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Abstract: Problem statement: This study considers the precision of the output series generated from aberrant 
input series in the context of the distribution of the dynamic estimate and also investigate relative merit of 
analyzing residuals with outliers for a volatility input dynamic model. Approach: The study developed a 
methodology for checking volatility at every time point and evaluates the influence of volatility and outliers on 
both the estimates of the fitted Dynamic Model (DM) and test criterion for model adequacy. Results: Both the 
analytical and empirical findings in this study reveal that outliers affect significantly the estimates of the 
dynamic model and there was a masking effect of volatility with outliers in the series and therefore jeopardizes 
test criterion for model adequacy because outlier series were embedded in its computation. Conclusion: The 
analysis of outlier in dynamic model specification can involve the determination of volatility, most especially in 
economic series for which causal relationship can proffer some evidence based solutions to decision makers on 
pressing economic issues. The model specified in this study has shown the influence of outlier embedded with 
volatility in empirical study on dynamic function modelling. In the first instance, outlier significantly affects the 
estimates of the model, apart from this; the model residual is affected, these have a combine effect on the 
precision of output generated. 
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INTRODUCTION 
 

 The problem of fitting dynamic model in time 
series analysis is one challenge of testing model 
specification, especially when there is need for 
measuring the precision of the generated output series 
based on the inference about the parameters, as well as 
test of adequacy of fitted model is the presence of 
outlier and volatile input series. Sarnaglia et al. (2010) 
have emphasized that outlying observation may be 
strong enough to ruin any kind of traditional methods of 
estimation and much effort in time series analysis is 
geared towards overcoming or alleviating the problem 
of outlying observation in data analysis. Volatility in 
international commodity price usually emanate from 
two main sources, either through a change in world 
prices or fluctuation in exchange rate (George 
Rapsomanikis and Alexander, 2006); the state of the 
two major sources determine the eventual domestic 
trade price of a commodity over a period of time, hence 

the need for studying the behavior of volatility 
economic time series. 
 In this study, we consider the estimation of the 
dynamic parameter space and the analysis of the 
residuals of a dynamic model in the presence of outlier 
input series embedded with volatility.  

 
MATERIALS AND METHODS 

 
Specification of outliers based dynamic modelwith 
measure of volatility: Let the Dynamic Model (DM) of 
order (p, q) (DM (p, q)) be defined as: 

 

t t t(B)Y (B)Xδ = ω + ε   (1) 

 
Where: 

 

 
p q

j j
j 0 j o

j 0 j 0

(B) B , 1,  (B)= B  and 1
= =

δ = δ δ = ω ω ω =∑ ∑ . B is the 

backward shift operator defined as t t 1B −ω = ω  ,εt is the 
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stochastic disturbance term at time t and there is no delay 
in the response of Y to a change in X, this is assumed.  
 Suppose that the autocorrelation in εt is the 
characterized by an Auto-Regressive-Moving Average 
(ARMA) of order (r, s) defined as Eq. 2: 
 
 t(B)e

t (B)

θ
φε =   (2)  

 

where,
r s

j j
j j 0 0

j 0 j 0

(B) B , (B)= B  and  1
= =

φ = φ θ θ φ = θ =∑ ∑ .{et} are 

the uncorrelated normal deviates with mean 0 and 
variance σe

2. 
 The combined dynamic disturbance model is then: 
 

t(B)e
t t (B)(B)Y (B)X θ

φδ = ω +    (3)  

 
 Now assume a gross error model on Xt, an outlier 
contaminated input series, we obtain Eq. 4:  
 

T
t t tX Z D= + ξ   (4) 

 
where, Zt is an outlier free volatile series and the 
volatility in Zt is measured byh(p) p= σ , where σ is the 

standard deviation of the outlier free observations for the 
given period. D is the magnitude of the outlier at time t 

=T and T
t

1 when t=T

=0 when t T

=
ξ = 
 ≠

. T is the timing occurrence of 

the outlier.  
 From Eq. 1 through (3), we derive the dynamic 
outlier model as Eq. 5: 
 

T
t t t t(B)Y (B) h (t) D e δ = ω + ξ +    (5) 

 
 Given the fact that the distribution of dynamic 
parameter space does not influence the disturbance space 
(Shangodoyin, 2008), we have the outlier based dynamic 
structure as Eq. 6: 
 

T
t t(B)h ( t ) (B)D 1

t t(B) (B)

t t

Y (B)e

   = (B)h (t) R

ω ω ξ −
δ δ= + + δ

π +
 (6) 

 
 The Rt in the second part of Eq. 6 is the residual of 
the outlier induced model and for the model in Eq. 6, we 
make the following assumptions: 
• All X t in (4) are suspected outlier, in other words, 

