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Abstract: Problem statement: Modified Gauss-Seidel (MGS) was developed in order to improve the 
convergence rate of classical iterative method in solving linear system. In solving linear system 
iteratively, it takes longer time when many computational points involved. It is known that by applying 
quarter-sweep iteration scheme, it can decrease the computational operations without altering the 
accuracy. In this study, we investigated the effectiveness of the new Quarter-Sweep Projected 
Modified Gauss-Seidel (QSPMGS) iterative method in solving a Linear Complementarity Problem 
(LCP). Approach: The LCP we looked into is the LCP arise in American option pricing problem. 
Actually, American option is a Partial Differential Complementarity Problem (PDCP). By using full-, 
half- and quarter-sweep Crank-Nicolson finite difference schemes, the problem was reduced to Linear 
Complementarity Problem (LCP). Results: Several numerical experiments were carried out to test the 
effectiveness of QSPMGS method in terms of number of iterations, computational time and Root 
Mean Square Error (RMSE). Comparisons were made with full-, half- and quarter-sweep algorithm 
based on Projected Gauss-Seidel (PGS) and Projected Modified Gauss-Seidel (PMGS) methods. 
Thus, the experimental results showed that the QSPMGS iterative method has the least number of 
iterations and shortest computational time. The RMSE of all tested methods are in good agreement. 
Conclusion: QSPMGS is the most effective among the tested iterative methods in solving LCP 
whereby it is fastest and the accuracy remains the same. 
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INTRODUCTION 
  
 The Linear Complementarity Problem (LCP) is 
normally applied in the area of computational 
mechanics, financial engineering and other disciplines 
in engineering, science and economics. The widely 
applications of LCP are because it corresponds to the 
notion of equilibrium and constraint optimization 
problems (Ferris and Pang, 1997).  
 In order to define the LCP, consider a matrix M, 
vector q and unknown vector z. Then, the unknown 
vector z will be solved in the following conditions: 
 

z 0≥  (1) 
 
Mz q≥  (2) 
 

( )z Mz q 0− =  (3) 

 The above formulations are the standard LCP. In 
this study, we will look into an implicit type of LCP 
whereby there exists another function y which plays an 
important   role (Koulisianis and Papatheodorou, 2003): 
 
z y≥  (4) 
 
Mz q≥  (5) 
 
( )( )z y Mz q 0− − =  (6) 

 
 Actually, we can solve the LCP by using either 
direct or iterative methods. However, when we deal 
with a large sparse linear system, iterative method is 
preferable. Moreover, it does not consume much 
memory compared to direct method.  
 The aim of this study is to introduce a new iterative 
method known as Quarter-Sweep Projected Modified 
Gauss-Seidel (QSPMGS) algorithm which will 
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accelerate the convergence rate. It is the combination of 
Quarter-Sweep approximation scheme with Projected 
Modified Gauss-Seidel (PMGS) algorithm. Quarter-
sweep iteration scheme is known to be effective to 
reduce the computational operations and thus speeds up 
the computational time without altering the accuracy; 
Sulaiman et al. (2004; 2009). The PMGS algorithm is a 
preconditioned iterative method based on the Modified 
Gauss-Seidel (MGS) method, established by 
Gunawardena et al. (1991) for the purpose of 
improving the convergence rate of classical iterative 
methods. Since then, many studies about the MGS 
method have been carried out like Li and Sun (2000) 
and Li (2005). Actually, Quarter-Sweep Modified 
Gauss-Seidel (QSMGS) had been applied to solve PDE 
in European option pricing problem, Koh and Sulaiman 
(2009). For verification of the new QSPMGS algorithm 
in solving LCP, we will examine it in the case of 
American option pricing.  
 As American option pricing model involves Partial 
Differential Complementarity Problem, (PDCP), Crank-
Nicolson (CN) scheme will be applied to discretize the 
PDCP into a LCP. Full-, half- and quarter-sweep CN 
schemes for approximation of the PDCP will be 
presented. Then, we will show how the generated LCP 
solved by PMGS method. Several numerical 
experiments will be carried out in a family of PGS 
methods, namely Full-Sweep Projected Gauss-Seidel 
(FSPGS), Half-Sweep Projected Gauss-Seidel 
(HSPGS), Quarter-Sweep Projected Gauss-Seidel 
(QSPGS), Full-Sweep Projected Modified Gauss-Seidel 
(FSPMGS), Half-Sweep Projected Modified Gauss-
Seidel (HSPMGS) and Quarter-Sweep Projected 
Modified Gauss-Seidel (QSPMGS) methods.  
 
