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Abstract: Scheduling an application in data grid was significantly complex and very challenging 
because of its heterogeneous in nature of the grid system. When the Divisible Load Theory (DLT) 
model had emerged as a powerful model for modeling data-intensive grid problem, Task Data Present 
(TDP) model was proposed based on it. This study presented a new Adaptive TDP (ATDP) for 
scheduling the intensive grid applications. New closed form solution for obtaining the load allocation 
was derived while computation speeds and communication links are heterogeneous. Experimental 
results showed that the proposed model can balance the load efficiently. 
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INTRODUCTION 

 
 Grid computing applies the resources of many 
computers in a network to a single problem at a given 
time-usually to a scientific or computational problem 
that requires a greater number of CPU cycles or access 
to large amounts of data[1]. In data grid environment, 
many large scale scientific experiments and simulations 
generate very large amounts of data in the distributed 
storages, spanning thousands of files and data sets[2]. 
Due to the heterogeneous in nature of the grid system, 
scheduling an applications in such environment either 
data- or communication intensives is significantly 
complex and challenging. Grid scheduling is defined as 
the process of making scheduling decision involving 
allocating job to resources over multiple administrative 
domains[3]. 
 A decoupled scheduling architecture for data 
intensive applications is also proposed[7]. In this 
research, they proposed Task Data Present (TDP) 
model. The results show that when the job is scheduled 
to a site where the data is available the data transfer is 
minimal but the response time suffers when there is no 
data replication. This is because a few sites which host 
the data are overloaded in this case and hence, making a 
case for dynamic replication of data.  
 Recently, DLT model has emerged as a powerful 
model for modeling data-intensive grid problem[4]. DLT 
exploits the parallelism of a divisible application which 
is continuously divisible into parts of arbitrary size, by 

scheduling the loads in a single source onto multiple 
computing resources. The load scheduling in data Grid 
is addressed using DLT model with additional 
constraint that each worker node receives the same load 
fraction from each data source[5]. 
 However, most of the previous models do not take 
into account the communication time. Whereas, in 
order to achieve a high performance, we must consider 
both communication and computation time[6].  
 In addition, a load balancing algorithm is also 
developed on a structure of data of network type WAN, 
which guarantees its portability on any grid computing. 
The distribution of loads assures the convergence of the 
algorithm in an acceptable time[9]. In this research, the 
communication time is not considered.  
 TDP model was examined with other strategies for 
non-divisible applications[7,10]. It was modified to be 
able to schedule divisible load applications[8]. This 
strategy maps tasks only to the sites where the required 
data is present. Each task processes the data sets 
residing at that site. There is no input data transfer in 
this case. They considered the communication time but 
not in dividing the load. Instead, they divided the load 
using DLT model then added the communication time 
to the makespan.  
 Our previous research in this area is the Adaptive 
DLT (ADLT) for scheduling the arbitrarily divisible 
load in data grid application[12]. In this research, the 
communication time and communication time are 
considered jointly.  
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 In this study, a new Adaptive TDP model is 
proposed as an improvement of TDP model. The 
objective is to find the optimal allocation of workload 
of M processing nodes by the examination of the effect 
of non-negligible communication delay as well as 
computation time and the network configurations. The 
design of our proposed model adopts the divisible load 
paradigm, referred to as the Divisible Load Theory 
(DLT), which is shown to be efficient in handling large 
volume loads.  
 
Scheduling model: A generic data grid computing 
system infrastructure considered here comprises a 
network of supercomputers and/or clusters of 
computers connected by Wide Area Network (WAN), 
having different computational and communication 
capabilities. We consider the problem of scheduling 
large-volume loads (divisible loads) within in multiple 
sites. Communication is assumed to be predominant 
between such cluster nodes and is assumed to be 
negligible within a cluster node[5,8,11]. 
 The target data intensive application model can be 
decomposed into multiple independent subtasks and 
executed in parallel across multiple sites without any 
interaction among sub tasks. For example, let’s 
consider job decomposition by decomposing input data 
objects into multiple smaller data objects of arbitrary 
size and processing them on multiple virtual sites. High 
Energy Physic (HEP) jobs are arbitrarily divisible at 
event granularity and intermediate data product 
processing granularity[2]. In this research, assuming that 
a job requires a very large logical input data set (D) 
consists of N physical datasets and each physical 
dataset (of size Lk) resides at a data source (DSk, for all 
k = 1,2…, N) of a particular site. Figure 1 shows how 
the logical input data (D) is decomposed onto networks 
and their computing resources. 
 

