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Abstract: This study dealt with the problem of estimating constant time delay embedded into a 
received signal that was noisy, delayed and damped image of a known reference signal. The received 
signal was filtered, normalized with respect to the peak value it achieved and then transformed by the 
Discrete Cosine Transform (DCT) into DCT coefficients. Those DCT coefficients that were most 
sensitive to time delay variations were selected and grouped to form the Reduced Discrete Cosine 
Transform Coefficients set (RDCTC). The time delays embedded in the filtered signals were 
efficiently encoded into those RDCTC sets. The RDCTC sets were applied to a pre trained multi layer 
feedforward Neural Network (NN), which computed the time-delay estimates. The network was 
initially trained with large sets of RDCTC vectors, in which each RDCTC vector corresponded to a 
signal delayed by a randomly selected constant time-delay. Using the RDCTC as input to the NN 
instead of the full length incoming signal itself resulted in a major reduction in the NN size. Accurate 
time delay estimates were obtained through simulation and compared against estimates obtained 
through classical cross-correlation technique.  
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INTRODUCTION 

 
 Time-delay estimation is a problem of many 
important practical applications. Some of its 
applications exist in the areas of radar, sonar, 
seismology, communication systems and 
biomedicine[1]. For example, in active source location 
applications a reference signal s(t) is transmitted and a 
noisy and delayed replica of it is received. The 
following model represents the received waveform: 
 
  r(t) s(t d) w(t)= α − +  (1) 
 
where, r(t) is the received signal which consists of the 
reference signal s(t) after being damped by an unknown 
attenuation factor α, delayed by an unknown constant 
value d and distorted by an additive white Gaussian 
noise w(t). 
 A generalized cross-correlation method has been 
used for estimation of fixed time-delay in which the 
delay estimate was obtained by the location of the peak 
of the cross-correlation between the two filtered 
inputs[2,3]. Estimation of constant and time varying 
delay was considered in[4,5], where Least Mean Square 
(LMS) adaptive filter was used to correlate the two 
input data. The resulting delay estimate was obtained as 

the location at which the filter obtained its peak value. 
To obtain the non-integer value of the delay, peak 
location estimation must be used that involves 
interpolation. Etter and Stearns[6] has used gradient 
search to adapt the delay estimate by minimizing a 
mean-square error, which was a function of the 
difference between the signal and its delayed version[6]. 
Also, So et al. minimized a mean-square error function 
of the delay, where the interpolating sinc function was 
explicitly parameterized in terms of the delay 
estimate[7]. The Average Magnitude Difference 
Function (AMDF) was also exploited for the 
determination of the correlation peak[8]. During in[8] has 
shown that recursive algorithms produced better time-
delay estimate than nonrecursive techniques. 
Conventional prefiltering of incoming signals  as used 
in[2] was  replaced by filtering one of the incoming   
signals   using   wavelet    transform[9]. Chan et al.[9] has 
used the conventional peak detection of the cross-
correlation for estimating the delay. Chan et al. reported 
that their proposed algorithm outperformed the direct 
cross-correlation method for constant time-delay 
estimation. In[10], Wang et al. has developed a neural 
network system that solves a set of unconstrained linear 
equations using L1-norm that optimized the least 
absolute deviation problem. The time-delay estimation 
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problem was converted to a set of linear algebraic 
equations through the use of higher order cumulants. 
The unknown set of coefficients represented the 
parameters of a finite impulse response filter. The 
parameter index at which the highest parameter value 
occurred represented the estimated time-delay. The 
algorithm proposed by Wang et al. was capable of 
producing delay estimate that was only a multiple 
integer of sampling interval and did not deal with the 
case of fractional time-delay. Also, Wang et al. 
algorithm has utilized the high order spectra, which 
required heavy computational power.  
 The author of this article had introduced neural 
networks for the first time into the direct estimation of 
constant time-delay[11]. Shaltaf[11] has trained NN with 
large set of data representing the reference and the 
received signals with embedded constant time-delays. 
The NN were tested with a new set of data and 
produced accurate estimates of time-delay. The signals 
were introduced to the NN in vector form, in which the 
signal vector size was either 128 or 256 samples. This 
has resulted into using NN with large number of inputs, 
which in turn resulted in large NN systems. 
 Many compression techniques exist for reducing 
data size, one of which was the DCT. The DCT was 
established as a major compression technique and has 
been known for its excellent energy compaction 
property and is widely used in signal and image 
compression[12]. This study utilized the compression 
property of the DCT in order to compress the signal 
into a small set of RDCTC. Only those few DCT 
coefficients which possessed high sensitivity to time-
delay variations were chosen amongst the RDCTC set. 
The resulting set of RDCTC was then used as input to 
the NN, hence, resulting into using a small size NN. 
In[11], the size of the NN was large due to the direct use 
of the reference and received signals as input to the NN. 
The input layer size was as large as 128 and 256, which 
was equal to the signal vector size.  
 As a start, a damped, delayed and noisy image of a 
reference signal was received as modeled in Eq. 1. The 
received signal was sampled, filtered by a band pass 
digital filter, normalized with respect to the peak value 
it achieved and then compressed by the DCT into a 
small set of RDCTC. Those DCT coefficients that 
possessed high sensitivity to time delay variations were 
selected as members of the RDCTC set. The time-delay 
embedded in the filtered signal was then indirectly 
encoded into the RDCTC set. A large collection of 
RDCTC sets were applied to a pre trained multi layer 
feedforward NN which computed the time-delay 
estimates. About one thousand training sets of RDCTC 
with its corresponding time-delays were used to train 

