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Abstract: Problem statement: Cluster microforms are a type of small scale hwdaffound in the
surface layer of some gravel bed rivers. These fbeds are comprised of discrete, organized
groupings of particles that sit above the averdgeation of the surrounding bed. As part of the
structural organization of the bed, clusters arkebed to impact the local dynamics of the fluvial
system through the feedback process involving tbe field, entrainable sediment and stable bed
morphology.Approach: In this study, flow and sediment characteristiamged at a laboratory flume
and the presence or absence of clusters at edblks# tests was recorded. A statistical analysgjus
logistic regression was performed to examine theetation between the occurrence of clusters and
various non-dimension combinations of measuredabées. Results: It was found that the best
parameters for predicting the clusters presencegdfghU%,, and gd/U%,, In two parameters
analysis it was found that clustering was best ipted by gdu/UZElvg andty/pU%e Conclusion: It is
thought that these parameters work best at pradidiie presence of clusters because they are
descriptive of hydraulic and sedimentary conditiohtested reach.
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INTRODUCTION Papanicolaowet al., 2003). This study concentrates on
cluster microforms.

Geologists and engineers have long recognized Probably the Brayshaet al. (1983) study was the
fundamental differences between mountain channelfirst study highlighted the need to improve our
and their lowland counterparts. In contrast to -self understanding of the mechanisms starting cluster
formed flood-plain channels, the gradient andformation and disintegration and to explore their
morphology of mountain channels are tremendouslynfluence on the streambed stability. Subsequently,
variable and prone to forcing by external influence different field and laboratory studies have been
Montgomery and Buffington (1997) Although performed and have led to the existence of tworteso
mountain channels provide important aquatic habitabn this topic.

(Frissell, 1993), supply sediment to estuaries el The first theory supports the idea that clusters
oceans (Milliman and Syvitski, 1992) and transmitd  provide additional bed stability. Field and laborst
use disturbances from headwater areas down througibservations of Hassan and Reid (1990); Reid and
drainage networks, they have received relativatieli Hassan (1992); Churah al. (1998) and Kozlowski and
study compared to lowland rivers. Ergenzinger (1999), among others, suggest thatechis

Improved ability to relate morphology and resist to high flow (i.e., they provide higher form
processes in mountain channels would facilitateresistance) and delay sediment entrainment ingitegr
understanding and predicting their response to botkentrapping sediment particles along their perimatet
human and natural disturbance. within the core of their structure. The laboratory

An important characteristic of gravel-bed Riversexperiments of Schuyler and Papanicolaou (2000)
is their variable bed topography. Gravel bed Rivergndicate similar results with the above studies.
contains two scale-classes of bed-forms: (1) macro- The second theory is that clusters do not provide
scale or macro-forms, e.g., step-pool and pooleriff any additional bed stability. According to Carliagd
sequences (Bowman, 1977) and (2) micro-scale o®rr (2000), clusters appear to break up at everedow
cluster microforms, e.g., cellular structures aptthde bed shear stresses than those required initiating
clusters (Brayshaw, 1984; Reid and Hassan, 199%ediment motion of a single particle. Similarly,lliBi
Church et al.,, 1998; Lawless and Roberts 2001;(1988) concluded, from field observations in Farma
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River, ltaly, that clusters do not delay sediment Experiments were performed in a channel of
entrainment in gravel-bed streams. Perspex sides and a smooth bed made of Perspef and
It is believed that the presence of such variedl berectangular cross-section 0.9 m width and 18 mtlkeng
topography depends largely upon the interlocking offhe downstream end of the channel was provided by a
individual particles of different size and specifiavity, = sediment trap with a collecting basket.
the near-bed flow characteristics, sediment a\ditigb In order to meet the goals of this study,
longitudinal slope and the prevailing sedimentdpmt  experiments performed in different conditions of
conditions (Brayshawet al., 1983; Hassan and Reid, discharge, channel slope and sediment size. Irethes
1990; Churctet al., 1998). An improved understanding tests, sediment particles were distributed overtibe
of the evolutionary processes of such bed forms isand then the flow was established over the becderAft
therefore, important in gravel-bed Rivers for potidn 30 min or reaching equilibrium conditions where we
of sediment transport and in-stream habitat evainat ~ did not observe movement over the bed, experimaest h
For a cluster to form, two or more particles mustbeen stopped and cluster formation has been adsesse
group together. A cluster microform typically castsi  Table 1 shows summary of experimental conditiorts an
of an obstacle (the ‘core’ or ‘anchor’ sedimenttigle,  sediment sizes that have been used in this study.
which in most cases has a diameter greater thgan D Totally 47 experiments have been performed in our
against which a ‘stoss’-side accumulation of imbiéd  study.
particles develops and behind which a ‘wake tail’
grows. Dimensional analysis: In engineering the application
Storm et al. (2005) identified and classified of fluid mechanics in designs make much of the afse
individual clusters as being one of the five follogg  empirical results from a lot of experiments. Thaalis
shapes: pebble, heap, comet, line, or ring shapedften difficult to present in a readable form. Evieom
clusters. Categories for these five types of cluate  graphs it may be difficult to interpret. Dimensibna
determined visually based on the shape and sedimeahalysis provides a strategy for choosing reledata
composition of each cluster and are used to heland how it should be presented. This is a useful
describe the heterogeneity of observed clustereshap technique in all experimentally based areas of
natural field settings. Strowmt al. (2004) used artificial engineering. If it is possible to identify the faug
glass particles as sediment and determine the tomsli  involved in a physical situation, dimensional as&y
that cluster form. can form a relationship between them. The resulting
In the previous researches, natural sediments hawxpressions may not at first sight appear rigorouts
not been used to observe cluster formation. Then maithese qualitative results converted to quantitatbrens
goal of this study is recognizing the conditionsflofv  can be used to obtain any unknown factors from
and sediment in which cluster forms over uniforaedi  experimental analysis.
natural sediments. In this step we should determine effective vagabl
on cluster formation:
MATERIALSAND METHODS
Experimental set up: One difficulty in the study of €= Vg Toht S0P P, .0 @)
cluster microforms in natural streams is the fduttt
bed evolution occurs during high flow events, mgkin ~ Where:

difficult to perform real-time flow measurementsdan 9 = The acceleration of gravity

bed micro topography observations during theUag = Mean stream wise velocity

formation and break up process of clusters. Alb = Mean bed shear stress over the experimental

laboratory flume study was conducted here so that reach

sediment and flow conditions were precisely cofeél I = Dynamic viscosity of water

and recorded at all times. dy = Diameter of uniform sediment particles that
were used for cluster formation

Table 1: Summary of experimental conditions S = Slope of the channel

Discharge 6-87 L sét h = Water depth

Slope 0.01 and 0.005 p andps = Fluid and sediment densities

Depth 0.017-0.11m

Average velocity 0.37-1.16 m séc

Sediment size 8.73,11.1,15.9 and 20.1 mm By dimensional analysis using Buckingham theory

Froude number 0.52-1.29 one can find non-dimension groups of variables:
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(2)  function of the predictor variables were then

systematically fitted in a stepwise manner startivith

all bivariate models. The statistical significarafeeach
redictor variable was assessed using the differémc
he residual deviance between the bivariate moaleds

] Logistic regression models predicting & a

Some of above non-dimension numbers ar
constant and we can ignore them. Finally these fou

non-dimension numbers have been chosen for furthed:Ie null model. where the residual deviance isndefias:

analysis:

1
. ==t n T, =

h
m= » T, = y T =—, T,
pU;vg pU avgd u d u Uzavg

gd, Dy

=-2In(¢(B)) (6)

The goal of the statistical model is to determine

Multiplying and dividing combinations of non- which variable, or combination of variables, are th

dimension numbers yields dimensionless variable§n0St statistically —significant for predicting the
that combine several possible descriptive variable§ccurrence of clusters. To do this, the statistical

from Eg. 1 into single predictive parameters.

Statistical analysis:. The statistical
performed by using SPSS software.

significance of each parameter and the overalltgluf
the
analysis was occurrence of clusters were assessed.

regression model to accurately predict the

M odel selection and assessment of predictive ability:

Model selection was based on the assessment of a

Logistic  regression: In  statistics, logistic
regression (sometimes called the logistic
model or logit model) is used for prediction of

the probability of occurrence of an event by figtidata
to a logistic curve. It is a generalized linear mlagsed
for binomial regression. Like many forms of regiess
analysis, it makes use of several predictor vagmbthat
may be either numerical or categorical.

Logistic regression relates the probability of
successitto the predictor variables in the form of: .
T[(X) = W (3)
Where:

k
Y=o+ ZBiXi 4)
i=1

is the predictor statistic, the sepresents the predictor
variables with i=123,..,.k The fitted model

coefficientsa andf; are solved for by maximizing the
likelihood function:

((B)= Ilj [Tt(xj)JyJ [1— T[( X; )J(l_y‘)

=

®)

The maximum likelihood corresponds to the values
of B; that maximize the probability of obtaining the °
observed data. The value ofx) ranges from 0-1 and
represents the probability that the desired outcuwiilie
occur.
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combination of four statistical measures:

Akaike Information Criterion (AIC): The AIC is
defined as AIC = B+2(n+l) where nis the
number of predictor variables used; it is a stats$t
measure that penalizes for the inclusion of extra
predictor variables and can be used to compare
models with different numbers of predictor
variables