Case study: American option pricing model: Option 
is a financial instrument which allows the holder to 
trade a certain asset in future time with a certain price. 
The two major styles of options are European and 
American options. Generally, the difference between 
them is in the trading aspect as European option can 
only be traded at the expiration time while American 
option can be traded at any time before or on the 
maturity time. Due to this reason, the pricing of 
American option involved PDCP. The PDCP is shown 
as follows (Tavella and Randall, 2000): 
 
 v g≥  (7) 
 

2
2 2

2

v 1 v v
s rs rv

t 2 s s

∂ ∂ ∂+ σ + ≤
∂ ∂ ∂

 (8) 

 

( )
2

2 2
2

v 1 v v
s rs rv v g 0

t 2 s s

 ∂ ∂ ∂+ σ + − − = ∂ ∂ ∂ 
 (9)  

Where: 
v = Value of the options 
t = Time  
s = Underlying asset price 
σ = Volatility of the asset price  
r = Risk free interest rate  
g =  Payoff function of the option 
 
 The final time condition can be defined as follows 
(Ikonen and Toivanen, 2007): 
 

( )
( )

( )( )
max s(T) K,0 for call option

v s,T g
max K s T ,0 for put option

 −= = 
−

 (10)  

 
Where: 
K = The exercise price 
T = Maturity time 
   
 The boundary conditions for the American option 
will be as (Ikonen and Toivanen, 2007): 
 
v(0,t) and v(S,t) = S−K (11) 
 
 v(0,t) = K and v(S,t) = 0 (12)  
 
where, S is the maximum asset price whereby it is 
sufficiently large. The boundary conditions given in 
(11) and (12) correspond to American call and put 
options respectively. 
 

MATERIALS AND METHODS 
 
Quarter-sweep Crank-Nicolson scheme: The finite 
grid network for the full-, half- and quarter-sweep 
approximation schemes are illustrated in Fig. 1. The solid 
node points shown in Fig. 1 are the points that will be 
considered by using full-, half- and quarter-sweep 
iterative methods. However, the values for the remaining 
points will be approximated by using direct method, 
Sulaiman et al. (2004; 2009) and Koh and Sulaiman 
(2009). The PDE in (9) that is Black-Scholes PDE 
(Black and Scholes, 1973) can be discretized as follows 
(Tavella and Randall, 2000; Koh and Sulaiman, 2009): 
 

( )
( )

( )

i, j 1 i, j

i p, j i, j i p, j

2 i p, j 1 i, j 1 i p, j 12
0

2

i p, j i p, j

i p, j 1 i p, j 1 i, j i, j 1
0

v v

t
v 2v v

v 2v v
s ip s

4 p s

v v

v v v v
r s ip s r

4p s 2

+

− +

− + + + +

+ −

+ + − + +

−
=

∆
− + + 

 
− + −σ + ∆  

∆ 
 
 

− + 
 

− +  − + ∆ +   ∆   
 
 

  (13) 



Am. J. Applied Sci., 7 (6): 790-794, 2010 
 

792 

 
  
Fig. 1: (a-c) the node points for the full-, half- and 

quarter-sweep cases respectively 
 
 Then the approximation Eq. 13 can be simplified in 
the following equation: 
 

i i p, j i i, j i i p, j i, j 1c v a v b v f− + ++ + =  (14) 

 
Where: 

