on Virtual Magnetic Field (VMF) in conjunction with Cubical Voxels (CV). The main idea of 

this approach is to model a color image as a magnetic cube which has the same height and width as the 

image. The pixels intensities are modeled by the CV model as voxels that are considered by the VMF 

model as virtual magnetic moments. This technique allows determining easily the most important three 

operators that are used to provide approximate gradients for each plane color component. The method 

is tested on synthesized and real images that show promising results. 

 

Keywords: Gray-Level and Color Images, Edge Detection, Gradient, Voxels, Magnetic Fiaeld 

1. INTRODUCTION 

Edges are locals, significant and detectable parts of 
images. Edge detection is highly crucial for many fields 
of computer vision such as object recognition and 
tracking, image retrieval, stereo vision and registration. 
Several edge detection algorithms are well-known and 
used by the computer vision community. 

Gradient operators are commonly used to detect 

edges which are the abrupt changes of gray-level values 

in digital images. A gradient operator consists in two 

partial derivatives, which determine the magnitude and 

the direction of the gradient. Since a digital image is 

represented by a discrete function, the partial derivatives 

can only be approximated. Generally, the partial 

derivatives are implemented as a pair of convolution 

masks. As introduced in (Gonzalez and Woods, 2002), 

commonly used gradient operators include Prewitt 

(1970) and Sobel (1990) operator for horizontal and 

vertical edges, consisting of the partial derivative masks. 

This method basically uses the designed mask to traverse 

the image and detect edges by locating the maximum of 

the gradient’smagnitude in the considered image. 

However, this method is sensitive to noises, principally if 

the image is not smoothed. Canny (1986) uses three-

steps algorithm to detect edges. At the first step, the 

original image is smoothed by convolving a two 

dimensional Gaaussian function with a proper variance. 

At the second step, masks detecting the horizontal, 

vertical and sometimes the diagonal edges are used to 

compute the gradient of the smoothed image. Edges 

are then traced at the third stage. The Canny edge 

detection algorithm (Canny, 1986) needs to adjust two 

thresholds and a standard deviation of Gaussian smooth 

mask to yield a proper result. For practical applications, 

edge detection is only the first step in image analysis, 

consequently, should be short as possible. Some 

complicated edge detectors are not used in practice 
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despite having good quality. Edge detection is a critical 

element in image processing since edges contain a 

major function of image information. The function of 

edge detection is to identify the boundaries of 

homogeneous regions in an image based on properties 

such as intensity and texture. 
In the last decade, color information has received 

attention from the scientific community for detecting edges 
(Koschan, 1995; Roman et al., 1995; Economou et al., 
2001; Koschan and Abidi, 2005; Zaart, 2010). Color 
images provide more information than gray-level 
images. It has been shown that the result of edge 
detection is improved by about 10% when using color 
image instead of gray-level one (Novak and Shafer, 
1987). The difficulty in extending derivative approaches 
to color images arises from the fact that the image 
function is vector-valued. Whenever the gradients of 
image components are computed, the question remains 
of how to combine them onto one result. For the solution 
of this problem, three techniques are used. In traditional 
gray-value technique, a color image is converted to a 
gray-level one and then information is treated in the 
gray-level image. Monochromatic-based techniques 
consist in existing information from the individual color 
channels or color vector components, then combining the 
obtained individual results. Vector-valued techniques 
treat the color information as color vectors in a vector 
space provided with a vector norm. Generally, the 
traditional technique show better results than standard 
ones. These techniques have been applied by Koschan 
(1995) to the three coalor channels and performed a 
comparative study on color edge detection. Compared 
with Monochromatic based techniques, vector-valued 
techniques are new and give better results. Cumani 
(1991) described a method based on the second-order 
derivatives to detect edges in color and multispectral 
images. Koschan and Abidi (2005) made another 
contribution on vector-valued techniques and 
demonstrate that better results are achieved with the 
Cumani (1991). Novak and Shafer (1987) and Kanade et al. 
(1989) extended a Canny (1986) to color images. 
Robinson (1977) and Ruzon and Tomasi (1999) applied 
compass edge detectors to color images. Djuric and Fwu 
(1997) used the maximum a posteriori criterion based on 
Bayesian theory to locate and detect edges in vector 
images. Evans and Liu (2006) described a color 
morphological gradient operator based on vector 
differences to detect edges in multivariate images. 
Weijer et al. (2005) proposed a new type of edge 
detector by photometric quasi-invariants. Weijer et al. 
(2006) proposed another approach based on 
photometric invariance theory and tensor to get a robust 
color edge detector, while, Bouda et al. (2008) 

developed edge detection in color images based on 
virtual electric field model.  

