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Abstract: Problem statement: Neural networks and fuzzy inference systems are becoming well-
recognized tools of designing an identifier/controller capable of perceiving the operating environment 
and imitating a human operator with high performance. Also, by combining these two features, more 
versatile and robust models, called “neuro-fuzzy” architectures have been developed. The mo 
Approach: Motivation behind the use of neuro-fuzzy approaches was based on the complexity of real 
life systems, ambiguities on sensory information or time-varying nature of the system under 
investigation. In this way, the present contribution concerns the application of neuro-fuzzy approach in 
order to perform the responses of the speed regulation, ensure more robustness of the overall system 
and to reduce the chattering phenomenon introduced by sliding mode control which is very harmful to 
the actuators in our case and may excite the unmodeled dynamics of the system. Results: In fact, the 
aim of such a research consists first in simplifying the control of the motor by decoupling between two 
principles variables which provoque the torque in the motor by using the feedback linearization 
method. Then, using sliding mode controllers to give our process more robustness towards the 
variation of different parameters of the motor. However, the latter technique of control called sliding 
mode control caused an indesirable phenomenon which harmful and could leads to the deterioration of 
the inverter’s components called “chattering”. So, here the authors propose to use neuro-fuzzy systems 
to reduce this phenomenon and perform the performances of the adopted control process. The type of 
the neuro-fuzzy system used here is called”: Adaptive Neuro Fuzzy Inference System (ANFIS)”. This 
neuro-fuzzy is destined to replace the speed fuzzy sliding mode controller after its training process. 
Conclusion: Therefore, from a control design consideration, the adopted neuro-fuzzy system has 
opened up a new direction that allows for the design of robust controllers for uncertain non-linear 
dynamical systems without resorting to system model simplifications and linearization and without 
imposing structural conditions on system uncertainties. On the other hand, it is important to say that 
this approach permits to improve the performance of the controlled system only by choosing the 
appropriate form of the membership functions (shape, triangular…) and a good partionnement of the 
universe of discourse of the diverse variables. Finally the obtained simulation results prove that the 
objectives of the authors where attempt by a significant reduction of the chattering and a good 
robustness of the process towards parameter variation and external perturbation (load torque).  
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INTRODUCTION 
 
 Twentieth century has witnessed widespread 
innovations in both hardware and software design. In 

fact, the development of fast microprocessors enabled 
the design and implementation of expert-machine 
interaction based computation environments. Ever 
increasing needs brought about by the multi-
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dimensionality of the problem space and time-varying 
behavior of real-life physical systems further required 
to reduce the role of expert and to increase the role of 
the machine. A natural consequence of this rapid 
growth is the emergence of the field of intelligent 
systems, or in other words, the field of neuro-fuzzy 
systems (Efe and Kaynak, 1999; Jang et al., 1997). 
 Neural networks and fuzzy controllers are both 
capable of controlling nonlinear dynamical systems. 
However, the disadvantage of neural control is that it is 
not obvious how the network solves the respective 
control task. It is not possible in general to retrieve any 
kind of structural knowledge from network that could 
be formulated in some kind of rules, or to use prior 
knowledge to reduce the learning time. The network 
has to learn from scratch and might have to do so again 
if substantial parameters of the dynamical system 
change for some reason (Efe and Kaynak, 1999; Hunt 
and Sbarbaro, 1991; Kosko, 1992; Narendra and 
Parthasarathy, 1990; Isidori, 1999). 
 On the other hand, the use of fuzzy controllers 
consists on the interpretation of the behavior based on 
the explicit linguistic rules the controller consist of. 
Fuzzy inference systems or controllers describe systems 
by establishing relations between the relevant variables 
in the form of “If-Then” rules that are to a certain 
degree transparent to interpretation and analysis. 
Nevertheless, the design problems of a fuzzy controller 
are the choice of appropriate fuzzy if-then-rules, the 
membership functions and the tuning of both in order to 
improve the performance of the fuzzy controller 
(Ghalia and Alouani, 1995; Li et al., 1997; Utkin, 
1992). So, in order to overcome these problems the 
combination of the two techniques was proposed by 
different researchers to give another type of intelligent 
systems called “neuro-fuzzy systems”. The design of 
such controllers combine architectural (by neural 
network) and philosophical (by fuzzy systems) aspects 
of an expert resulting in an artificial brain, which could 
be used as controllers or identifiers. The most 
questionable quality in the use of neuro-fuzzy systems 
to control different process is the robustness towards 
parameters variation of the process and external 
perturbations…., (Efe and Kaynak, 1999; Jang et al., 
1997). One of such intelligent systems is the Adaptive 
Neuro-Fuzzy Inference System (ANFIS) which is a 
fuzzy inference system implemented within the 
architecture and learning procedure of adaptive 
networks which is a superset of all kinds of feed-
forward neural networks with supervised learning 
capability (Jang et al., 1997). There are various 
successful examples of ANFIS used in different 
applications such as: robotic, imaging treatment and 