The ROC curves: The ROC curves are plots of the
model’'s predicted True Positive Fraction (TPF)
(model sensitivity) versus the model's predicted
False Positive Fraction (FPF) (1-specificity) over
the full range of possible so-called ‘cut-values’,
i.e., the value of(x) chosen to describe between
predicted outcomes of C = 0 and=C1. A model
that performs well will show a rapid increase ie th
TPF with a relatively small increase in the FPF.
Because of the relationship between the ROC curve
and the model's predictive power, a simple
integration of the ROC curve produces a single-
value statistic that is indicative of the overall
predictive accuracy of the model. This statistic is
known as the ‘area under the curve,’ or the AUC.
Classification of a model's predictive ability
using AUC values can be based on the following
scale: 0-5-0-6 = fail; 0-6-0-7 = poor; 0-7-0-8ik fa
0-8-0-9 = good; 0-9-1-:0 = excellent (Miska and
Jan, 2005)

Cox and Snell Rand Nagelkerke ® The Cox and
Snell R can be interpreted like ?’Rn a multiple
regression, but cannot reach a maximum value of
1. The Nagelkerke fcan reach a maximum of 1
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* The true classification measure shows us that this The single best discriminator between clustered

rule allows us to correctly classify of the subgect and nonclustered sites igd?/ U2 h. The values of
where the predicted event was observed. For

example true classification value of 90% shows u ZOdEI are AIC = 28'494’.AUC.: = 0.969 Nagelkerke
that Iijhis predictive variable can classify the%] = 0.771 and true clas§|f|cat|20n = 91.5%. The second
clustered or non-clustered condition by accuracy of00d predictive variable &,/ U, - The values: AIC =
90%. Higher values of this measure show the28.526, AUC = 0.955 Nagelkerke R Square = 0.770 and
accuracy of the model true classification = 85.1%.
An interesting note is that the inclusion of slape

RESULTS the predictive models had the effect of making the
One predictive variable: The predictor variables that predictions worse.
performed best in describing C are listed in Tahle The predictive relations for the occurrence of
The Wald statistic in the Table 1 and the corredpan  clusters usingyd?/ U2, h and gd,/ U2, are:
significance level test the significance of eachtluf

covariate and dummy independents in the model. The 64.42—0.25( of/ Gu b

ratio of the logistic coefficient B to its standador SE,  m(gd?/ U2, h) T T oY 7)
squared, equals the Wald statistic. If the Waltlstia is 1+e to o

significant (i.e., less than 0.05) then the paramét

significant in the model. The “Exp(b)” column is S¥'s oo e o/ o)

label for the odds ratio of the row independentwiite  1(gd,/ U ) = ————— o/ B ®)
dependent (minority) (Table 2). It is the predictidnge 1+e 7

in odds for a unit increase in the corresponding i o

independent variable. Odds ratios less than 1 sporel Using the AUC classification scale, these two

to decreases and odds ratios more than 1.0 conggpo Models are classified as excellent in predictive
increases in odds. Odds ratios close to 1.0 irglitet accuracy. Figure 1 shows plots of logistic regssi
unit changes in that independent variable do nigtcaf resul_ts_ and qorresponding ROC curves for our best
the dependent variable. predictive variables.

Table 2: Results from the statistical analysisdioe predictive relationship

Model Cox and Nagelkerke True

Predictor variables B SE Wald Sig. sneflR  R? Exp(B) classification  AIC AUC

To/PU%g Variable 988.562 298.542 10.965 0.001 0.393 0.524 0.000 85.1 45.532 0.898
Constant -6.954 2.079 11.161 0.001 0.001

Wp Uayg dy Variable 14073.870 06637.472 4.496 0.034 0.117 5@.1 0.000 59.6 63.116 0.691
Constant -1.515 0.804 3.550 0.060 0.219

h/d, Variable -1.125 0.331 11.571 0.001 0.391 0.522 24.3 78.7 45.682 0.885
Constant 4.768 1.394 11.699 0.001 117.662

gdu/ Ugvg Variable 23.183 7.689 9.091 0.003 0.577 0.770 B+1D 85.1 28.526 0.955
Constant -6.118 1.934 10.003 0.002 0.002

To/PSUavg Variable 1.722 0.666 6.681 0.010 0.193 0.258 5,599 61.7 58.878 0.795
Constant -1.606 0.702 5.597 0.018 0.190