 
 
Fig. 1: Data decomposition and their processing 

 The scheduling problem is to decompose D into 
datasets (Di for all i =1, 2, ..., M) across N virtual sites 
in a Virtual Organization (VO) given its initial physical 
decomposition. We assume that the decomposed data 
can be analyzed on any site. 
 For the notations, definitions that used in this 
research are stated in Table 1. 
 The execution time of a subtask allocated to the 
site i (Ti) and the turn around time of a job J 
(Tturn_around_time) can be expressed as follows:  
 

i input _ cm cp output _ cmT T (i) T (i) T (i,d)= + +  

turnaround _ time ii 1,...,M
T max {T }

=
=  

 
 The cost (Ti) includes input data transfer 
(Tinput_cm(i)), computation (Tcp(i)) and output data 
transfer to the client at the destination site d 
(Toutput_cm(i,d)): 
 

input _ cm kik 1..m
ki

1T (i) max{ }
z=

= α ⋅  

cp i iT (i) d w= ⋅  

output _ cm i idT (i,d) f (d ) z= ⋅  
 
 We assume that data from multiple data sources 
can be transferred to a site i concurrently in the wide 
area environment and computation starts only after the 
assigned data set is totally transferred to the site. Hence, 
the problem of scheduling a divisible job onto n sites 
can be stated as deciding the portion of original 
workload (D) to be allocated to each site, that is, 
finding a distribution of distribution of { }kiα which 
minimizes the turn-around time of a job. The proposed 
SA approach uses this cost model when evaluating 
solutions at each generation. 
 
TDP scheduling model: Firstly, TDP model was 
proposed for scheduling indivisible load[7]. 
Consequently, it is modified to be work on scheduling 
divisible load applications[7]. This strategy maps tasks 
only to the sites where the required data is present. 
Each  task  processes  the  data  sets residing at that site. 
 
Table 1: Terminology, definitions and notations 
N The total number of data files in the system 
M The total number of nodes in the system 
Li The loads in data file i 
Lij The loads that node i will receive from data file j 
L The sum of loads in the system, where L = N

ii 1
L

=∑  

αij The fraction of L that node i will receive from all data file j 
wi The inverse of the computing speed of node i 
Zij The link between node i and data source j 
T(i) The processing time in node i 
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Fig. 2: Framework of TDP model 
 
There is no input data transfer in this case. In the 
beginning, they calculate the processing time using 
DLT model that was proposed in[4]. Then, the transfer 
output time is added to calculate the makespan. The 
equation of calculating the load fraction is: 
 

j

M

x 1
x

1( )
w

1( )
w=∑

 (1) 

 
 So the amount of load that site i gives site j is 
calculated as: 
 

j
i, j iM

x 1
x

1( )
w

L1( )
w=

α =
∑

 (2) 

 
 To understand how the TDP model works, the 
framework is shown in Fig. 2. 
 
Proposed ATDP scheduling model: In the previous 
TDP model, the loads were divided by using the DLT 
model and finally the makespan was calculated. In the 
proposed model, we try to balance the loads by 
considering communication time. In other word, the 
node speed fraction was calculated together with the 
communication time fraction as follows.  
 The communication time fraction is added into the 
ATDP model. The fraction of load if we consider the 
computation time only is:  
 

j

M

x 1
x

1( )
w

1( )
w=∑

 (3) 

 
and if we consider the communication time only (time 
for transferring the processed load to the output node), 
the load fraction will be as: 
 

j

M

x 1
x

1( )
z

1( )
z=∑

 (4) 

 
 
Fig. 3: Framework of ATDP model 
 
 In the proposed model, we will consider both-the 
communication time fraction as well as the computation 
time fraction. Thus, the Combination Fraction (CF) will 
be as: 
 

j j
ij M M

x 1 x 1
x x

1 1
w z

CF 1 1
w z= =

= +
∑ ∑

 (5) 

 
ij

j N M
iji 1 j 1

CF

CF
= =

α =
∑ ∑

 (6) 

 
 And the closed form solution is: 
 

ij
j iN M

iji 1 j 1

CM
L

CM
= =

α =
∑ ∑

 (7) 

 
 To be clear the framework of the ATDP model is 
shown in Fig. 3. 
 