also in electrical motor drives especially in the 
induction motor drives which is the aim of this study. In 
fact, they are able to give a process many advantages 
such as: The optimization of the performance of the 
control of motor drives, ensuring the robustness 
towards parameter variations and external disturbances 
and also, reducing the chattering phenomenon when the 
control of the motor is based initially on the variable 
structure control (Barazane et al., 2009). In fact, the 
principal aim of the present work consists in the 
conception of an adaptive neuro-fuzzy sliding mode 
controller which is used to copy the comportment of the 
speed sliding mode controller in order to permit an 
improvement of the performance of the system and to 
reduce considerably the chattering phenomenon which 
is very harmful to the actuators in our case and may 
excite the unmodeled dynamics of the system. The 
designation of neuro-fuzzy sliding mode controller is 
given from the fact that the training process of the 
adopted neural network is done on basis of the 
input/output pattern collected during the functioning of 
the system with the speed sliding mode controller. 
Finally, Simulation results reveal some very interesting 
features. 
 This study is organized as follows: In the first 
segment, the architecture of the Adaptive Neuro-Fuzzy 
Inference System (ANFIS) and all the corresponding 
concepts are detailed, followed by the presentation of 
the feedback linearization control applied to the 
induction motor. After more, the concepts of sliding 
mode control are given with the proposition of a new 
discontinuous control law and then applied in the next 
segment to conceive the controllers of our previous 
control scheme. In this segment, the different steps of 
the conception of these latter’s are detailed and their 
adoption in this work is then validated by simulation. 
However, such a sliding mode control scheme is 
characterized by an important disadvantage which is the 
chattering phenomenon cited previously, that must be 
reduced. So, therefore, in the following segment and in 
order to reduce significantly such a phenomenon, 
adaptive neural network is conceived and trained in 
order to copy the comportment of the adopted speed 
sliding mode controller leading to more improvement 
of the performance of the obtained control scheme and 
permits to attempt the required objective. Finally, the 
research concludes with comparison between the 
different simulation results obtained in all the control 
methods which are used in the present research. 
 
Architecture of the Adaptive Neuro-Fuzzy Inference 
System (ANFIS): Combining both fuzzy logic and 
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artificial neural networks allows achieving all of the 
advantages of both systems. Human expert knowledge 
can be used to build the initial structure of the regulator. 
On-line or off-line learning processes can improve 
underdone parts of the structure.  
 The ANFIS structure is one of the proposed 
methods to combine fuzzy logic and artificial neural 
networks. This inference system is the same as a 
conventional fuzzy structure shown in Fig. 1. It 
contains rule base and database (knowledge base), 
fuzzyfication and defuzzyfication unit as well as a 
decision-making unit (Jang, 1993; Jang et al., 1997). 
The structure proposed in (Jang, 1993) five network 
layers. Note that, two inputs are used (xy) and one 
output (f) (which is a limitation of Sugeno-type 
systems, i.e., that there is only a single output, obtained 
using weighted average defuzzification (linear or 
constant output membership functions) (Jang et al., 
1997).  
 In the first layer, all nodes are adaptive and every 
one contains membership functions which usually 
choose as a triangular or bell-shaped function. Here, i is 
the degree of the membership of the input to the fuzzy 
Membership Function (MF) represented by node: 
 
Oli = μAi (x); i = 1, 2 (1) 
 
Oli = μBi-2 (y); i = 3, 4 (2) 
 
where, Oli 

is the output of the node i in a layer l.  
 