;,l/pSUzavg dy Variable 75.850 37.473 4.097 0.043 0.111 0.149 ABt+B2 66.0 63.408 0.716
Constant -1.119 0.659 2.887 0.089 0.326

h/Sd, Variable -0.002 0.001 3.961 0.047 0.101 0.135 ®.99 57.4 63.953 0.685
Constant 1.128 0.570 3.914 0.048 3.089

gdu/Suivg Variable 0.060 0.020 8.849 0.003 0.392 0.523 1.061 70.2 45.576 0.896
Constant -2.318 0.770 9.058 0.003 0.098

gdﬁ/ Ugvg h  Variable -0.254 0.076 11.069 0.000 0.577 771 .77 91.5 28.494 0.969
Constant 4.428 1.305 11.500 0.001 83.839

Tpdy/Uavdd Variable 0.009 0.010 0.727 0.394 0.016 0.021 1.009 489 68.226 0.555
Constant -0.504 0.795 0.402 0.526 0.604

Tbh/puzavg dy Variable -26.263 22.165 1.404 0.236 0.039 0.052 00m. 55.3 67.090 0.618
Constant 0.930 0.725 1.648 0.199 2.535

rbdug/pu‘e‘wg Variable 1942.235 628.657 9.549 0.002 0.548 0.732 0.000 87.2 31.362 0.953
Constant -3.814 1.131 11.361 0.001 0.022

uh/pUavg di Variable -1290.700 900.255 2.056 0.152 0.050 0.067 0.000 61.7 66.536 0.635
Constant 0.786 0.537 2.143 0.143 2.194

ug/pugvg Variable 118038.944 35054.153 11.339 0.001 0.540 .7210 0.000 91.5 32.457 0.945
Constant -3.670 1.046 12.301 0.000 0.025
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Fig. 1: Plots of logistic regression results andesponding ROC curves
Table 3: Results from the statistical analysistéay predictive relationship
Model Coxand  Nagelkerke True
Predictor variables B SE Wald Sig. Snefl R R? Exp (B) classification AIC AUC
T4, T VAR00001 925.945 322.604 8.238 0.004 0.395 0.527 .00® 83.0 47.360 0.900
VARO00002 3321.683  8083.056 0.169 0.681 0.000
Constant -6.902 2.407 11.369 0.001 0.001
T, T VAR00001 1361.794 478.304 8.106 0.004 0.592 0.790 0.000 97.9 28.856 0.965
VARO00003 -1.221 0.407 8.985 0.003 0.295
Constant -4.537 2.629 2.977 0.084 0.011
T4, Ty VARO00001 -102.654 357.738 0.082 0.774 0.587 0.771 0.000 85.1 30.442 0.956
VARO00004 24.376 8.819 7.640 0.006 3.85E+10
Constant -5.704 2.407 5.615 0.018 0.003
Th, Th VARO00002 36839.711 14275.274 6.660 0.010 0.523 99.6 0.000 85.1 36.156 0.935
VARO00003 -1.594 0.508 9.864 0.002 0.203
Constant 2.870 1.737 2.728 0.099 17.634
Th, T VARO00002 13256.050 10458.786 1.606 0.205 0.593 9.7 0 89.4 28.709 0.964
VAR00004 22.367 7.812 8.199 0.004 5.18E+09
Constant -7.438 2.372 9.838 0.002 0.001
TG, T VAR00004 22.773 9.275 6.028 0.014 0.610 0.815 E+D® 89.4 26.679 0.964
VARO00003 -0.685 0.446 2.351 0.125 0.504
Constant -3.009 2.742 1.204 0.272 0.049
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Two predictive variabless The two predictor « The development of a logistic regression model for
variables that performed best in describing C eted the prediction using gdﬁ/ uz,h and gdu/ W2,
in Table 3. The best combinations of parameters tha

describe the clustering are, s. The values of model
are AIC = 28.857, AUC = 0.965 NagelkerkéR0.790
and true classification = 97.9%. The predictivatieh

showed that these two predictive parameters
perform excellent in discriminating between

predicting clustered and non-clustered tests. These
logistic regression models have AUC values that

for the occurrence of clusters using Tz is: ranged from 0.969-0.955
esom 1301700 0720 « gdi/U;, handgd,/ U, are good predictive
n(m, 1) = 14 d LT 02) 9) variables because they present sedimentary and
hydraulic characteristics of tested reach
DISCUSSION « Two parameter analyses showed tbe;/ Ui, and

) 1,/pU,, parameters can predict the cluster
The analyses were mentioned above have shown

that, there is a statistical connection between the formation o _
presence or absence of cluster microtopography arti Parameters in two predictive variables also
particular values ofyd? / U2, h andgd, / W . There are represent sedimentary and hydraulic characteristics

avg avg *
two key variable at this two parametes, @hdu,, . of tested reach

These two variables present sedimentary and hydraul REFERENCES

characteristics of tested reach. Due to constasrol

geometry (except slope), there is no geometry biia gjji p. 1988. A note on cluster bedform behavior
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