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Abstract: Problem statement: In the modern industrial manufacturing system, #fiéciency of
machine control is essential to reduce waste antease the output. Most of the manufacturing
machines employ an induction motor in their drivéygtem. A number of induction motors must be
controlled during machine operation. The more aaiely these motors are controlled the higher is the
quality of the finished producApproach: This study focuses on using the Bee Colony Opttion
(BCO) to find optimal fuzzy rules and membershipdtions of a fuzzy speed controller for an indirect
field-orientated Induction Motor (IM). The BCO opiizes those quantities so that the controller can
control the motor to a desired speed with the mimmrise time and speed error. The fitness function
of BCO is defined as rise time and Integral Times@llate Error (ITAE). An indirect field-orientation
method for an IM drive and a description of the B@f®@ introduced brieflyResults. The speed
tracking capability of the Proportional-Integrall{Ffuzzy and BCO optimized fuzzy controllers are
compared under no-load and various load conditatis different reference speed3onclusion: The
designed controller could track to the set poirthwai relatively minimum rise time and low overshoot
compared to the other conventional controllers.

Key words: Bee Colony Optimization (BCO), Induction Motor (IMntegral Time Absolute Error
(ITAE), speed tracking capability, conventional trofiers, induction motor

INTRODUCTION operation, the cutting speed is directly relatedhe
spindle speed. That relates to speed controller of
Manufacture of the industry componentsspindle motor. In the manufacturing process
consumes resources such as materials, capital, tinteentioned  above, the alternating  current
and energy. The manufacturing process outputs ar@synchronous motors or induction motors are often
in the form of product and waste materials. Tothe preferred choice in industrial drive applicaso
reduce the waste, a number of process parametet¥as, 1999). In order to achieve the performance
must be controlled during machine operation,required by industrial drive application, these
particularly those determining the rate of materialinduction motors have to be controlled effectively.
removal. The more accurately these parameters are Fuzzy logic controller was based on the fuzzy sets
controlled the higher is the quality of the finishe theory of (Zadeh, 1965). The fuzzy logic controller
product (Waters, 1996). Automatic control hasconsists of three parts; Fuzzification of input
become an important and integral part of modermarameters, Inference Engine and Defuzzification of
manufacturing and industrial processes (Ogatagtput parameter. The major problems to implemieat t
1996). For example, automatic control is essemial ¢,,5y |ogic controller are the determination of the
the numerical control of machine tool in the yefinition of the membership functions and lingigist
manufacturing industries, in the design of cars an tate space of the controller rules, of which th&noal
truck in the automobile industries and in the desig o i
solution is always based on the human experiende an

of aircraft parts in the aerospace industries (&lly > ; .
al., 2005). In process measurement and control ofMe-consuming trial-and-error process. A number of

machine tool accuracy while increasing productivity OPtimization techmqueg in the literature have been
and reduce waste (Fergg al., 2003). In a machine €mployed to solve this problem. Among of these
tool, motion (position and speed) control of thesx techniques are Genetic Algorithm (Jurado and
is necessary (Esawi and Ashby, 2003). In a turning/alverde, 2005), Tabu Search Algorithm (Lee, 2005),
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Particle Swarm Optimization (Karakuzu, 2010) ang th A

Ant Colony Optimization (Abadeét al., 2008). it =—-(1+Tp) (3)
This study focuses on using a new optimization L,

technique called the Bee Colony Optimization (BCO)

to find the optimal fuzzy rules and membership

functions of a fuzzy speed controller for an indire

field-orientated Induction Motor (IM). The term

intelligence is defined as the ability to make thght L T

decision (Jones, 2007) of human or bio-systems. By =T-m =K R’ —¢— (4)

this definition, the BCO, which mimics the honey AT ()\r)2

foraging behavior of bees (Phaeh al., 2006) and

use mechanisms such as waggle move to optimall

locate honey sources and to find new source coeld b/Vhere

where, slip speedy, is given in Eq. 4:

a choice of intelligence control system. The BCO is 292
very simple, robust and population based stochastic Ki =——
optimization algorithm. 3P

The remaining of the study is organized as
follows. Materials and methods explains the indirec And
field-oriented control for the induction motor, a
general view of fuzzy logic controller and Bee
Colony Optimization algorithm. Results addresses Kk =3PL,
the procedure to implement the proposed algorithm oL
for the indirect field-oriented control and its '
corresponding simulation result®iscuusion and
Conclusion provides the result discussion and someR;

Rotor resistance
concluding remarks respectively. T Electromagnetic torques

MATERIALSAND METHODS P = Pairs of poles
) Rotor time constant

Indirect field-oriented control: In a field-oriented
controller, the magnitude and phase of each phas
current and voltage must be controlled, in
corresponding to changes in both the speed and the The field angle @) is obtained by summing the
torque load. Field-oriented control can be done&ing  slip angle command8f) with the rotor angle®) as
either the direct (Blaschke, 1972) or the indimttrol  given in Eq. 5:

method. The indirect field-oriented control methass

motor's parameters and rotational-position

measurement to generate unit vector signals for thé, =6, +6, (5)
transformation in feed forward path. The field-oted

controller accepts the torque and flux command and

then generates the torque and flux-producingWith the torque and flux producing components of
components of the stator-current and the slip-arjle  the stator-current command and rotor field andie, t
commands. The slip angle commaéidis generated by g axes current commands are obtained as shown in