the NN. Accurate and fast estimates of time-delay 
resulted from performing one pass of the RDCTC 
through the NN. This estimation process was fast when 
compared with the classical techniques for time-delay 
estimation. Classical techniques first rely on generating 
the computationally demanding cross-correlation 
between the two signals. Then it utilizes a peak 
detection algorithm to find the time at which the peak 
exists.  
 

TIME DELAY ESTIMATION ALGORITHM 
 
 The reference signal s(t) was assumed to be 
sinusoidal signal with frequency Ωo rad sec−1. and 
sampled with a sampling period T seconds. The 
resulting discrete reference signal was: 
 
   s(n) = sin(ωo n) (2) 
 
where, ωo = ΩoT was the frequency of the sampled 
reference signal. Assuming the received signal in (1) 
has been filtered by an anti-aliasing filter and sampled, 
then its discrete form is: 
 
  r(n) = α s(n-D) + w(n) (3) 
 
where, s(n-D) was the delayed reference signal, D was 
an unknown constant delay measured in sampling 
intervals and related to the time-delay d by the relation 
D = d/T and w(n) was assumed a zero-mean Gaussian 
noise with variance 2

wσ  uncorrelated with the signal 
s(n). Since the received signal r(n) was noisy, it was 
best that it got filtered in order to obtain better estimates 
for the unknown time-delay. 
 A fourth order type II Chebyshev band pass digital 
filter was used to filter the received signal. The filter 
was designed to have a narrow pass bandwidth equal to 
0.02 radian with 2 dB attenuation for the pass 
frequencies and a stop band bandwidth of 0.32 radian 
with 40 dB attenuation for the stop frequencies. The 
center frequency ωc of the band pass filter was set equal 
to the reference signal frequency ωo = 0.3 and was set 
to be exactly equal to the geometric mean of the pass 
and stop frequencies. The resulting band pass digital 
filter order that satisfied the above conditions was 
found to be 4. The strict narrow bandwidth condition 
resulted in a band pass filter that was capable of 
reducing the input noise power to about 1.6% of its 
value at the filter output. This meant a noise reduction 
factor equal to 62.5, which implied a signal to noise 
ratio improvement by 18dB. This improvement on the 
signal to noise ratio resulted in improving the accuracy 
of the time-delay estimates.  
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 The band pass filter was used to filter the received 
noisy signal and improve the signal to noise ratio. To 
eliminate the effect of the presence of the damping 
factor α, the filtered signal was normalized with respect 
to the peak value it achieved. The filtered signal was 
then normalized in order to prevent the NN from being 
affected by the different amplitude variations of the 
signal due to the different and unknown damping 
factors. The filtered and normalized signal was DCT 
transformed and the most sensitive DCT coefficients 
were used to form the RDCTC set. The resulting 
RDCTC set was then applied as input to the NN. By 
applying the RDCTC of the filtered and normalized 
signal to the NN, the NN should then be capable of 
producing accurate time-delay estimates.  
 The resulting band pass digital filter H(z) turned to 
assume the following transfer function form: 
 

1 2 3 4

1 2 3 4

H (z)

0.0102 0.037z +0.0537z 0.037z +0.0102z
1 -3.7585z +5.4682z 3.6397z +0.9378z

− − − −

− − − −

− −=
−

 (4) 

 
 Let h(n) be the impulse response of the digital filter 
H(z) in Eq. 4, by applying the received signal r(n) as 
input to the filter, the corresponding output was: 
 
 n

f
k 0

r ( n ) h ( k ) r ( n k ), n 0 ,1, ..., N 1 .
=

= − = −�  (5) 

 
 Let r = [rf(0), rf(1), …, rf(N-1)] be a vector 
consisting of N samples of the received and filtered 
signal. The vector r was DCT transformed and only M 
of the most sensitive DCT coefficients were selected to 
form the RDCTC which was used as input to the NN. 
The constant time-delay was used as the NN output in 
the training phase. 
 