One of the main challenges to color edge detection is 
how to compute the gradients for each plane component 
by an appropriate operator. A default method is to use 
the same horizontal and vertical mask for the different 
color components. Unfortunately, the summation of the 
gradients computed is often inadequate and result in a 
loss of color information. This naive method ignores 
completely the strong correlation between the different 
components of the color image. To avoid the above 
problem and to recuperate this loss color information, we 
propose an edge detection operator based on Virtual 
Magnetic Field (VMF). The new method Virtual Magnetic 
Field Model (VMFM) allows us to design two relative 
masks for each color component. The image intensities are 
modeled as voxels and each voxel is considered as a 
magnetic moment. The magnetic forces between the 
central moment and its neighborhoods allow us to 
determine the masks relative to each color component. 
These masks are useful to approximate gradients by a 
simple convolution operation with image components. 
The last stage is to combine the result by using the color 
gradients in the image vectors. This method has been 
proposed in the color edge detection in numerous 
referenced articles (Novak and Shafer, 1987; Bouda et al., 
2008; Zenzo, 1986; Lee and Cok, 1991).  

1.1. Fuandamental Tools 

1.1.1. Tiling and its Associated Mesh 

In two dimensions, a tiling of the plane is defined as a 

partition of an infinite plane onto disjoined cells. When 

the same geometrical configuration is used to make the 

partition, a tiling is called regular. The main idea in 

image processing is the repetitiveness in the infinity and 

the regular juxtaposition of geometrical configurations 

(Borgefors, 1984; Chassery and Montanvert, 1991). 

The three most used tilings of the plane are square, 

triangular and hexagonal ones. Square, hexagonal and 

triangular tilings are respectively associated square, 

triangular and hexagonal meshes. Square mesh is the more 

used theme in image processing for two reasons. The first 

one is relative to the constraint technological imposed by 

industry. The second one is that the square mesh allows to 

structure data in a traditional matrix form (Fig. 1). Pixels 

in three dimensions are known as voxel. Like the plane, 

the partition of the space in voxels can also be 

represented by a tiling. Thus, it is interesting for color 

images to use a tiling of the cube, to which corresponds a 

cubical mesh. A set of these meshes forms voxels. These 

last ones are represented by their three coordinates (Fig. 2). 
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Fig. 1. Tiling of the plane and its associated mesh 
 

 
 

Fig. 2.
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1.2. Magnetic Field 

It is well known that the electric current exerts the 

magnetic field, which is described by the Biot-Savart law. 

The magnetic field lines are generated by a current 

carrying wire form concentric circles around the wire. The 

direction loop of this field is determined by the right hand 

grip rule. Moreover, the strength of the magnetic field 

decreases with the distance rfrom the wire. Considering a 

magnetic moment mplaced at point p(pr, pθ, pz) (Fig. 3), 

the moment generates an magnetic field B
ur

at point p(pr, 

pθ, pz) in the cylindrical coordinates ( )r zo,e ,e ,eθ

r r r
(Fig. 3). 

The magnetic field created by the magnetic moment m, 

due to the electric current, is equal to Equation 1: 
 

( )

( )
3

3

2 cos

r

sinm o
B

4 r

0

θ

θµ
=

π

ur
 (1) 

 
Where ris the distance between the moment and the 

centerµ0 is the per meability of free space 

 

 
Fig. 3. Cylindrical coordinates  

 

2. MATERIALS AND METHODS 

2.1. Virtual Magnetic Field Model (VMFM) 

Based on the above description, the color image I 

is proposed to be modeled as a network of cubical 

voxels of virtual magnetic moments. The CV model 

describes the color pixel as a cubical voxel. Hence, 

each block of 3×3 pixels of the color image is 

modeled as an elementary cube. The VMF model 

describes the voxels as punctual magnetic moments 

uniformly distributed on the cube (Fig. 4a). A set of 

elementary cubes forms a color image as shown in 

Fig. 4b. Regarding one elementary cube, the central 

cubical voxel and its neighbors mi (i = 1,…,12) are 

distributed with respect to diagonal neighbors 

distribution. The elementary cube has sides a, diagonal 

a 3 and its faces are perpendicular to the coordinate 

axes in the coordinate space ( )x y zo,e ,e ,e
r r r

.  