T
tξ  = 1 for all t = T unless otherwise confirmed with 

the procedure for testing presence of outliers (Tsay, 
1986) 

• The function ht (t) is significantly volatile for all 
time t 

• The series Yt, Dt and ht(t) are stationary and 
mutually independent of εt 

• The errors et are additive with respect to the 
influence of Yt, Dt and ht(t) 

• The errors {et} are stationary, independent and 
identically distributed normal with mean 0 and finite 
variance σ2

e   
 
 The {Yt}, {X t} and{DT} are bounded and for fixed 

p, q and m; the limits of the matrices
n

1
t k t jnn

1

lim Y Y  − −→∞ ∑ , 

n
1

t k t jnn
1

 lim X X  − −→∞ ∑  
m

1
T k T jnn

T 1

and lim D D  − −→∞ =
∑  exit and are 

positive definite. 
 The estimation procedure discussed above will be 
limited to the dynamic admissible parameter space 
abbreviated as DAPS(δ, ω). 
 The issue of how to measure volatility has generated 
series of ideas; various methods proposed include the 
moving standard deviation of percentage changes in 
exchange rate (Ait-Sahalia and Hansen, 2005) and the 
periodic volatility (Ederington and Guan, 2004). The 
generalised volatility σp for p used in this study is 
defined as Eq. 7 
 

1
2

p zp h(p t)σ = σ = =   (7) 

 
where, σ2

z is the variance of the outlier free time series , 
given that σ2

z is known, then Eq. 8:  
 

2 2
p2 2 2 2 2

p z p t p

2p
E pand Var( ) p Var( )

n 1=

σ
 σ = σ σ = σ =  −

  (8) 

 
 We assume that n is large and the normal distribution 
test statistic can be used to test the significant of the 
volatility at time t. 
 
Estimation of auto covariance and parameters of 
outlier dynamic volatility model: We can rewrite Eq. 
(5), an outlier dynamic volatility model of order p, q 
(DM (p, q)) as Eq. 9: 
 

^
t t t(B)Y (B) Z (t) e δ = ω +    (9) 

 
  And define ^ T

t t tZ (t) Z D= + ξ . Multiply Eq. 9 by 

t rY , r=1,2,......K−  and take expectation gives: 
^

t t r t t r t t r(B)E(Y Y ) (B) E(Z (t)Y ) E(e Y )− − − δ = ω +   , but for all 

r>1 this expression reduces to: 
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^Y YZ
(B) (r) (B) (r) δ γ = ω γ    (10) 

 
 Since p p

i i p j j pB  and B− −δ = δ ω = ω , then by Eq. 10 we 

estimate the Auto Covariance Functions (ACF) of the 
output series as Eq. 11: 
 

^

p 1 q

Y i Y j YZ
i 0 j 0

(r) (r)  + (r) 
−

= =

γ = δ γ ω γ∑ ∑   (11) 

 
 Clearly the ACF of dependent variable of the 
dynamic model defined in Eq. 5 is embedded with outlier 
volatility input. 
 To estimate the parameters of the dynamic model, 

we differentiate
n

2
t

t 1

e
=
∑  with respect to δ(B) and ω (B) 

respectively to 

give:

n
2
t

t 1

d( e ) n n
2 ^
t t t( (B))

t 1 t 1

2{ (B)Y (B)Y Z (t)}=

∂ δ
= =

∑
= δ − ω∑ ∑ , that is Eq. 12: 

 
n

2
t

t 1

d( e ) n n
2 ^
t t t( (B))

t 1 t 1

(B) Y (B) Y Z (t) 0=

∂ δ
= =

∑
= δ − ω =∑ ∑   (12) 

 

Also, 

n
2
t

t 1

d( e ) n n
^ 2^

t t t( (B))
t 1 t 1

2{ (B)Y Z (t) (B)Z (t)}=

∂ ω
= =

∑
= δ − ω∑ ∑  and thus 

 
n

2
t

t 1

d( e ) n n
^ 2^

t t t( (B))
t 1 t 1

(B)Y Z (t) (B)Z (t) 0=

∂ ω
= =

∑
= δ − ω =∑ ∑   (13) 

 
 Solving the normal Eq. 12 and 13 and with 
appropriate starting values we can obtain the least 
squares estimates of V = (δ, ω).  
 Two major points of interest are noticeable in Eq. 
11-13. In the first case, the magnitude of the outlier as 
well as the volatility in the input series have a 
bandwagon effect on the autocovariance generated in 
(11), according to Chernick et al. (1982), this may 
jeopardize the autocovariance function as an estimation 
and identification tool. Bartlett (1946) and Shangodoyin 
(2011) have claimed that where series (Zt, Dt, Yt) are 
themselves auto correlated, the lagged cross-correlation 
estimates can have high variance and the estimate at 
different lags can be highly correlated with one another, 
this situation can be attributed to the presence of outlier 
in series and masking of the volatility. In the second 
case, the contribution of series Dt and ht(t) on the 
estimate V = (δ, ω) is readily seen in the derivations from 
the normal Eq. 12 and 13. Finally the analysis of outlier 
in series may start with the elimination of volatility as 
this may be masked with Dt.  