DCT TRANSFORM AND SELECTION OF 
SENSITIVE DCT COEFFICIENTS 

 
 In this research the received and filtered signal rf(n) 
was DCT transformed and the most M sensitive DCT 
coefficients were used to form the RDCTC set. The 
time-delay embedded in this signal was then indirectly 
encoded into those RDCTC coefficients. The NN was 
supposed to decode the RDCTC into an accurate time-
delay estimate.  
 The following was the DCT transformation used 
for transforming the filtered signal rf(n) which resulted 
in Rm as the DCT coefficients: 
 

N 1
2

fN
n 0m

1
N

(2n 1)m
r (n ) cos( ), m 1, 2, ..., N 1

2NR

, m 0

−

=

+ π� = −�= �
� =�

�  (6) 

 Out of the N DCT coefficients, the best M DCT 
coefficients which possessed the highest sensitivity to 
time-delay variations were concatenated to form the 
RDCTC vector R.  
 To show the capability of the DCT in encoding 
time-delay values into the RDCTC coefficients, a 
sinusoidal reference signal s(n) = sin (0.3n) was 
delayed with several delay values in the range [0.0-
10.0] in increments of 0.25 sampling interval. The 
signal length was chosen to be equal to N = 128 
samples. The signal was filtered by the band pass filter 
and only the first 64 DCT coefficients curves [R0, 
R1,…, R63] were  plotted  against  the  time-delay in 
Fig. 1a. The rest of the DCT coefficients had negligible 
changes versus time delay variations. A clear and direct 
relationship that shows how the DCT coefficients 
change against time-delay variations is clearly shown in 
Fig. 1a. 
 In image or signal compression the best DCT 
compression coefficients are chosen based on a 
constant or adaptive thresholding technique. The DCT 
coefficient with a value that is larger than the specified 
threshold  level  is  selected,  otherwise it  is ignored. In 
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Fig. 1: (a): DCT coefficients curves versus time delay 

for single sinusoid signal. (b): SAD values of 
the DCT coefficients 



Am. J. Appl. Sci., 6 (4): 703-708, 2009 
 

 706 

Table 1: Sum of the absolute difference (SAD) values of the most 
sensitive DCT coefficients for the single sinusoid signal 

DCT 

Coef R12 R13 R11 R14 R10 R9 R8 R15 R16 R7 

SAD 7.35 6.65 4.95 3.38 2.42 1.61 1.33 1.31 1.14 1.11 

 
this research, the selection criterion of the DCT 
coefficients was based on the DCT coefficient 
sensitivity with respect to time-delay variations. Only 
M DCT coefficients that possessed the highest 
sensitivity were selected as the appropriate RDCTC set. 
The time-delay embedded in the filtered signal was 
clearly observed to be encoded into those RDCTC 
coefficients. The NN was supposed to learn this 
relationship and encode it into its internal structure 
parameters in the training phase.  
 A simple technique was devised to obtain the most 
sensitive DCT coefficients to form the RDCTC set. The 
gradient of each DCT coefficient curve with respect to 
time-delay was approximated by its difference. The 
Sum of the Absolute Difference (SAD) was performed 
for each DCT coefficient curve seen in Fig. 1. Each 
DCT coefficient curve which resulted in a high SAD 
value was chosen as one of the most sensitive RDCTC 
coefficients. Table 1 shows the SAD values of the first 
ten most sensitive RDCTC values in decreasing order. 
It is observed that R12 was the most sensitive of all 
coefficients. Then it is followed by R13, R11 and R14. 
This  result  can  be inspected visually by looking at 
Fig. 1a-b. Figure 1a shows the DCT coefficients curves 
versus time delay, where it is observed that the curve of 
the DCT coefficient R12 possessed the highest gradient 
of all RDCTC coefficients. Figure 1b shows the SAD 
values of each DCT coefficients where it was observed 
that [R12, R13, R11, R14 R10] were the most sensitive 
DCT coefficients in decreasing order. It must be 
mentioned that although R12 has the highest SAD value, 
it must be mentioned that although it is most sensitive 
in the intervals [0.0-6.0] and [7.0-10.0], it has the 
lowest sensitivity within the interval [6.0-7.0] as can be 
seen in Fig. 1a. This implied that R12 would contribute 
to the accuracy of the time-delay estimate within the 
intervals in which it is most sensitive and its 
contribution to the accuracy of the time-delay estimate 
would be in its lowest within the interval in which it is 
most insensitive. Luckily, it was observed from looking 
at Fig. 1a that in the interval [6.0-7.0] in which R12 was 
most insensitive, the DCT coefficients R11, R13 and R14 
were most sensitive. Therefore when one DCT 
coefficient was least sensitive in one interval, it was 
observed that other DCT coefficients were most 
sensitive within that interval and hence they contributed 
to the accuracy of the time-delay when that coefficient 

