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Abstract: Problem statement: Understanding the relationships between rice yield and soil properties 
such as bulk electrical conductivity is of critical importance in precision farming. The apparent 
Electrical Conductivity of soil (ECa) is influenced by a combination of physico-chemical properties 
including soluble salts, clay content and mineralogy, soil water content, bulk density, organic matter 
and soil temperature. Accordingly, ECa is considered as the most reliable and frequently used tools in 
precision farming research for the spatio-temporal characterization of edaphic and anthropogenic 
properties that influence crop yield. Many researchers have found positive correlation of ECa to crop 
yield such as corn and soy bean but not rice paddies. This study discussed on the relationship between 
ECa and rice yield for best practice management on paddy field. Approach: The analyses had used 
two reliable methods in six selected paddy lots at Sawah Sempadan, Selangor, Malaysia. Stepwise 
Linear Regression (SLR) and Boundary Line Analysis (BLA) techniques were used. External factors 
such as weather conditions, disease outbreaks, labor shortage and other factors were not considered in 
the data analysis and interpretation. Results: The results indicate that deep ECa (ECad) is significantly 
related to rice yield with R2 = 0.1246 and R2 = 0.4156 from SLR and BLA analyses, respectively.  
Conclusion: Results of this study can benefit farmers and researchers to understand the influence of 
ECa to the crop productivity. 
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INTRODUCTION 
 
 Researchers and producers alike have recently 
shown interest in characterizing soil and topographic 
variability in relation to crop growth and yield. Several 
researchers (Kravchenko and Bullock, 2000) have 
reported that there is usually little or no significant 
relationship between crop yield variation and individual 
soil characteristic such as organic matter, cation 
exchange capacity and texture. However, apparent 
Electrical Conductivity (ECa), which is affected by a 
number of soil properties such as the clay content, soil 
water content, temperature, salinity, organic compounds 
and metals (Kachanoski et al., 1990) has been highly 
correlated with claypan  topsoil thickness Doolittle et al. 
(1994); Sudduth et al. (2001) causing variations in 
water storage characteristics and consequently to 
yield variations in average precipitation crop years 
(Kitchen et al., 1999). 

 Corwin et al. (2003) observed that, although the 
crop yield inconsistently correlates with soil apparent 
Electrical Conductivity (ECa), there are specific 
instances   where    yield     correlates with ECa. 
Johnson et al. (2003), in a 250 ha dry land experiment, 
mapped ECa against wheat and corn yields and found 
the corn yield to have positive correlations with ECa. 
They expressed the possibility of using ECa to make 
decisions on prescription maps for input metering and 
yield determination. Amidst all these contradicting 
results, ECa is one sensor-based measurement 
parameter that has shown promise for precision 
farming. It is also clear that ECa’s relationship to crop 
yield is so complex that it has to be modeled for the 
specific crop production system. 
 Numerous techniques have been applied for 
modeling the relationship between crop yields and 
measured soil and site parameters. Linear regression is 
the most popular technique to perform the relationship 



Am. J. Applied Sci., 7 (1): 63-70, 2010 
 

64 

significance and predictive ability. Linear analyses of 
investigating yield response consisting of empirical 
analysis of large, spatial and multivariate data sets have 
often been reported in the literature. Several authors have 
found that linear correlations between yield and soil 
properties, or between two soil properties, vary greatly 
both within and between fields (Drummond et al., 1995; 
2003;  Khakural   et al.,  1999; Pierce et al., 1994; 
Lamb et al., 1997) and can also exhibit strong temporal 
variability (Lark et al., 1997). 
 Non-linear models can also be applied, but with a 
prerequisite of assuming the relationship between the 
dependent and independent variables, which in most 
cases may be unknown. Kitchen et al. (1999) 
investigated the relationship of apparent Electrical 
Conductivity (ECa) of claypan soils (Udollic 
Ochraqualfs) and grain yield of five site-years of corn, 
seven site-years of soybean and one site year of grain 
sorghum. They used a boundary log-normal function fit 
to the upper edge of the scatter plots between yield and 
ECa to quantify the widely varying yield response. A 
significant relationship between grain yield and ECa 
was reported. They mentioned that more information on 
climate, crop type and specific field parameters were 
needed to explain the shape of the possible yield by 
ECa interaction. 
 The procedure of boundary line analysis, detailed 
by Webb (1972), selects a subset of points from the 
original data that are the best performing in terms of 
some response variable (e.g., yield). The boundary line 
analysis works best when data sets are large. The 
boundary line analysis procedure assumes that there is a 
significant biological response between the potential 
limiting factor and the response variable in order to 
imply the cause-and-effect relationship (Lark et al., 
1997; Webb, 1972). A weakness of the analysis is that 
it is a single factor analysis, like simple correlation and 
assumes insignificant joint effects with other factors at 
the boundary (Lark et al., 1997). Webb (1972) asserted 
that boundary line analysis is a procedure for exploring 
response relationship for the purpose of indicating 
where attention should be directed for the greatest 
prospect of increasing yield. For this analysis, it must 
be recognized that soil ECa per se is not a direct 
measure of a yield-limiting factor. However, it is an 
estimate of numerous soil properties of the top soils that 
mediate crop growth.  
 An insight into the relationship between soil 
properties, plant stand and yield potential will pave the 
way for maximizing the production through an 
appropriate decision-making strategy. In order to 
understand the relationship, a necessary step in this 
process is the search for techniques that enable to 