Variance of Rt and test of adequacy: We have earlier 
defined the resident in the outlier DM volatility model in 
second part of Eq. 6 as Rt, 
where

T
t t(B)D 1 1

t t t T t(B)R (B)e (B)D (B)eω ξ − −
=δ= + δ = θ + δ . 

Following T say (1986), the magnitude of the outlier 
based on the least squares theory is: 
 

t t t t

(B) m
1 m t(B)

D (B)P , where P (B)X

(1 B ... B ...)Xω
δ

= ψ = θ =

= − θ − − θ −
 

 
 With 2 m 1

1 2 m(B) (1 B B ........ B )−ψ = − θ − θ − θ  are 
obtained after fitting ARMA model to the outlier free 
series ht (t). By assumptions (ii) and (iii), the variance 
of Rt is Eq. 14: 
 

( t T )

2 2 2 2
t D eVar(R ) ( (B)) (B)

=

−= θ σ + δ σ   (14) 

  
 From (13) it is evident that for an outlier 
contaminated series, the variability in the residual model 
is increased by

( t T )

2 2
D( (B))

=
θ σ  and the precision of the 

output generated can be measured through the variance 

of Rt. The residual cross-correlation 

n

t t
t 1

n n 1
2 2 2
t t

1 1

X e
*
k

{ X e }

=

−

∑
ρ =

∑ ∑
 is 

employed in checking adequacy of fit, because large 
cross-correlation between t t{e } and {X }  reveals 

inadequacy in the dynamic structure ω (B)/δ (B). The test 

criterion is the quantity 
v

2 * 2
k

k 1

n ( )
=

χ = ρ∑  , which possesses 

a λ2 distribution with v-p-q degrees of freedom. The 
equation derived above will be examined empirically in 
this study under results and discussion. with some well 
analysed data using a SYSTAT statistical package.  
 We use as Series A data on Quarterly Nigerian 
Agricultural Export Crops between January, 2000 and 
December, 2010 as dependent variable taken along with 
the quarterly exchange rate over twelve years between 
2000 and 2010. Series B is the quarterly sales of 
Botswana meat and meat product as dependent variable 
and average monthly exchange rate between quarter 1, 
1997 and quarter 4 2003. 

 
RESULTS AND DISCUSSION 

 
Empirical illustration of outlier with volatility: We 
evaluate the volatility input using Eqs. 7 and 8 by the 
normal distribution test statistic and whenever the 
volatility is insignificant we neglect it effects, otherwise 
we eliminate the value of volatility using zt-h(t). 
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 To examine the contribution of volatility ht(t) series 
in DM model specification as well as its effects on output 
series generated; we assume an outlier input series and 
the timing of the outlier are observed as well as the 
volatility. The estimates of the dynamic structure are 
computed with their variances; the variance of the model 
residual is computed and the actual test of adequacy is 
performed. A comparison is made between DM model 
with or without outlier input series. We shall now 
analyses some series using the approach discussed.  
 
Series A: This is an economic time series of size 44; we 
fitted the DM (1, 1) models Yt = 0.999 Yt-1 + Xt +0.915 
Xt-1 + Rt and Yt = Xt + 0.808 Xt-1 +Rt, to the series when 
the input is outlier free and contaminated respectively.  
 It evident from Table 1 that volatility in series A is 
significantly p[pronounced and series B does not suffer 
any significant volatility. We accordingly remove the 
volatility in series A and model the resultant series with 
and without outliers. The results are displayed in table 
2.  