RESULTS AND DISCUSSION 
 
 To measure the performance of the proposed SA-
based approach against CDLT and GA approaches, 
randomly generated experimental configurations were 
used. We made the simulation program using C++ 
language. The estimated expected execution time for 
processing a unit dataset on each site, the network 
bandwidth between sites, input data size and the ratio of 
output data size to input data size were randomly 
generated with uniform probability over some 
predefined ranges. The network bandwidth between 
sites is uniformly distributed between 1 Mbps and 10 
Mbps.  
 The location of m data sources DSk is randomly 
selected and each physical dataset size Lk is randomly 
selected with a uniform distribution in the range of 1GB 
to 1TB. It is assumed that the computing time spent in a 
site i to process a unit dataset of size 1MB is uniformly 
distributed in the range 1/rcb to 10/rcb seconds, where rcb 
is the ratio of computation speed to communication 
speed.  
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Fig. 4: Makespan for the TDP and ATDP models 
 
Table 2: Percentage makespan improvements of ATDP model against 

TDP model with different ccRatio 
ccRatio TDP (%) 
0.001 34 
0.01 33 
0.1 35 
1 26 
10 7 
100 0 
1000 0 
Average 20 
 
 We examined the overall performance of each 
model by running them under 100 randomly generated 
Grid configurations. These parameters are varied: 
ccRatio  (0.001-1000),      M (20-100),     N (20-100), 
rcb (10-500) and data file size (1 GB-1 TB). When the 
number of nodes and the number of data files are both 
100, the results are collected and shown in Fig. 4. 
 The results showed that the makespan of the 
proposed model is better than the previous model, 
especially when the ccRatio is less than 1 
(communication-intensive applications).  
 In summary, the model balances the load among 
the nodes more efficiently. The percentage makespan 
improvements of ATDP model against TDP model are 
clearly demonstrated in Table 2. 
 From Table 2, it was found that ATDP model is 
20% better than TDP model in terms of makespan. 
These results showed that ATDP is the best model 
which means by applying this model will balance the 
load efficiently for communication intensive 
application.  
 When we compare the ATDP model to the TDP 
model with different size of data files, the ATDP model 
produces better result as compared to TDP model. The 
performance of ATDP model is improved when the size 
of data file is increased. The result is shown in Fig. 5. 
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Fig. 5: Makespan vs. data file size for the TDP and 

TDP models 
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Fig. 6: Makespan vs. no. of node ATDP and TDP 

models (N = 100, M = 100 and ccRatio = 0.001) 
 
Table 3: Percentage makespan improvements of ATDP model 

against TDP model with different data file size 
ccRatio TDP (%) 
1 0 
10 -15 
20 -13 
50 12 
100 35 
Average 4 
 
 Furthermore, the graphs are also plotted for 
makespan  against  number of processing node as in 
Fig. 6.  
 Figure 6, shows that ADLT model is better than 
TDP model when the number of processing nodes is 
less than 50. When the number of the processing nodes 
becomes 50 and above, the ATDP is produce better 
results. In average, the ATDP model is better than TDP 
model by 4%, Table 3. 
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 Table 3 shows that, ATDP model produce in 
average better results than TDP model. It is also clear 
that the proposed the ATDP model produces better 
results when the number of processing node is 
increased. 
 

CONCLUSION 
 
 In this study, an improvement version of TDP 
model called ATDP model proposed. The ATDP model 
reduces the makespan and balances the load more 
efficiently than the TDP model. The experiment results 
showed that ATDP model improved with an average of 
20% of the makespan compared to TDP model. With 
such improvement, the proposed model can be 
integrated in the existing data grid schedulers in order 
to improve the performance. 
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