identify functional relationships between ECa and crop 
yield. This study will focus on rice as a correspondence 
crop to relate with soil ECa. The main goal of this study 
was to investigate rice yield relationship to variability 
of soil ECa. 
 

MATERIALS AND METHODS 
 
Study site: The research was conducted at the paddy 
fields of Sawah Sempadan, Tanjung Karang, Selangor, 
managed by the Integrated Agricultural Development 
Area (IADA) under the Ministry of Agriculture 
Malaysia authority. It is in the district of Kuala 
Selangor and Sabak Bernam at latitude 3°35”N and 
longitude 101°05”E. Sawah Sempadan covers 2300 ha. 
and it is divided into 24 blocks namely Blocks A to X 
and Block C was chosen as the study area. It has 118 
lots with 1.2 ha each. Six lots were selected randomly 
for this research namely lots 3117, 3121, 3155, 3168, 
3172 and 3176. According to the previous research, lots 
3117 and 3121 are located in peat area where the 
former river was found in that area Aimrun et al. 
(2008). In this condition, any supplemental input (lime, 
fertilizer and water) will be absorbed more by the soil 
rather than crop due to high infiltration rate of the soil.  
 
Data collection and analyses: The rice yield data was 
collected on April 2007 based on Crop Cutting Test 
(CCT) technique at 24 randomly selected sampling 
points within the selected lots Fig. 1. The latitude and 
longitude position of each sampling point was recorded 
using a handheld DGPS Pro-XR. The differential 
correction process was done automatically on real time 
basis  by  using  available   beacon  station  at Lumut 
(4°15.075"N and 100°39.638"E), Perak (transmission 
frequency was 298.00 kHz). The area of cut at each 
sampling point was 0.5×0.5 m and the collected grains 
from the cut crops were weighed and recorded.  
 The ECa data was measured by using Veris 3100 
soil electrical conductivity sensor. The sensor 
integrated with DGPS was pulled across each lot behind 
a tractor within a typical paddy field size of 60 m width 
and 200 m length. The instrument was calibrated, as per 
manufacturer instructions, prior to data collection for 
each     field   by checking its resistance of lesser than 2 
ohm using ohmmeter. The sensor has three pair of 
coulter-electrodes to determine soil ECa. The coulters 
penetrate the soil surface into a depth of 6 cm. One pair 
of electrodes functioned to emit an electrical current 
into the soil, while the other two pairs detect decreases 
in the emitted current due to its transmission through 
soil (resistance). The depth of measurement is based 
upon       the     spacing     of     the     coulter-electrodes.  
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Fig. 1: The CCT sampling points for six selected lots 

in the study area 
 
The center pair, situated closest to the emitting 
(reference) coulter-electrodes, integrate resistance 
between depth of 0-30 cm, while the outside pair 
integrate between 0-90 cm. Output from the data logger 
reflected the conversion of resistance to conductivity 
(1/resistance = conductivity). 
 A Differential Global Positioning System (DGPS) 
Trimble AgGPS132 (Trimble Navigation Ltd., 
Sunnyvale, CA) with sub-meter accuracy was used to 
geo-reference ECa measurements. This differential 
correction process was done automatically on real time 
basis by using the OmniSTAR DGPS System. The 
Veris data logger recorded latitude, longitude, shallow 
and deep ECa data (mS m−1) at 1-s interval in an ASCII 
text format. The restriction of the EC logger was 
available to log only when DGPS signal was received. 
The location of latitude and longitude (WGS84) were 
next converted to Malaysia Rectified Skew 
Orthomorphic (RSO) using GPS pathfinder Office 2.90. 
The ECa data in ASCII format were then transferred 
through a diskette to an available Geospatial and GIS 
software such as GS + version 7 and ArcGIS 9.2 with 
spatial analyst extension in order to generate spatial 
map by using kriging technique. 