( )2
i 0

1
s i s

2
β = − σ + ∆   

( )i 0r s i sλ = − + ∆  

1

t
θ =

∆
 

i i
i

1
c

2p s p s 2

 β λ= − ∆ ∆ 
 

( )
i

i 2

r
a

2 p s

β= θ + −
∆

 

i i
i

1
b

2p s p s 2

 β λ= + ∆ ∆ 
 

 ( )i, j 1 i p, j 1 i, j 1 i p, j 1f cv 2 a v bv+ − + + + += − + θ − −  

 
 If p is equal to 1, 2 or 4, it represents the full-, half-, 
or quarter-sweep schemes respectively. Then, we can 
rewrite (14) in a matrix form as:  
 

~~
Av f=  (15) 

 
Where: 

1p 1p

2p 2p 2p

np np

a b

c a b
A

c a

 
 
 =
 
 
  

⋱ ⋱ ⋱
 

T

1, j 2, j n, j
~
v v v v =  ⋯  

T

1, j 1 2, j 1 n, j 1~
f f f f+ + + =  …   

A family of projected Gauss-Seidel iterative 
methods: As mentioned before, the Projected Modified 
Gauss-Seidel (PMGS) method is based on a 
preconditioned iterative method, namely Modified 
Gauss-Seidel     (MGS)   method (Gunawardena    et al., 
1991). In order to develop and implement a family of 
PGS algorithm, consider (15) and multiply both sides of 
the equation with preconditioned such as: 
 

~~
PA v Pf=  (16) 

 
Where: 
 

P I S= +  

 

1p

2p

n 1p

0 b 0 0

0 0 b 0

S

0 0 0 b

0 0 0 0 0
−

 −α
 −α 
 =
 

−α 
 
 

⋯

⋯

⋮ ⋮ ⋮ ⋱ ⋮

⋯

 

I = Identity matrix  
 
 When α = 0, it is the classical Gauss-Seidel (GS) 
iteration, while if α = 1, it will become MGS method 
(Gunawardena et al., 1991; Koh and Sulaiman, 2009). 
Based on (16), the linear system can be rewritten as: 
 

~~
A* v f *=  (17) 

 
Where: 
A* PA=  

f * Pf=  

 

 By using the linear system generated in (17), the 
PDCP in (9) can be shown as: 
 

( )( )
~~

A*v f * v g 0− − =   (18) 

 
 Now, a LCP has been generated from the PDCP and 
has the similar form as LCP in (4-6). By considering 
(18) and the PDCP defined in (7-9), the algorithms of 
the family of PGS methods will be generally described 
in Algorithm 1: 
 
Algorithm 1: 

i. Initializing all the parameters. Set k = 0. 
ii.  General iteration 
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i p i n

k 1 k 1 k
i i ij j ij j

j 1 j i pii

1
x f * A* v A* v

A*

− −
+ +

= = +

 
= − − 

 
∑ ∑   

  If  k 1
ix g+ <  then k 1

iv g+ =  

  Else k 1 k 1
i iv x+ +=  

iii.  Convergence test.  
  If the error tolerance is satisfied, the value 

option at that time isk 1
iv +  and the algorithm 

end. 
  Else, set k = k+1 and go to Step ii. 

 
RESULTS 

 
 Several numerical experiments will be performed   
to examine the effectiveness of FSPGS, HSPGS, 
QSPGS, FSPMGS, HSPMGS and QSPMGS. The 
criteria concerned in these experiments include the 
number of iterations, computational time and Root 
Mean Square Error (RMSE).  The parameters used in 
these experiments are taken from Hon (2002) whereby 
K = 100, r = 0.1, σ = 0.30, T = 1(year), s∈[e−5, e7]. The 
matrix sizes tested are 512, 1024, 2048, 4096, 8192 and 
16384. As for the time steps, we will have 100 time 
steps  which means ∆t will be 0.01. The error tolerance 
ε = 10−10 is selected for the convergence test. For 
comparison, the numerical results obtained will be 
compared with the results of Binomial method (Hon, 
2002). Table 1 presents the experimental results. The 
results are also illustrated in Fig. 2 and 3. 