 
 
Fig. 1: A five-layer ANFIS structure 
 

 
 
Fig. 2: Block diagram of the nonlinear feedback based 

control system 

 In the second layer the nodes are fixed (i.e., that 
they are not adaptive) and must choose the minimum 
value of two input weights. In Fig. 2, nodes in this layer 
are labeled “Π“ and they are multiply the signal before 
outputting as follows: 
 
 O2i = w1 = μA (x).μBi y); i = 1;2 (3) 
 
 Each node output in this layer represents the firing 
strength of the rule.  
 In the third layer, every node is also fixed and are 
labeled with an N and perform a normalization of the 
firing strength from the previous layer. The output of 
each node is given by: 
 

 i
3i

1 2

wO w ;i 1,2
w w

= = =
+

 (4) 

 
 In the fourth layer, all nodes are adaptive. The 
output of a node is the product of the normalized firing 
strength and a first order polynomial and is given by: 
 

4i i2 iO w.f w (p. x q. y r); i 1,2= = + + =  (5) 
 
where, {p1 x, q1. y, r1} is the modifiable parameter set, 
referred to as consequent parameters since they deal 
with the then part of the fuzzy rule.  
 Finally, layer 5 is a single node labeled with “∑“ 
which indicates that the function is that of computing 
the overall output as the summation of all incoming 
signals defined as: 
 

i i
i

5i i i
i

i

w f
O f w f ; i 1,2

w

⋅
= = ⋅ = =

∑
∑ ∑

   (6) 

 
 The ANFIS structure has been tuned automatically 
by a least-square estimation (for output membership 
functions) and a back propagation (for output and input 
membership functions) algorithms. Because its 
flexibility its is well known that ANFIS system could 
be used in wide range of control tasks (Jang, 1993; Jang 
et al., 1997). Further details of the ANFIS model can be 
obtained from Jang (Jang, 1993; Jang et al., 1997).  
 
Nonlinear feedback control: The state equations of 
the voltage PWM source inverter fed induction motor 
with current control, in a stator reference frame (α - β), 
with (ιαs , ιβs) as command variables and (φαr, φβr , Ω) as 
state variables are given (Barazane et al., 2004; 2007; 
2009): 
 
x f (x) g(x).u= +  (7) 
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Where: 
x = (x1, x2, x3)t = (Φαr, Φβr, Ω)t 
u = (u1, u2)t  = (iαs, iβs)

t 
 

1
2 3
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1

2
2 1 3
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3
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Tf (x)
xf (x) f (x) p.x .x
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f (x)

T
J
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 (8) 
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 (9) 

 
 In order to linearize the system (7), two variables 
which dependent on x only, are considered as outputs of 
the system. They are defined as: 
 
φ1 (x) = z1= x1²+x2² = Φαr

2+Φβr
2 = Φr 2 

φ2 ( ) = z2 = x3 = Ω (10) 
 
 The relative degree ri (i = 1, 2) for each output (z1, 
z2), is in this case are equals to r1 = 1 and r2 = 1 
respectively. 
 This implies that the full-linearization is not 
realized, so, another variable φ3 (x), which represents 
the internal dynamic must be added. 
 Let φ3 (x) be chosen as: 
 

1
3 3 2 1

1

0 if x 0
(x) z a tan(x / x ) k with k

1 if x 0
⎧ >⎪φ = = + π = ⎨

<⎪⎩
 (11) 

 
 Notice that the transformation φ (x) is reversible. 
 Consequently, the above set of new coordinates, 
allows the following canonical form of the system: 
 

m m
1 21

r r 1r1

2 m m 2L
2 1

r r

L L2 2 x 2 xz
T T uTz

z pL pL uT x x
JL JLJ

⎛ ⎞⎛ ⎞− ⎜ ⎟⎜ ⎟ ⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟= + ⋅ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟−⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (12a) 

 
m 1 2 2 1

3 2
r 2

L x u x uz p.z
T x

⎛ ⎞−
= + ⎜ ⎟

⎝ ⎠
 (12b) 

 
 The system (12a) can be presented in the following 
matrix form: 

rz A(z) B(z).u= +  (13) 
 
Where:  

rz  = (z1, z2)t 
u = (u1, u2)t  
z = (z1, z2, z3)t 
B(z) = Representing the decoupling matrix 
 
 In order to realize the feedback control, it is 
necessary to have the decoupling matrix reversible, 
which means that its determinant cannot be zero 
(Slotine and Li, 1991). 
 