As shown in Fig. 5, a voxel has 26 neighbors. 

Moreover, there are three kinds of distributions: 

diametric neighbor voxels (according to the directions of 

the cubes’ diameters), axial neighbor voxels (according 

to the axes) and diagonal neighbor voxels (according to 

the diagonals in 3 orthogonal planes). 
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(a) 

 

 
(b) 

 

Fig. 4. Proposed CVMFM for a color image: (a) the VMF 

model for one elementary cube of the color image; (b) 

the CV model for a colorimage 

 

 
 
Fig. 5. Tiling of the cube and its associated mesh 

As represented in Fig. 4a, in the proposed approach, 

we consider cubical voxels with a virtual model of 

magnetic moments mi, where i ∈{1,…,12 Each moment 

mi creates, in the center m0 of the cubical voxels, a 

virtual magnetic field 0mi/mB
ur

. The unity vector between 

mi and mj for j∈{1,…,12 is noted by 
r i j
ij

i j

m m
u ,

|| m m ||
=

r
  

where 
θ

iju
r

 and 
r

iju
r

are orthogonal. Figure 2 illustrates an 

example of the unity vector 
r

76u
r

.  

From this figure, we remark that the angle between 

the vector 
r

76u
r

and the axes x and z is equal to -π/4. 

( )r

76 x z x z

2
u cos e cos e e e ,

4 4 2

−π −π   = − − = − +   
   

uur uur uur uurr
 and 

( )76 x z x z

2
u cos e cos e e e

4 4 2

θ −π −π   = − + = − −   
   

uur uur uur uurr
 For 

example, we calculate the magnetic 

fields m /m m /m76 0 0
B ,B
ur ur

as fellow Equation 2 and 3: 

 

( ) ( )( )6 o

r

m / m 7,6 7,663

K
B 2m 2cos u sin u

r

θ
= − θ + θ

ur r r
 (2) 

 

( ) ( )( )7 o

r

m / m 7,6 7,673

K
B 2m 2cos u sin u

r

θ
= − θ + θ

ur r r
 (3) 

 
Where,

( ) ( )r
0

7,6 x z 7,6 x z

2 2
u e e ,u e e ,K ,

2 2 8 2

θ µ π
= − + = − + = θ =

π

r r r r r r

 

and 

ris the distance between the moment and the center. In 

the approach proposed, we consider that the virtual 

magnetic moments correspond to the gray-levels of 

voxels. Hence, the central cubical voxel is subjected to 

the magnetic of the 12 neighboring charges. To see how 

to use Equation 1 and 2 to calculate the magnetic field 

for a set of moment magnetic cubical, we suppose that 

virtual moment mi, i∈{1,…,12, are diametrically opposed 

in the cube. The magnetic fields, where the virtual 

moments mi (i = 1,…,12) are diametrically opposed, are 

given respectively by the following Equation 4-9: 
 

( )
θ

7,67 636 07 76 0m /m m /m m /m
K

B B B 2m 2m u
r

= + = −
ur ur ur r

 (4) 

 

( )
θ

4,14 13
m /m m /m m /m4 1 4 0 1 0

K
B B B 2m 2m u

r
= + = −

ur ur ur r
 (5) 

 

( )
θ

5,25 23
m /m m /m m /m5 52 0 2 0

K
B B B 2m 2m u

r
= + = −

ur ur ur r
 (6) 



Nsiri, B. and B. Bouda / American Journal of Applied Sciences, 10 (3): 280-293, 2013 

w 

284 Science Publications

 
AJAS 

( )
θ

8,38 33
m /m m /m m /m8 3 8 0 3 0

K
B B B 2m 2m u

r
= + = −

ur ur ur r
 (7) 