contribution was the least. This observation told that at 
least two RDCTC coefficients must be used as inputs to 
the NN in order to obtain an accurate time delay 
estimates over the range [0.0-10.0] as can be shown in 
Fig. 1a. 
 

NEURAL NETWORK SYSTEMS 
 
 The neural network systems used in this study were 
two layers feedforward networks. Hyperbolic tangent 
nonlinearity was used for the hidden layer neurons, 
while linear transfer function was used for the output 
neuron. Improved version of the backpropagation 
training  algorithm was  used  for  training  the  
network. It was called resilient backpropagation[13]. 
Riedmiller et al.[13] had noticed that the nonlinear 
transfer functions; the hyperbolic tangent and the log 
sigmoid; of the neurons have very small gradient values 
for large input values. The small gradient values 
resulted in slow convergence for the NN in the training 
phase because the backpropagation was gradient based 
learning algorithm. In order to overcome this problem, 
the sign of the gradient was used instead of its small 
value to update the NN parameters. This has resulted in 
a major improvement on the speed of convergence of 
the NN. 
 Multiple hidden layers NN were not considered in 
this research since it was shown in[11] that it did not add 
significantly to the improvement of the time delay 
estimates.  
 

SIMULATION RESULTS 
 
 In this research, a search for the optimal NN 
structure that would result in the smallest delay 
estimation error variance was performed. Then the 
optimal NN structure found was used for estimating the 
unknown time delay. 
  
Search for optimal neural network: To find out the 
optimal NN system that would result in the smallest 
delay estimation error variance, different NN structures 
were trained with 1000 noise free data sets with time 
delay values chosen randomly within the range [0.0-
10.0]. The trained NN were then tested with a new 1000 
signals that were delayed with delay values starting 
from 0.0 and ending with 10.0 samples in increments of 
0.01 samples. The variance between the exact time 
delay values and the estimated delay values was then 
obtained and tabulated in Table 2 for the case of the 
single sinusoidal reference signal. Table 2 shows the 
estimation error variance for NN systems with a single 
hidden  layer. The  hidden layer consists either of 5, 10, 
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Table 2: Delay estimation error Variance for a single sinusoid using 
most sensitive DCT coefficients with noise free data 

No. of No. of Hidden units 
RDCTC ------------------------------------------------------------------------- 
Coef. 5 10 15 20 25 30 
2 9.63e-4 7.23E-4 11.62E-4 10.47E-4 11.30E-4 14.09E-4 
4 6.35E-4 4.63E-4 6.88E-4 7.77E-4 7.75E-4 4.95E-4 
6 4.70E-4 7.74E-4 7.03E-4 5.05E-4 4.40E-4 8.52E-4 
8 5.20E-4 3.89E-4 4.70E-4 5.70E-4 6.94E-4 7.63E-4 
10 10.10E-4 4.13E-4 4.99E-4 5.81E-4 5.11E-4 6.24E-4 
12 5.64E-4 4.04E-4 3.51E-4 5.25E-4 5.79E-4 5.33E-4 
14 5.34E-4 4.62E-4 6.13E-4 4.99E-4 4.70E-4 4.45E-4 
16 5.35E-4 5.53E-4 4.78E-4 5.46E-4 4.11E-4 4.19E-4 

 
15, 20, 25, 30 neurons. Each one of these NN systems 
was tested with 2, 4, 6, 8, 10, 12, 14, 16 RDCTC input 
coefficients. Looking into Table 2, it was observed that 
the NN with 15 hidden neurons and 12 RDCTC 
coefficient inputs was the best of all NN, where it was 
observed that it resulted in the smallest delay estimation 
error variance of 3.51E-4. Hence, the NN with 15 
hidden neurons and 12 RDCTC coefficient inputs was 
chosen as the optimal NN.  
 