 Then: 
 

m m
1

r r

2L pLdet(B(z)) . .z 0
T JL

= ≠  (14) 

 
 Accordingly, linearizing feedback is defined as 
follows: 
 

1
ru B (z)(z A(z))−= −  (15) 

 
which can be explicitly written as: 
 

m m
1 2 1 1

1 r r r

m m2 L
2 1 2

r r

pL 2L 2x x z z
u JL T T1

det(B(z)) pL 2Lu Tx x z
JL T J

⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎜ ⎟ ⎜ ⎟= + ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟ +⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 (16) 

 
 However, we notice in this case that system (16) is 
rather complex and depends closely on motor 
parameters, state variables and external perturbations.  
 In order to minimize the number of input variables 
and reduce the dependence of the system (16) on 
parameter variations and external perturbations, while 
maintaining decoupling between the two subsystems 
ordered by the command variables v1 and v2, we 
propose a new reformulation of the system. 
 By considering v1 and v2 as the new commands 
variables, u1 and u2 are given as follows: 
 

1 11 2

2 12 2

u vx x
x xu v

⎛ ⎞ ⎛ ⎞⎛ ⎞−
= ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

 (17) 

 
 The resulting system governed by the above state 
and input transformation is given by: 
 

m
1 1 1 1 1 1 1

r r

L m
2 2 2 2 1 2

r

2 2Lz f (z) g (z) u z z v
T T

T pLz f (z) g (z) u z v
J JL

= + ⋅ = − + ⋅

= + ⋅ = − + ⋅
 (18) 
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 The system is made up of two subsystems, each 
one is put in canonical form and dependent on one 
command vi. The block diagram of the resulting 
nonlinear feedback control system (12) is depicted in 
Fig. 2. 
 The block describing the relation between u and v 
cannot be replaced by an approximate system, because 
of no uncertainty between internal and external 
command variables is tolerated. 
 
Concepts of the Sliding Mode Control (SMC): The 
basic principle of sliding mode control consists in 
moving the state trajectory of the system toward a 
predetermined surface called sliding or switching 
surface and in maintaining it around this latter with an 
appropriate switching logic. The design of a sliding 
mode controller has two steps, namely, the definition of 
the adequate switching surface S(⋅) and the development 
of the control law or the switching logic U. 
 Concerning the development of the switching 
logic, it is divided into two parts, the equivalent control 
Ueq and the attractivity or reachability control Un 
defined as follows (Slotine and Li, 1991; Utkin, 1992): 
 
U = Ueq+Un (19) 
 
With: 
 

( ) ( )nU G S( ) sgn S( )= − ⋅ ⋅ ⋅  

 
Where: 
Ueq = Equivalent control 
Un = Robust control 
 
Equivalent control Ueq: The equivalent control is 
determined off-line with a model that represents the 
plant as accurately as possible. It is calculated by 
imposing S( ) 0⋅ =  and S( ) 0⋅ = ; which force the state 
variables to follow the sliding surfaces. If the plant is 
exactly identical to the model used for determining Ueq 
and there are no disturbances, there would be no need to 
apply an additional control Un. In this case this 
condition yields to: 
 

S S[f ( ) g( ) u] 0
( ) t
∂ ∂

⋅ + ⋅ ⋅ + =
∂ ⋅ ∂

 (20) 

 

where, S
( )
∂
∂ ⋅

 the gradient of S with respect to state 

variable. From Eq. 20 the equivalent control is given 
by: 

1

eq
S S SU g( ) f ( )
( ) ( ) t

−
⎡ ⎤ ⎡ ⎤∂ ∂ ∂

= − ⋅ ⋅ +⎢ ⎥ ⎢ ⎥∂ ⋅ ∂ ⋅ ∂⎣ ⎦ ⎣ ⎦
 (21) 

 
 For a stationary sliding surface S( ) 0⋅ =  thus: 
 

1

eq
S SU g( ) f ( )
( ) ( )

−
⎡ ⎤ ⎡ ⎤∂ ∂

= − ⋅ ⋅⎢ ⎥ ⎢ ⎥∂ ⋅ ∂ ⋅⎣ ⎦ ⎣ ⎦
 (22) 

 
S g( )
( )
∂

⋅
∂ ⋅

 is assumed to be non-singular for all state 

variables. 
 In the present work, the two equivalent controls 
Ueq, that force the state variables to follow the sliding 
surfaces, of the sliding mode controllers used in the 
cascade structure are calculated by imposing iS (z) 0=   
and ijS (u) 0= , where i : 1,2 and j : 3,4. 
 