 

( )
θ

10,1210 123
m /m m /m m /m10 12 10 0 12 0

K
B B B 2m 2m u

r
= + = −

ur ur ur r
 (8) 

 

( )
θ

11,911 93
m /m m /m m /m11 9 11 0 9 0

K
B B B 2m 2m u

r
= + = −

ur ur ur r

  

(9) 

 

The unitary vectors 7,6 4,1 5,2 8,3 10,12U ,U ,U ,U U
uuuur uuuur uuuur uuuuruuuuur

and 

11,9U
uuuur

can be concisely represented as a function of 

x ye ,e
uur uur

and
ze
uur

, in the Cartesian coordinate 

space ( )x y zo,e ,e ,e
uur uur uur

. The Fig. 6a illustrates a distribution of 

pjpoints in the cube ofsides a. Two elementary cubes of 

sides a = 2 of this figure are depicted in Fig. 6b and 6c. 

Let 
r r r

7,6 7,0 6,0U U U= = −
ur ur ur

be the unitary vector, 

where
 r r r

6,0 6,0 6,0x x z zU cos U ,e e cos U ,e e
   

= +   
   

uur uur uur uurur ur ur
. Based on 

the depicted elementary cube in Fig. 6b and the rectangle 

(p0p16p6p17), the angles  
0 6 0 6 1617

p p p p p p
4

π
= = . As 

result, ( )r

6,0 x z

2
U e e

2
= +

uur uurur
. Consequently, 

( )r

7,6 x z

2
U e e

2
= +

uur uurur
. 

By considering the elementary cube depicted in Fig. 

6c, the unitary vector
r

4,1U
ur

 can be easily determined. In 

this case, let 
r r r

4,1 4,0 0,1U U U ,= −
ur ur ur

where 

 r r

0,1 0,1 0,1y y x zU cos U ,e e cos U ,e e .
   

= +   
   

uur uur uur uurur ur ur
 In the rectangle 

(p0p15p1p14), the angles  
1 0 1 0 1514

p p p p p p
4

π
= =  . Thus, we 

will have ( )0,1 y z

2
U e e .

2
= +

uur uurur
 Finally, we get 

( )4,1 y z

2
U e e .

2
= +

uur uurur

 
Similarly and following the same development 

above, we find the four other vectors 

( )4,1 y z 5,2

2
u e e ,u

2

θ
= − +

r r r r ( )y z 8,3

2
e e ,u

2
= +

r r r ( )x z

2
e e ,

2
= +

r r

( )11,9 x y

2
u e e

2

θ
= − −

r r r
and ( )10,12 x y

2
u e e .

2

θ
= − +

r r r
 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 6. The elementary cubes and the angles to determine the 

projection of the vectors 
r

7,6U  and 
r

4,1U  against 
x z

e ,e  

and
z

e vectors 
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If n moment magnetic are presented, then the total 

magnetic field totB
ur

is given by the vector sum of each 

moment magnetic Equation 10: 
 

n

tot i

i 1

B B
=

= ∑
ur ur

 (10) 

 
When n = 12, the total magnetic field in the 

coordinate space ( )x y zo,e ,e ,e
r r r

 is given respectively by the 

following Equation (11-13): 
 

xe 3 6 7 8 93

x10 11 12

K
B 2 ( m m m m m

r

m m m )e ,

= − + − + +

− − +

ur

r
 (11) 

 

ye 1 2 4 5 93

y10 11 12

K
B 2 (m m m m m

r

m m m ) e ,

= − − + +

+ − −

ur

r
 (12) 

 

ze 1 2 3 4 53

z6 7 8

K
B 2 ( m m m m m

r

m m m ) e ,

= − − − + +

− + +

ur

r
 (13) 

 
In Fig. 7, we give the projections of charges mi 

shown in Fig. 7a onto planes 

( ) ( )xy x y yz y ze  o e , e  o e= =∏ ∏
uur uur uur uur

and
( )zx z xe  o e=∏
uur uur

. Using 

Equation 12 and the matrix shown in Fig. 7a, we deduce 

the 3×3 mask hxa given in Fig. 8a. Similarly, with 

Equation 13 and the matrix shown in Fig. 7b, we obtain 

the mask hya depicted in Fig. 8b. Finally, from Equation 

14 and the matrix shown in Fig. 7c, we deduce the mask 

hza depicted in Fig. 8c. 