Simulation using the optimal NN structure: In the 
previous section, the optimal NN structure was found to 
have a total of 12 RDCTC inputs and 15 hidden 
neurons. This optimal NN was trained with RDCTC 
sets corresponding to filtered signals that experienced 
noise with standard deviation levels of 0.1, 0.3 and 0.5. 
About one thousand training patterns were applied to 
the NN in patch training mode. The additive Gaussian 
noise used in this data had a standard deviation value 
chosen randomly within [0.0-0.5] range. The time-delay 
values were chosen randomly within [0.0-10.0] 
sampling interval. The first 12 most sensitive RDCTC 
coefficients obtained under different noise levels and 
different time-delay values were applied to the optimal 
NN structure as inputs and the corresponding time 
delays as the output.  
 The trained NN was tested with a set of 1000 
RDCTC set corresponding to received signals with 
imbedded unknown time delays. The damping factor 
was chosen to have a value of 1.0 in those sets of data. 
Figure 2 shows the histograms for the delay estimation 
errors. Figure 2a shows the histogram for the delay 
estimation error where the used noise had a standard 
deviation of 0.1. It was observed that all of the delay 
estimation errors were within the range of ±0.2 
sampling interval. The delay estimation error variance 
was found to be 0.0026 which corresponded to a 
standard deviation of 0.051. It was also observed that 
the histogram took the Gaussian shape which implied 
that the delay estimation error assumed the Gaussian 
density  shape. This  implied  that  99.9%  of  the  delay 
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Fig. 2: Delay estimation error histograms. (a): Noise 

standard deviation is 0.1, (b): Noise standard 
deviation  is  0.3, (c): Noise standard deviation 
is 0.5 
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Fig. 3: Two layer feed forward neural network utilizing 

the first M RDCTC vector R as its input 
 
Table 3: Time-delay estimation based on the optimal NN 
Standard deviation of data noise 0.1 0.3 0.5 
Delay estimation error variance 0.0214 0.0186 0.0508 

 
estimation errors laid within ±3 standard deviations 
which  correspond  to  ±0.153  sampling interval. 
Figure 2b and c correspond to noise with standard 
deviation of 0.3 and 0.5 respectively. It was obvious 
from Fig. 2 that as the noise level increased the delay 
estimation error increased as well. The delay estimation 
error laid within ±0.5 for Fig. 2b and within ±0.8 for 
Fig. 2c and Fig. 3.  
 Table 3 shows the results of testing the optimal NN 
with  noisy  input data with random delay values within 
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Table 4: Time-delay estimation based on the cross-correlation 
technique 

Standard deviation of data noise 0.1 0.3 0.5 
CROSS1 delay estimation error variance 0.0021 0.0163 0.0413 
CROSS2 delay estimation error variance 0.0151 0.0309 0.0655 

 
[0.0-10.0] sampling intervals. The input data was 
corrupted with three noise levels of 0.1, 0.3 and 0.5. 
The delay estimation error variances for the optimal NN 
were presented. It was noted that as the noise level 
increased the estimation error variance increased. 
 Table 4 shows the time delay estimation error 
variance using the cross correlation technique. The 
noise free reference signal was correlated with the noisy 
received signal and the delay estimation error variance 
was presented in the second row of table 4. This cross-
correlation was denoted as CROSS1. Another cross-
correlation technique was performed by correlating the 
filtered noise free signal with the filtered received noisy 
signal and was denoted by CROSS2. In all simulations, 
a set of 1000 noisy and delayed signals were used in 
which the noise standard deviation levels were 0.1, 0.3 
and 0.5. It was shown that CROSS1 resulted in delay 
error variance less than that obtained by the optimal NN 
for all noise levels. But the optimal NN performed 
better than CROSS2 for noise levels larger than 0.1.  
 

CONCLUSION 
 
 A new time-delay estimation scheme was 
developed through the use of neural networks and 
RDCTC. The reduced set of RDCTC coefficients was 
used as the NN input instead of the filtered signal. This 
has resulted in a major reduction in the NN size. It was 
shown in this study that a small size NN with a reduced 
set of RDCTC coefficients was capable of producing 
accurate time-delay estimates that were comparable to 
those obtained by the cross-correlation technique.  
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