 
 
Fig. 2: Number of iterations versus mesh sizes of the 

FSGS FSPGS, HSPGS, QSPGS, FSPMGS, 
HSPMGS and QSPMGS methods 

 

 
 
Fig. 3: Computational time (sec) versus mesh sizes of 

the FSGS FSPGS, HSPGS, QSPGS, FSPMGS, 
HSPMGS and QSPMGS methods 

 

Table 1: Number of iterations, computational time and RMSE for FSPGS, HSPGS, QSPGS, FSPMGS, HSPMGS and QSPMGS methods 
 Mesh size 
 --------------------------------------------------------------------------------------------------------------------------------------- 
Method 512 1024 2048 4096 8192 16384 
Number of iterations 
FSPGS 69 230 785 2673 9053 30,432 
HSPGS 23 69 230 785 2673 9053 
QSPGS 10 23 69 230 785 2673 
FSPMGS 28 88 296 1012 3445 11651 
HSPMGS 11 28 88 296 1012 3445 
QSPMGS 6 11 28 88 296 1012 
Computational time (s) 
FSPGS 0.11 0.79 4.67 33.69 230.72 1679.72 
HSPGS 0.06 0.19 1.14 7.78 53.15 389.02 
QSPGS 0.01 0.03 0.14 0.87 5.53 44.95 
FSPMGS 0.08 0.39 2.51 18.31 135.25 1002.56 
HSPMGS 0.01 0.09 0.56 3.54 25.21 190.21 
QSPMGS 0.00 0.02 0.07 0.47 2.85 21.09 
RMSE 
FSPGS 0.016794 0.016906 0.017116 0.017247 0.020091 0.021419 
HSPGS 0.022725 0.016794 0.016906 0.017116 0.017247 0.020091 
QSPGS 0.094417 0.022725 0.016794 0.016906 0.017116 0.017247 
FSPMGS 0.016794 0.016906 0.017116 0.017247 0.020091 0.021419 
HSPMGS 0.022725 0.016794 0.016906 0.017116 0.017247 0.020091 
QSPMGS 0.094417 0.022725 0.016794 0.016906 0.017116 0.017247 
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DISCUSSION 
 

 In the computational experiments, we have tested 
the iterative methods with different mesh sizes in terms 
of number of iterations, computational time and RMSE. 
 As the mesh sizes go larger, the more points could be 
considered, which means option with more precise 
underlying assets price could be priced. Based on the 
results for different mesh sizes, the accuracies of all 
iterative methods are in good agreement. This means that 
half- and quarter-sweep algorithms computed only parts 
of the entire node points and their accuracies don’t alter.  
 According    to    Fig. 2 and 3, QSPMGS has the 
lowest computational time as while as the least number 
of iterations. Through numerical results in Table 1, 
percentage reduction for number of iterations of 
HSPGS, QSPGS, FSPMGS, HSPMGS and QSPMGS 
are about 66.67-70.70, 85.51-91.40, 59.42-62.29, 
84.06-88.92 and 91.30-96.73% respectively compare to 
FSPGS. In terms of execution time, HSPGS, QSPGS, 
FSPMGS, HSPMGS and QSPMGS algorithms are 
faster approximately 45.45-76.96, 90.91-97.60, 27.27-
50.63, 88.01-90.91 and 98.76-100% than FSPGS 
algorithm. As we can see in Table 1, the QSPMGS 
takes only 21.09 seconds for largest mesh size, 16384.  

 

CONCLUSION 
  

 In this study, the effectiveness of the Quarter-Sweep 
Projected Modified Gauss-Seidel (QSPMGS) algorithm 
has been examined in solving Linear Complementarity 
Problem (LCP). In the experiments involved full, half- 
and quarter-sweep algorithm based on Projected Gauss-
Seidel (PGS) and Projected Modified Gauss-Seidel 
(PMGS) methods, QSPMGS proved to be the most 
effective iterative method. QSPMGS converges faster 
by having the least number of iterations and thus speed 
up the execution time.  
 For future work, further investigation for the capability 
of the combination of quarter-sweep iteration with MGS 
method needs to be performed for solving various multi-
dimensional problems (Ibrahim and Abdullah, 1995; 
Tavella and Randall, 2000; Sulaiman et al., 2009). In fact, 
we can consider improving the proposed method by 
implementing block iterative approach. 
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