Figure 9 illustrates an example of gray-level and 

color image using VMFM method. The RGB original 

image is transformed to gray-level image by calculating 

the mean value over the three color components. The 

approximate gradients are obtained by convolution of each 

component with masks depicted in Fig. 8 and their 

transposed masks. The norm of gradient is given by: 
 

2 2 2

R G BGrad | Grad | Grad | | Grad |= +  (14) 

 
where, GradR, GradGand GradBare the gradients of red, 

green and blue components respectively. From these 

results, we note that some of the edges not determined in 

the gray-level image (Fig. 9d), could be detected in color 

image (Fig. 9c). 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 7. The projection of onto planes: (a) xy∏ (b) yz∏  

(c) zx∏  
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 (a) (b) 

 

 
(c) 

 

Fig. 8. The obtained 3×3 masks by VMFM. (a) hxa, (b) hya, (c) hza 

 

                  
 (a) (b) 
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 (c) (d) 

 

Fig. 9. Results of gradient norm from the Lenna image. (a) Original RGB image; (b) gradient norm for acolor image based on 
VMFM; (c) gray-level representation; (d) gradient norm for a gray-level image based on VMFM. 

 

2.2. Combination of Gradients 

The approximate gradients for each image component 

provided by the first step (previous subsection) should 

be combined to obtain the resulting gradients. Various 

methods have been defined and used to combine 

gradients in color images (Cumani, 1991; Zenzo, 

1986; Lee and Cok, 1991). Since the vector valued 

technique m:give the better results, we use this 

technique in the following. 

Let ( ) 2 m

1 2u u :Ψ ℜ → ℜ be a m-band image with 

components ( ) 2

1 2u u : ,i 1,2,...,m.Ψ ℜ → ℜ =  In RGB 

mequal to 3 components. In the plane coordinates, we 

have ui with i = 1,2. The more usual notation (x,y) is u1 ≡ 

x
 
and u2 ≡ y. The value of the image at a given point 

( 0 0

1 2
u ,u ) is a vector in ℜm

. The difference of image 

values at two points ( )0 0

21P u ,u= ) and ( )1 1

21Q u ,u=  is given 

by ( ) ( )P Q∆Ψ = Ψ − Ψ . When the distance d(P,Q) between 

P and Q is infinite small displacement, the difference dΨ 

and its squared norm dΨ2
 are given by Equation 15: 

 
2

i

i 1 i

d du
u=

∂Ψ
Ψ =

∂∑  (15) 

 
2 2

i j

i 1 j 1 i i

d du du
u du= =

∂Ψ ∂Ψ
Ψ =

∂∑∑  (16) 

The Equation (16) can be rewritten in quadratic form 

asdescribed by the following equation: 

 
T

2 1 11 12 1

2 12 22 2

du g g du
d

du g g du

     
Ψ =      

     
, (17) 

 

where
ij

i j

g
u u

∂Ψ ∂Ψ
=

∂ ∂
. 

The extrema of the Equation (17) are obtained by 

finding the directions of the [gij] matrix eigenvectors. 

The obtained values are corresponding to the eigenvalues 

λ±and the eigenvectors η±given by Equation 18 and 19: 

 

( )2

11 22 211 22
12

g gg g
g

2 4

−+
λ± = ± +  (18) 

 

( )cos ,sin ,±η = θ ± θ ±  (19) 

 

whereθ±are given (moduloπ) by: 

 

12

11 12

1 2g
arctan

2 g g

2

+
−

− +

  
θ =  

  
π

θ = θ +
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The eigenvectors provide the direction of maximal 

and minimal changes at a given point in the image. 

While, the corresponding eigenvalues represents the rate 

of each change. θ+ is called the direction of maximal 

change. While, λ+ is the maximal rate of change. 