 
 
Fig. 2: The composite map in grid format  
 
 The spatial map produced from GIS then would be 
compiled in one single map consisting of shallow ECa 
(ECas) layer, deep ECa (ECad) layer and rice yield 
layer. The composite map was divided into several 
parts using grid format in the GIS for uniformity area 
distribution Fig. 2. A new average data were next 
selected based on CCT points as shown in Fig. 1. This 
procedure was executed in order to get ECa data and 
rice yield data in the same position with the same 
number of data points. 
 
Statistical data analysis: Several methods of statistical 
analysis were used in this study to relate rice yield 
based on CCT to soil ECa. External factors such as 
weather conditions, disease outbreaks, shortage of labor 
force and others were not considered in the data 
analysis and interpretation.  
 Before performing data analysis, the data was 
imported into GIS software and was rasterized. This 
method created a map of cells for each layer that 
correspond to the same geographic cells in the other 
layers such as yields or soil ECa. The cell data then was 
analyzed in the GIS, or logged into a database or 
spreadsheet programme for analyses. The techniques 
adopted in this study consist of (1) stepwise Linear 
Regression (SLR) and correlation analysis, (2) 
Boundary Line Analysis (BLA) and (3) visual map 
analysis. 
 The stepwise linear regression was implemented by 
using SPSS version 11.5 to analyze all the data. The 
coefficient of determination (R2) measures of how well 
the regression line approximates the real data points. 
An R2 of 1.0 indicates that the regression line perfectly 
fits the data. Beside, the Pearson’s correlation was also 
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executed to indicate the strength and direction of linear 
relationship between soil ECa and rice yield.  
 The boundary line analysis was implemented in 
this investigation. This method isolates the upper 
boundary points for each soil ECa range and fits a non-
linear line or equation to represent the top performance 
parameters within each soil ECa range. When viewed in 
a two-dimensional scatter plot, this upper boundary 
represents the conditions of that data set, the maximum 
possible response to ECa measurements. Points below 
the boundary line represent conditions where other 
factors have limited rice yield. The 95 and 75 percentile 
ranking were used to indicate how well the performance 
relative to the other cells in data spreadsheet similar to 
ECa values. Since this subset of data points were lying 
on the upper edge of the whole data, any questionable 
points need to be scrutinized. 
 

RESULTS 
 
Linear regression analysis: The relationship between 
soil EC and yield has been reported and quantified by 
others. It is becoming increasingly common for 
precision agriculture service providers to create scatter 
plots and calculate bi-variate regression correlation 
coefficients for paired data. When this is applied to ECa 
and yield data sets, as shown in Fig. 3, the results 
typically show statistically significant correlation. The 
yield and soil EC from these Sawah Sempadan paddy 
fields have a statistically significant (at the 1% 
significance level) correlation co-efficient of 0.1246. 
Much of this is due to the underlying soil property 
relationships that both data sets have in common. 
Beside, the density at which both data sets are collected 
influence to the analysis result. The virtually 
continuously-sensed, dense data collected with the 
mobilized EC mapping system (Veris 3100) and from 
the CCT yield data from similar locations in the field, 
reduced the errors induced by interpolating sparser data.  
 This study, involved two different approaches of 
statistical analyses. The 143 data points in six selected 
lots of the study area have been acquired for the 
investigation as shown in Table 1. Yield, ECas and 
ECad from 24 data points in each lot have been 
interpreted for the analysis. However, lot 3155 has one 
missing data point due to an error during the rice yield 
measurement task.  
 As shown in Table 1, lots 3117 and 3121 produced 
only 6.49 and 4.73 ton ha−1 of rice yield, respectively, 
the lowest yield production in the lots studied. The 
highest   yield was in  lot   3172  with  10.32   ton  ha−1. 