Robust control Un: However, in practice there are a lot 
of differences between the model and the actual plant. 
Therefore, the control component Un is necessary to 
guarantee that the state is attracted by the switching 
surface in satisfying the condition S( ) S( ) 0⋅ ⋅ ⋅ <  in the 
presence of parameter uncertainties and disturbance 
uncertainties (Slotine and Li, 1991; Utkin, 1992).  
 In a conventional variable structure control the 
reachability control generates a high control activity as it 
depends on the magnitude G(⋅). The resulting relay 
function, obtained with a constant G(⋅) is very harmful to 
the actuators and may excite the unmodeled dynamics of 
the system. This is known as a chattering phenomenon. 
The main cause of the chattering and the large control 
energy is the use of a control law that depends only on 
the known upper bounds of uncertainties and 
disturbances. Ideally, to reach the sliding surface, the 
chattering phenomenon should be eliminated. However, 
in practice, chattering can only be reduced. 
 During the last years, the reduction of chattering 
became a focus of many researches (Barazane et al., 
2007; 2009) Park and Kim, 1991; Slotine and Li, 1991; 
Utkin, 1992). Among these, the first approach to reduce 
chattering was to introduce a boundary layer around the 
sliding surface and to use smooth functions to replace 
the discontinuous part of the control action. In this work 
the following function, which gives higher 
performances as it uses an exponential function for 
smoothing, is proposed (Fig. 3) (Barazane et al., 2009): 
 

| S( ) |k (k k)exp ; | S( ) |
G(S)

k ; | S( ) |

⎧ ⋅ −ε⎛ ⎞− − − ⋅ 〉 ε⎜ ⎟⎪⎪ ⎝ ⎠= ⎨
⎪ ⋅ ≤ ε⎪ ε⎩

 (23) 
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Fig. 3: A smooth piecewise approximation. 
 

 
 
Fig. 4: Illustration of the tracking around the predefined 

sliding surface 
 
 The constant K is linked to the speed of 
convergence towards the sliding surface of the process 
(the reaching mode). Compromise must be made when 
choosing this constant, since if K is very small the time 
response is important, whereas when K is too big the 
chattering phenomenon appears. 
 k is the minimal value of G(S), necessary to 
compensate uncertainties and disturbances to guarantee 
convergence to the boundary layer. 
 The value of ε is important as it affects 
simultaneously the switching frequency and the 
tracking of the sliding surface as shown in Fig. 4. Thus, 
ε is chosen with great care in order to obtain the best 
possible and practical results. 
 
Application of the sliding mode control in the 
proposed system: 
Conception of the sliding mode controllers: In this 
contribution, the sliding mode control scheme is 
illustrated in Fig. 5. Using Park transformation, the 
reference voltages in the (a, b, c) co-ordinates are given 
by: 

as
s

bs
s

cs

1 0V
V2V 1 / 2 3 / 2
V3

V 1 / 2 3 / 2

α

β

⎡ ⎤⎡ ⎤
⎡ ⎤⎢ ⎥⎢ ⎥ = − ⋅ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎢ ⎥ − −⎣ ⎦ ⎣ ⎦

 (24) 

 
Design of the switching surfaces: In this study, two 
sliding surfaces are taken as (Barazane et al., 2009; 
2004; 2007): 
 
S1(z1) = e1(z1) = Φrref

2 – Φr
2 = z1ref – z1  

S2(z2) = e2(z2) = Ωref – Ω = z2ref – z2 (25) 
 
with Φrref and Ωref, being respectively, the reference 
values of the flux and the speed. 
 