Similarly, θ− and λ−are respectively the direction of 

minimal change and the minimal rate of change. A 

possible choice is the subtraction f = f(λ+ −λ−) as 

proposed in (Cumani, 1991). 

Based on the results and the ideas above, we suggest 

new color edge detection: 

Since a function of the form f = f(λ+ −λ−) is the 

analog multi-spectral extension of ( )2
f f= ∇ Ψ for 

monochromatic images m = 1, the image processing 

algorithms for mono-spectral images based on 
2

∇Ψ can 

be extended to color images by replacing the squared 

magnitude of the gradient with Equation 20: 

 

+ −∇Ψ = λ − λ  (20) 

 

Algorithm 

 The proposed algorithm to find edges is as follow: 

Step 1:  Describe each color image pixel as a cubical 

voxel by using the CV approach 

Step 2:  Describe each voxel as a magnetic moment by 

using the VMF model 

Step 3:  Calculate, for each plane component, the 3×3 

mask according to the VMFM 

Step 4:  Compute the magnitude of the gradient 

3. RESULTS AND DISCUSSION  

Real and synthetic images are used to evaluate the 

performance of our algorithm in comprising with those of 

Cumani and Canny since they have given the best results 

in the literature. A global discussion of several criteria for 

the evaluation of edge detectors is given for gray-level 

images in (Salotti et al., 1996), while is given for gray-

level and color images in (Koschan, 1995; Koschan and 

Abidi, 2005; Singh and Singh, 2008). Figure 10 

presentgood resultsby applying the norm of gradient 

VMFM to four synthetic and real color images:  

 

• 256×256 synthetic image, which composed of five 

regions 

• 300×300 synthetic Squares that contains four colors 

• 303×250 real image 

• 326×256 real Castle image 

 

Figure 11 illustrates the original images used for 

evaluating our algorithm and the results. From this image 

we can seen that although the VMFM is computationally 

simpler, its performance is good for both synthetic and 

real images.  

 

                        
 (a) (b) 
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 (c) (d) 

 

                    
 (e) (f) 

 

               
 (g) (h) 

 

Fig. 10. Norm of gradient VMFM: (a,c,e,g) Original images; (b,d,f,h) Norm of VMFM gradient 
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 (a) (b) 
 

                          
 (c) (d) 

 

                 
 (e) (f) 
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 (g) (h) 

 

Fig. 11. (a,e) Canny approach; (b,f) Cumani approach; (c,g) CVVEF approach; (d,h)VMFM approach 
 

                        
 (a) (b) 

 

                       
 (c) (d) 
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 (e) (f) 

 

Fig. 12. Images of simulation. (a) Speelgoed1; (b) Squares; (c) Clown; (d) Speelgoed2; (e) Bloks; (f) Girl 

 

To compare the performance of our approach to other 

ones, the color Canny and Cumany operators are tested 

with VMFM-based edge detector. To this end, seven 

images are used (Fig. 12a-f): 

 

• 300×300 blurred synthetic Squares 
• 243×243 synthetic image containing three different 

color squares 
• 512×512 real Tiffany 
• 512×512 real Clown 
• 720×576 real Barbara 
• 256×256×3 speelgoed  
• 288×360 soil data set images 

 

The results can be interpreted as follows: from the 

obtained edges with the Canny operator (Fig. 11a,e), we 

remarked the non detection of some edges that are 

successfully detected with the Cumani operator (Fig. 

11b,f) CVVEF (Fig. 11c,g) and the VMFM operator 

(Fig. 11d,h). Moreover, in addition to its simple 

characteristics, more edge results are achieved with 

the VMFM method. Furthermore, the computation 

complexity of this method is low. Known that the 

computation of the proposed approach is based on the 

convolution of the image and the filter coefficients in 

3 spaces, we conclude that the computation 

complexity of this approach is equal to 3times the 

convolution complexity. 

4. CONCLUSION 

In this study, we have proposed a new approach 

(VMFM) for edge detection in color images. For each 

input image component, the VMFM’s result is 

determined by a designed operator that ensures a good 

gradient estimation in color images. The operator results 

are attained without computational expense, since; they 

are given by the first-order of differential operators. 

Moreover, the experimental results in edge detection are 

very encouraging.  
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