 
 
Fig. 3: Least square linear-line of rice yield versus 

ECad in all lots of the study area 
 
Table 1: Rice yield and soil ECa values in six lots of the study area 
  Average yield  Average ECas Average ECad 
Lot n (ton ha−1) (mS m−1) (mS m−1) 
3117 24 6.49 29.34 67.80 
3121 24 4.73 31.97 65.95 
3155 23 9.03 30.29 103.12 
3168 24 10.20 34.61 98.94 
3172 24 10.32 32.65 101.09 
3176 24 8.01 49.44 101.32 
All lots 143 8.13 34.75 89.61 
 
The    average   of   ECas   data    was  approximately 
30 mS m−1 all lots accept for the lot 3176 which 
indicated almost 50 mS m−1 of ECas, while the 
averages of ECad values fluctuated ranging from 66-
100 mS m−1. The trends of ECad were likely 
synchronized to the yield production. It shows that high 
yields were obtained when ECad is around 90 mS m−1. 
 The graph in Fig. 3 represents the linear 
relationship between ECad and rice yield production. 
The coefficient of determination (R2), indicates a 
significant relationship at 0.01 level.  The pattern of the 
graph and the R2 value show that ECad has a positive 
linear relationship to rice yield and more reliable to be 
used as independent variables for the statistical analysis 
compared to the ECas which only perform 0.0003 of R2 
Fig. 4. 
 In order to find the best model to relate rice yield 
and soil ECa, the linear regression analysis was carried 
out by using ECas and ECad data as independent 
variables and rice yield data as dependent variable. The 
stepwise method produced the best selection model in 
the analysis as shown in Table 2. According to the 
results, both ECas and ECad are significantly related to 
the rice yield and generated high coefficient of 
determination    value    at   0.001    level   (R2 = 0.161).
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Fig. 4: Least square linear-line of rice yield versus 

ECas in all lots of the study area 
 
Table 2: Results of linear regression analysis for rice yield, ECad 

and ECas 
Lot All lots 
n 143 
Average ECas (mS m−1) 34.75 
Average ECad (mS m−1) 89.61 
Average yield (ton ha−1) R2 
R2 0.161*** 
Model yield = 0.042(ECad)-0.058(ECas)+6.418ab 
 
Nevertheless, the ECad contributed more to the 
significant relationship factor rather than ECas as 
shown in Table 3. The ECas only assist to perform 
better linear regression as suggested by stepwise 
method.  
 
Boundary line analysis: The Boundary Line Analysis 
(BLA) was carried out in this investigation as a non-
linear analysis. The same data was used to identify the 
relationship and the results were compared with the 
linear regression analysis. The analysis was divided into 
two categories. The first category was carried out by 
using ECad and rice yield and the second category by 
using ECas and rice yield. Each category of analyses 
was executed in both 95 and 75 percentile rankings to 
perform the non-linear model Table 4 and 5. The 
analysis was successfully performed to determine the 
relationship between rice yield and soil ECa. The best 
relate to rice yield was ECad which represented the 
highest R2 value in both 95 and 75 percentile ranking 
(0.3903 and 0.4156, respectively) when compared to 
the R2 values found in ECas (0.0999 and 0.1833, 
respectively). 
 The pattern of the graphs in Fig. 5 presents both 
low and high ECa values are associated with a decrease 
in productivity. The mid-range of ECa values are 
associated with high rice yield in both ECad and ECas 
conditions. The curve fit line indicated higher yield 
when ECa reach approximately to 100 and 35 mS m−1 
for deep and hallow ECa, respectively. 

 
(a) 
 

 
(b) 

 
Fig. 5: Non-linear line of rice yield versus (a) ECad and 

(b) ECas based on 75 percentile ranking of 
boundary line analysis 

 
Table 3: Correlations of rice yield, shallow ECa and deep ECa for all 

lot of study area 
    Rice yield  ECas  ECad 
Rice yield  Pearson correlation  1.000 0.016  0.353**
  Sig. (2-tailed)  ----  0.850  0.000 
  n  143.000  143.000 143.000 
ECas Pearson correlation 0.016 1.000 0.510**
 Sig. (2-tailed) 0.850 0.143 0.000 
n 143  143.000 
ECad Pearson correlation 0.353** 0.510** 1.000
  Sig. (2-tailed)  0.000  0.000  0.143 
  n  143.000  143.000   

**: Correlation is significant at the 0.01 level (2-tailed) 
  
 The rice yield response to soil ECa is highly 
associated in non-linear compared to the linear 
regression analysis. The BLA isolates the top yielding 
points for each soil EC range and fits a non-linear line 
or equation to represent the top-performing yields 
within each soil EC range. This method knifes through 
the cloud of EC/yield data and describes their 
relationship when other factors are removed or reduced. 
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Table 4: Results of boundary line analysis for rice yield and ECad in six lots of the study area 
        95th percentile    75th percentile 
   Average of Average rice ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐  ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
Lot  n  ECad (mS m−1) yield (ton ha−1)  R2   Model  R2  Model 
All lots  143  89.61  8.13  0.3903***  yield = -0.00031 (ECad)2 +  0.4156***  yield = -0.00054 
          0.08099 (ECad)+6.29212    (ECad)2+0.12373  
              (ECad)+2.73336b 
b: Boundary line model to be used for map generation; ***: R2 values in column are significant at the 0.001 level 
 
