
American Journal of Applied Sciences 6 (4): 626-630, 2009
ISSN 1546-9239
© 2009 Science Publications

Corresponding Author: Monir Abdullah, Mohamed Othman, Department of Communication Technology and Network,
 University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
 Tel: +603-89466535 Fax: +603-89466577

626

Closed form Solution for Scheduling Arbitrarily Divisible Load

Model in Data Grid Applications: Multiple Sources

Monir Abdullah, Mohamed Othman, Hamidah Ibrahim and Shamala Subramaniam
Department of Communication Technology and Network,

University Putra Malaysia, 43400 UPM Serdang, Selangor DE, Malaysia

Abstract: Scheduling an application in data grid was significantly complex and very challenging
because of its heterogeneous in nature of the grid system. When the Divisible Load Theory (DLT)
model had emerged as a powerful model for modeling data-intensive grid problem, Task Data Present
(TDP) model was proposed based on it. This study presented a new Adaptive TDP (ATDP) for
scheduling the intensive grid applications. New closed form solution for obtaining the load allocation
was derived while computation speeds and communication links are heterogeneous. Experimental
results showed that the proposed model can balance the load efficiently.

Key words: Data grid, divisible load theory

INTRODUCTION

 Grid computing applies the resources of many
computers in a network to a single problem at a given
time-usually to a scientific or computational problem
that requires a greater number of CPU cycles or access
to large amounts of data[1]. In data grid environment,
many large scale scientific experiments and simulations
generate very large amounts of data in the distributed
storages, spanning thousands of files and data sets[2].
Due to the heterogeneous in nature of the grid system,
scheduling an applications in such environment either
data- or communication intensives is significantly
complex and challenging. Grid scheduling is defined as
the process of making scheduling decision involving
allocating job to resources over multiple administrative
domains[3].
 A decoupled scheduling architecture for data
intensive applications is also proposed[7]. In this
research, they proposed Task Data Present (TDP)
model. The results show that when the job is scheduled
to a site where the data is available the data transfer is
minimal but the response time suffers when there is no
data replication. This is because a few sites which host
the data are overloaded in this case and hence, making a
case for dynamic replication of data.
 Recently, DLT model has emerged as a powerful
model for modeling data-intensive grid problem[4]. DLT
exploits the parallelism of a divisible application which
is continuously divisible into parts of arbitrary size, by

scheduling the loads in a single source onto multiple
computing resources. The load scheduling in data Grid
is addressed using DLT model with additional
constraint that each worker node receives the same load
fraction from each data source[5].
 However, most of the previous models do not take
into account the communication time. Whereas, in
order to achieve a high performance, we must consider
both communication and computation time[6].
 In addition, a load balancing algorithm is also
developed on a structure of data of network type WAN,
which guarantees its portability on any grid computing.
The distribution of loads assures the convergence of the
algorithm in an acceptable time[9]. In this research, the
communication time is not considered.
 TDP model was examined with other strategies for
non-divisible applications[7,10]. It was modified to be
able to schedule divisible load applications[8]. This
strategy maps tasks only to the sites where the required
data is present. Each task processes the data sets
residing at that site. There is no input data transfer in
this case. They considered the communication time but
not in dividing the load. Instead, they divided the load
using DLT model then added the communication time
to the makespan.
 Our previous research in this area is the Adaptive
DLT (ADLT) for scheduling the arbitrarily divisible
load in data grid application[12]. In this research, the
communication time and communication time are
considered jointly.

Am. J. Applied Sci., 6 (4): 626-630, 2009

 627

 In this study, a new Adaptive TDP model is
proposed as an improvement of TDP model. The
objective is to find the optimal allocation of workload
of M processing nodes by the examination of the effect
of non-negligible communication delay as well as
computation time and the network configurations. The
design of our proposed model adopts the divisible load
paradigm, referred to as the Divisible Load Theory
(DLT), which is shown to be efficient in handling large
volume loads.