Development of the control laws: By using (20) and 
(21), the two regulators' control laws, for the flux and 
the speed, are given by the following equations 
(Barazane et al., 2009; 2005): 
 
• For the flux regulator: 
 

 
1 1ref 1 1

r
1 1d

m m
1 1

r r

2z z
1Tv S

2L 2Lz z
T T

⎛ ⎞ ⎛ ⎞
−λ + λ ⋅⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟= + ⋅

⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (26) 

 
• For the speed regulator: 
 

 
r

2 2ref 2

2 2d
m m

1 1
r r

Cz 1Jv S
pL pLz z
JL JL

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟−λ + λ ⋅ −⎜ ⎟ ⎜ ⎟= + ⋅
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (27) 

 
 They can be rewritten as: 
 

1 1eq 1 1 1 1dv v (z ) b (z ) S= + ⋅  (28) 
 

2 2eq 1 2 1 2dv v (z ) b (z ) S= + ⋅  (29) 
 
With: 
 

1d 1 1 1 1S (S ) M (S ) sgn(S )= ⋅  (30) 
 

2d 2 2 2 2S (S ) M (S ) sgn(S )= ⋅  (31) 
 
 The gains K1 , K2 , k1 and k2 should first be taken 
positive and then adjusted to the appropriate values 
which correspond to the highest performances of the 
system. 
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Fig. 5: Block diagram of the cascade sliding mode control of induction motor 
 

MATERIALS AND METHODS 
 

         It is important to precise that in this study the 
material which is used is the Matlab simulink and its 
different toolbox such as the conception of our ANFIS 
system by using ANFIS toolbox. This is also done by in 
the vision of implementing in the future such a system 
by using D-space. 
 
Validation of the cascade sliding mode controller: 
The first test concerns a no-load starting of the motor 
with a reference speed Ωref = 100 rd sec−1. A load torque 
(TL = 10 Nm) is applied then between t = 0.8 sec and 
t = 1.5 sec. 
 The test results obtained are shown in Fig. 6. 
 The waveforms depicted in the Fig. 6 show that the 
ideal variable decoupling is established, despite the load 
variations. Owing to the constant flux control, a quick 
speed response is thus obtained. Besides, this speed 
response is very close to the desired reference. It is 
clearly shown that during a load torque perturbation, 
the actual rotor speed tracks the desired speed after a 
small transient state. The step changes in the load 
torque and the speed response cause step changes in the 
torque response without any effects on the rotor flux 
components responses (Φαr, Φβr), which are maintained 
constants, due to the decoupled control system between 
speed and rotor flux.  
         A cascade structure with sliding mode control has 
been simulated using a squirrel-cage induction motor of 
1.5 Kw, 220 V, 2 pairs of poles, 1420 tr/min, 50 Hz, 
Rs = 4.85 Ω, Rr = 3.805 Ω, Ls = 0.274 H,    Lr =0.274 H, 
M = 0.258 H, J = 0.031 Kg.m, f = 0.00114 Nms.  
          On the other hand, the speed regulation is 

obtained using such a controller in spite of the presence 
of severe disturbances such as load torque step 
changing. Concerning the chattering phenomenon, this 
latter appears in the torque response due to the 
discontinuous characteristic of the controller. It could 
not be eliminated with this technique of control. 
 
Improvement of the control system by using 
Adaptive Neuro-Fuzzy Inference System (ANFIS): 
Design of the speed Adaptive neuro-fuzzy inference: 
 In this study, only the speed fuzzy sliding mode 
controller will be replaced by an adaptive neuro- fuzzy 
inference system because the hybrid technique ensure 
the decoupling between the torque and rotor flux and 
also   the  chattering  appear  on   the  torque  response 
especially and must be reduced. So, it is realized by an 
appropriate combination of neural and fuzzy systems 
in order to try to reduce or eliminate the chattering. 
This hybrid combination enables to utilize both the 
verbal and the numeric power of intelligent systems 
(Efe and Kaynak, 1999; Jang et al., 1997). Note that 
the hybrid structure control process independently 
from the ANFIS controller or any other type of 
regulator imposed that in order to have the best 
decoupling the velocity and the other parameter of the 
motor must be estimated correctly. We supposed here 
that the velocity is not changed during the process (the 
variation of this latter and its impact on the response of 
the electromagnetic torque is presented (Barazane et al., 
2009)).
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Fig. 6: Simulation results for the sliding mode control 
 