Table 5: Results of boundary line analysis for rice yield and ECas in six lots of the study area 
        95th percentile   75th percentile 
    Average of  Average rice ----------------------------------------------------- ------------------------------------------------------ 
Lot n ECas (mS m−1) yield (ton ha−1) R2   Model  R2  Model 
All lots  143  34.75  8.13  0.0999**  yield = -0.00170 (ECas)2  0.1833***  yield = -0.00226 (ECas)2 
          +0.13122 (ECas)+8.71453    +(0.19947 (ECas)+5.10047b 
 b: Boundary line model to be used for map generation;  **: R2 value in column is significant at the 0.01 level;  ***: R2 value in column is 
significant at the 0.001 level 
 

         
(a) (b) 

 

 
(c) 

 
Fig. 6: The kriging maps of (a) rice yield, (b) ECad and (c) ECas classified by manual method 
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Figure 4 is a scatter plot of a Sawah Sempadan paddy 
field which does not show a statistically significant 
relationship when both data sets are correlated in their 
entirety. It would seem that ECas explains zero percent 
of the yield variability on this field. Yet a relationship 
does appear to exist at the upper yield limits as shown 
in Fig. 5b. This relationship is clarified using the 
boundary line method which shows that ECas explains 
almost 20% of the yield limiting factors on this field. 
Further more, the relationship of rice yield is 
significantly more related to ECad as shown in Fig. 5a 
which explains almost 50% of the yield variability. The 
upper boundary represents the maximum yield for each 
soil EC range. Nevertheless, there may be a number of 
factors causing yields to be lower than the boundary 
that need to be investigated further. 
 
Visual map analysis: The classification approach using 
raster calculator, which was available in the spatial 
analyst for calculating the ECa reading and calculated 
maps were produced. Since the standard classification 
did not visualize much variability, thus the 
classification technique of manual, which was 
introduced by ArcGIS software, was selected to visual 
variability as groups. This study decided to zone the 
area into 5 zones (respectively for ECa reading and rice 
yield) which could be manageable and also easy to 
compare. 
 According to the yield map Fig. 6a, the areas were 
mostly occupied by the higher yield and it seemed to be 
concentrated in the south. The lower yield were 
scattered mostly in lots 3117 and 3121 in the north of 
the area. The variability of ECad map Fig. 6b illustrated 
that class 3 (the moderate values of ECad) was covered 
almost more than half of the area and concentrated in 
the south. The lots 3117 and 3121 located in northern 
area have lower ECa values compared to the other lots. 
Previous research was established that lots 3117 and 
3121 are located in peat area where a former river was 
found in that area Aimrun et al. (2008). In this 
condition, any supplemental inputs (water and 
fertilizer) will be absorbed more by the soil rather than 
crop due to high infiltration rate on the soil. For that 
reason, the irrigated and stagnant water in those 
particular lots become lesser and influenced the ECa 
values as previously discussed. 

 
DISCUSSION 

 
 The analyses in this study showed that both ECad 
and ECas are important parameters in determining the 
relationship evidences between rice yield and soil ECa. 
The stepwise method was suggested both ECad and 
ECas are necessary variables to generate linear 

modeling. However, the ECad contributed more to the 
significant relationship factor rather than ECas. Beside, 
an approach of Boundary Line Analysis (BLA) 
technique proved that the rice yield is significantly 
related to ECad which explains almost 50% of the yield 
variability. The analyses results show that both low and 
high ECa values are associated with a decrease in yield 
productivity. The mid-range of ECa values correspond 
high rice yield in both ECad and ECas conditions. 
 According to the kriging maps observation, the 
Sawah Sempadan paddy fields produced higher yield in 
southern area associate with the moderate values of 
ECad. There was no obvious relationship between yield 
and ECas considered not contributing any influence 
factor to the rice yield as visualized in ECas kriging 
map. It can be concluded, that visual observation and 
statistical analysis indicated the same results and the 
trends could be observed in most areas of the paddy 
field for several planting season. 

 
CONCLUSION 

 
 These findings indicate the potential for technology 
of precision farming to understand and control variation 
in Malaysian production fields. Additional research is 
needed to confirm the results with data from other 
fields and crops. 
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