 
Table 1: Significant test on Volatility 
 Series data  T-statistics  DF = n-2 Probability  Remark on ht 
A 3.15 10 0.001 Significant  
B 0.111 19 0.515 Not Sig  

 
Table 2: Estimates of the models fitted with their standard errors in 

bracket and value of the test criterion 
 Series  Series Series Series 
 A A*   B B*  
 Type of Without  Without With  Without  
series Outlier outlier outlier outlier 
Number 2 Nil 5 Nil  
of outlier 
Timing (T) 2,11 - 1,2,3,4 - 

   
and 21

 
δ-Estimate  0.679 0.489 0.533 0.538 
δ1 (0.115) (0.142) (0.187) (0.174) 
δ2 - 0.265 - - 

  (0.144)       
ω− Estimate 
ω0 0.074 0.120 0.728 0.974 
 (0.35) (0.013) (0.912) (0.867) 
ω1 0.999 0.998 1.950 1.716 

  (0.082) (0.112) (0.883) (0.869) 
 0.915 0.887     
 (0.010) (0.027) 
Variance 0.174 0.121 1.309 1.063 
of Rt   .323 .766 
Test 4.459 3.662 7.832 4.611 
criterion Q* 
Prob (Q)* 0.521 0.462 0.00065 0.203 

  
 In Table 2, the residual variance of the contaminated 
model is 1.359 multiple of that obtained for model are 
greater than that obtained for outlier contaminated 

model; but the test for the DM model with outlier is less 
when compared to what is obtained for outlier free 
model. The test statistics indicates that both models are 
adequate, but the power of the test for the model without 
outlier gives no room for questioning model adequacy 
more satisfactory than what is obtained for outlier 
contaminated model. 

 
Series B: The series is different once before attaining 
stationary and we fitted the DM (1,1,1) models: Yt = 
0.533 Yt-1 + 0.728 Xt + 1.950 Xt-1 + Rt and Yt = 538 Yt-1 
+ 0.924 Xt + 1.716 Xt-1 +Rt to the series (Yt, Xt) when the 
input is with and without respectively. In Table 2, the 
model residual variance with outlier is 1.231 multiple of 
the model residual variance without outlier. The 
magnitude of the standard error of the estimates of δ1, ω0 
andω1 are smaller for outlier free model than what 
obtained for outlier contaminated model, but the estimate 
of ω0 for outlier free model is not significant. The test 
statistics rejects model fitted on outlier contaminated series 
as adequate, where as the power of test model without 
outlier gives no room for questioning model adequacy.  

 
CONCLUSION 

 
 The study made use of a statistical technique which 
considers the time series prosperities of the variables 
involved. This eliminates the possibility of spurious 
regressions and consequently avoids inefficient estimators.  
 The analysis of outlier in DM modelling should 
involve the determination of volatility, most especially in 
economic series suitable for use. The model described in 
Eq.3 through 13 has a lot to recommend it on the 
contributions of outlier embedded with volatility in 
empirical study on dynamic function modelling. In the 
first instance, outlier significantly affects the estimates of 
the model, apart from this; the model residual is affected, 
these will have a combine effect on the precision of 
output generated. Secondly, the test criterion is 
jeopardized as tool for measuring adequacy of fit; 
because outlier series are embedded in its computation. 

 
REFERENCES 

 
Ait-Sahalia, Y. and L. Hansen, 2005. Handbook of 

Financial Econometrics Set. 1st Edn., Elsevier 
Science and Technology, Boston, ISBN-10: 
0444535543, pp: 1000. 

Bartlett, M.S., 1946. On the theoretical specification 
and sampling properties of autocorrelated time-
series. Supplement J. Royal Stat. Soci., 8: 27-41.  



Am. J. Applied Sci., 8 (11): 1149-1153, 2011 
 

1153 

Chernick, M.R., D.J. Downing and D.H. Pike, 1982. 
Detecting outliers in time series data. J. Am. Stat. 
Asso., 77: 743-747.   

Ederington, L.H. and W. Guan, 2004. Forecasting 
Volatility. Social Science Electronic Publishing, Inc. 

Rapsomanikis, G. and S. Alexander, 2006. The Impact of 
Domestic and International Commodity Price 
Volatility on Agricultural Income Instability: Ghana, 
Vietnam and Peru. 1st Edn., United Nations 
University, Helsinki, ISBN: 9291908320, pp: 21. 

Sarnaglia, A.J.Q., V.A. Reisen and C. Levy-Leduc, 2010. 
Robust estimation of periodic autoregressive 
processes in the presence of additive outliers. J. 
Multivariate Anal. 101: 2168-2183. 
DOI:10.1016/J.JMVA.2010.05.006 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Shangodoyin, D.K., 2008. On the selection of best 
subset autoregressive models in prediction with 
application to real life data. Statistics Transition. 9: 
471-484 

Shangodoyin, D.K., 2011. Identification of transfer 
function model in the presence of aberrant leading 
indicator. University of Botswana.  

Tsay, R.S., 1986. Time series model specification in the 
presence of outliers. J. Am. Stat. Asso., 81: 132-141.  