 As it is known from the theory of fuzzy systems, 
different fuzzification and defuzzification strategies 
with rule base structures can result in various solutions 
to a given task. This study considers the ANFIS 
structure with first Sugeno Model containing nine rules. 
Gaussian membership functions with product inference 
rule are used at the fuzzyfication level. Fuzzyfier 
outputs the firing strengths for each rule. The vector of 
the firing strengths is normalized and the resulting 
vector is defuzzyfied by utilizing the first order Sugeno 
model. 
Note that our ANFIS controller has two inputs chosen 
as the speed estimated at times (t) and (t-1) respectively 
and one output which correspond to the control law v1 
given in Fig. 5. 
 
Validation of the speed regulation by using adaptive 
neuro-fuzzy inference controller: Initially, before the 
introduction of the speed adaptive neuro-fuzzy 
controller in the control scheme, we must proceed to its 
training. This process is done off-line by presenting to 
the controller the pattern (input/ output data) obtained 
during the simulation of the previous system. Note that 
only data obtained in transient state was used in this 
training process in order to give more capabilities to the 
ANFIS because during this phase of the process many 
different points are given which leads to a good 
generalization of our controller to unknown cases. Also 
we considered the sliding mode obtained data because 
in this case the system is more performed and the 
robustness ensured. After this step and in order to verify 
if the adopted speed adaptive neuro-fuzzy controller 
would be capable of driving the plant in all the 
operating range and without instability, we insert it in 
the control scheme to replace the speed sliding mode 
controller and validate its performances by doing the 
same test simulation such as those which are done 
previously in the sliding mode control (Fig. 7).  

 
 
Fig. 7: Simulation results for the neuro-fuzzy control 
 

 
 
Fig. 8: Simulation results for the neuro-fuzzy control 

taking into account the variation of 50% Rr 
 
 On the other hand and as the coefficients in (18) 
are all dependent on the motor parameters. These 
parameters may vary during on-line operation due to 
temperature or saturation effects. So, it is important to 
investigate the sensitivity of the complete system to 
parameters' changes. One of the most significant 
parameter changes in the motor is the rotor resistance 
Rr. A simulation taking into account the variation of 
50% rise of Rr relative to the identified model parameter 
was carried out (Fig. 8). 
 

RESULTS AND DISCUSSION 
 
          The waveforms depicted in Fig. 7 show that the 
responses obtained with the ANFIS controller are highly 
similar to those illustrated in Fig. 5 and 6 respectively. In 
fact, the decoupling between the speed and the direct 
rotor flux component is maintained by the use of the 
feedback linearization control method such as the 
robustness towards the rotor resistance variation (50% 
Rr) which is clearly shown by Fig. 8. Furthermore, we 
can also notice that the chattering is approximately 
inexistent by the use of such intelligent system which 
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represents the most important objectives required by the 
authors. In fact, as a conclusion, we can say that our 
objectives (decoupling, robustness and a significant 
reduction of the chattering phenomenon) are attempt and 
that the speed adaptive neuro-fuzzy controller proves that 
it has got great potentials to improve the responses of the 
system. In the future we intend to implement our 
proposed system by using D-space in order to validate 
the obtained simulation’s results by experimentation. 
However and as a recommendation for the future work 
we will try to Gaussian membership function in the 
conception of the ANFIS controllers as basis in order to 
ameliorate our responses.  
 

CONCLUSION 
 
 The sliding mode control of the field oriented 
induction motor was proposed. To show the effec-
tiveness and performances of the developed control 
scheme, simulation study was carried out. good results 
were obtained despite the simplicity of the chosen 
sliding surfaces. The robustness and the tracking 
qualities of the proposed control system using sliding 
mode controllers appear clearly. 
 Furthermore, in order to reduce the chattering, due 
to the discontinuous nature of the controller, fuzzy logic 
controllers were added to the sliding mode controllers. 
These gave good results as well and simplicity with 
regards to the adjustment of parameters and the 
implementation comparing to the use of smoothing 
functions. 
 On the other hand, the introduction of the speed 
neuro-fuzzy controller gives the most important 
reduction of the chattering. So, the objectives of this 
contribution were attempt with success. 
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