Flux linkages in the stator reference frame

r

Tr
3

integrating, w; (the slip speed) as given in Eqg. 1: Eq. 6-7:
6] = Joagclt @
iw| _| cosB, — sing i 6
The angle between the stator current componentg ’i;s - -sin®, cosd, 4 6)

i> andi; gives the torque-angle command. The flux-t -
and torque-producing components of the stator-otirre
commands are obtained as shown in Eq. 2-3: S

i i
as qs
LT s =[T'1} s 7
= @ | “ "
T %
A K s 0
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Fig. 1: Block diagram of the indirect field-oriedteontrol system
Where: Table 1: Induction motor parameters
Parameters Value
1 P, Nominal power 1100 W
A\ Voltage 220V
771- _]/2 _\/?3/ 2 1 Rs Stator resistance 9.53 ohm
Lsc Stator leakage inductance 0.136 H
]/2 \/7/2 1 L, Rotor inductance 0.0505 H
Lm Mutual inductance 0.447H
L ) J Rotor inertia 0.0026 kgfin
iwle = d, g-axis stator current components

iroi el = Are the torque component of the statorFuzzy controller: The inputs of the fuzzy logic
current controller are an error between reference and
feedback speed of the system. The fuzzy logic
Then by computing stator current commands usingontroller is designed as a multi-input and single-
T 'current equations are obtained as shown in Eq:8-1Zutput control system. The inputs of the controller

are speed error and speed error rate. The output of

as'

(8) the fuzzy logic controller is a control action, The
design procedures are as the followings. First, the
i =[i{cos8, 9) membership function of inputs and output parameters
were defined for both the input error and erroerat
=‘r45ings (10) which consists of seven membership functions (mf1,

mf2,..., mf7). The membership functions for the otitpu

2 start with seven membership functions (mfl, mf2,...,

s 5”) (11) mf7), which can be defined as the population of the
BCO in its algorithm. Secondly, the rules tableised
to analyze the output (control actions). There 4%e

o (12) total numbers of fuzzy rules. Finally, the
defuzzification was done by using the Center ofaAre

The proposed controller is shown in Fig. 1. (COA) methods as shown in Eq. 13:
The first block in Fig. 1 calculates current ahdf

in d-q axes (Boldea and Nasar, 2006). The current m

controller should also ensure an ideal decoupling W, xa

between the field and torque forminigs and jg COA Uy, (8) = (13)

components since both components are strongly >w,

coupled to each other in the field synchronous i=1

coordinate system. The second block in Fig. 1, ind _ .
Park's transformation (Krauset al., 1995) of motor. Where, the output level @E each rule is weighted by
The motor parameters are shown in Table 1. the firing strength wof the I" rule.
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Bee cololny optimization: In BCO algorithm, the hive (ITAE) of speed error and rise time. As a conseqgagen
of artificial bees contains two groups of bees,olitare  F the objective function, is defined by Eq. 14:

scout and employed bees. The scout bees have the

responsibility of finding a new honey source. The
responsibility of employed bees is to determineady
source within the neighborhood of the honey soimce
their memories and share their information witheoth As a result, the tuned parameters of memberstfips

bees within the hive. The procedure of the BCOfuzzy logic controllers are illustrated in Fig. 3
algorithm is given as follows: The simulation results are shown in Fig. 4 and 5.

They depict the speed and torque responses faingtar
Step 1: Randomly generate the initial populatiofis ofransience at speed set point of 120 rad/s, whitad
scout bees disturbance applied at t = 0.4 sec. Figure 4 shaws
Step 2: Find the fitness value of the initial plaions ~ comparison between Proportional-Integral (Pl) auifer
Step 3: Neighborhood search: select the best aitds and optimized fuzzy logic controller under no-logod
separate into two groups then find the size ofoad condition. The integral gain {Kand the integral

Minimize F = | (error)dt+ ¢ (14)

patch sites time (T;) of the PI controllers were set to 10 and 0.8 s
Step 4: Recruit employed bees for selected sitek arrespectively. Figure 5 depicts torque response
select the fittest bees from each patch comparison between both controllers.
Step 5: Check the stop criterion. If the criterigm
satisfied, terminate the search Table 2: Control rules of fuzzy logic controller
Step 6: Assign the remaining bees to random search Error
and then go to Step 2
Error rate LN MN SN VA SP MP LP
LN LP LP LP  MP MP SP z
RESULTS MN LP MP MP MP SP Z SN
SN LP  MP SP  SP Z SN MN
. . z MP  MP sP Z SN MN MN
In the design process, the fuzzy logic controllergp MP  SP 7 SN SN MN LP
based on T-S fuzzy logic consists of three pararmete mp SP z SN MN MN MN LP
with two-input and one-output. Each parameter ciasi LP z SN MN MN LP LP LP

of two trapezoidal and five triangular membership
functions. The control rules are shown in Tablen? a Table 3: Parameters setting of the BCO

its corresponding graphs are shown in Fig. 2. ThesBees algorithm parameters Symbol  Value/range
membership  functions and control rules arePopulation . n 10.00
automatically tuned by the BCO. Number of selected sites m 500
P in Table 3 | d in th BC&umber of elite site e 2.00
_Parameters in Table 3 were employed in the atch size ngh 0.0l
optimization process. Number of bees around elite site nep 5.00
The performance index in the optimization Number of bees around other selected site  nsp 2.00
algorithm of BCO is the Integral Time Absolute Hrro Maximum number of iteration itermax 100.00
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Fig. 3: Optimized memberships function for fuzzgitocontroller
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Fig. 4: (a) Speed response of BCO-optimized fuznyicl and PI controller, (b) Zoom-in result of (a)rithg rising
time and (c) Zoome-in result of a(a) during loadulisance.
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Fig. 5: Torque response of optimized fuzzy logid &1 controller
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