Scheduling model: A generic data grid computing
system infrastructure considered here comprises a
network of supercomputers and/or clusters of
computers connected by Wide Area Network (WAN),
having different computational and communication
capabilities. We consider the problem of scheduling
large-volume loads (divisible loads) within in multiple
sites. Communication is assumed to be predominant
between such cluster nodes and is assumed to be
negligible within a cluster node[5,8,11].
 The target data intensive application model can be
decomposed into multiple independent subtasks and
executed in parallel across multiple sites without any
interaction among sub tasks. For example, let’s
consider job decomposition by decomposing input data
objects into multiple smaller data objects of arbitrary
size and processing them on multiple virtual sites. High
Energy Physic (HEP) jobs are arbitrarily divisible at
event granularity and intermediate data product
processing granularity[2]. In this research, assuming that
a job requires a very large logical input data set (D)
consists of N physical datasets and each physical
dataset (of size Lk) resides at a data source (DSk, for all
k = 1,2…, N) of a particular site. Figure 1 shows how
the logical input data (D) is decomposed onto networks
and their computing resources.

Fig. 1: Data decomposition and their processing

 The scheduling problem is to decompose D into
datasets (Di for all i =1, 2, ..., M) across N virtual sites
in a Virtual Organization (VO) given its initial physical
decomposition. We assume that the decomposed data
can be analyzed on any site.
 For the notations, definitions that used in this
research are stated in Table 1.
 The execution time of a subtask allocated to the
site i (Ti) and the turn around time of a job J
(Tturn_around_time) can be expressed as follows:

i input _ cm cp output _ cmT T (i) T (i) T (i,d)= + +

turnaround _ time ii 1,...,M
T max {T }

=
=

 The cost (Ti) includes input data transfer
(Tinput_cm(i)), computation (Tcp(i)) and output data
transfer to the client at the destination site d
(Toutput_cm(i,d)):

input _ cm kik 1..m
ki

1T (i) max{ }
z=

= α ⋅

cp i iT (i) d w= ⋅

output _ cm i idT (i,d) f (d) z= ⋅

 We assume that data from multiple data sources
can be transferred to a site i concurrently in the wide
area environment and computation starts only after the
assigned data set is totally transferred to the site. Hence,
the problem of scheduling a divisible job onto n sites
can be stated as deciding the portion of original
workload (D) to be allocated to each site, that is,
finding a distribution of distribution of { }kiα which
minimizes the turn-around time of a job. The proposed
SA approach uses this cost model when evaluating
solutions at each generation.

TDP scheduling model: Firstly, TDP model was
proposed for scheduling indivisible load[7].
Consequently, it is modified to be work on scheduling
divisible load applications[7]. This strategy maps tasks
only to the sites where the required data is present.
Each task processes the data sets residing at that site.

Table 1: Terminology, definitions and notations
N The total number of data files in the system
M The total number of nodes in the system
Li The loads in data file i
Lij The loads that node i will receive from data file j
L The sum of loads in the system, where L = N

ii 1
L

=∑

αij The fraction of L that node i will receive from all data file j
wi The inverse of the computing speed of node i
Zij The link between node i and data source j
T(i) The processing time in node i

Am. J. Applied Sci., 6 (4): 626-630, 2009

 628

Fig. 2: Framework of TDP model

There is no input data transfer in this case. In the
beginning, they calculate the processing time using
DLT model that was proposed in[4]. Then, the transfer
output time is added to calculate the makespan. The
equation of calculating the load fraction is:

j

M

x 1
x

1()
w

1()
w=∑

 (1)

 So the amount of load that site i gives site j is
calculated as:

j
i, j iM

x 1
x

1()
w

L1()
w=

α =
∑

 (2)

 To understand how the TDP model works, the
framework is shown in Fig. 2.

Proposed ATDP scheduling model: In the previous
TDP model, the loads were divided by using the DLT
model and finally the makespan was calculated. In the
proposed model, we try to balance the loads by
considering communication time. In other word, the
node speed fraction was calculated together with the
communication time fraction as follows.
 The communication time fraction is added into the
ATDP model. The fraction of load if we consider the
computation time only is:

j

M

x 1
x

1()
w

1()
w=∑

 (3)

and if we consider the communication time only (time
for transferring the processed load to the output node),
the load fraction will be as:

j

M

x 1
x

1()
z

1()
z=∑

 (4)

Fig. 3: Framework of ATDP model

 In the proposed model, we will consider both-the
communication time fraction as well as the computation
time fraction. Thus, the Combination Fraction (CF) will
be as:

j j
ij M M

x 1 x 1
x x

1 1
w z

CF 1 1
w z= =

= +
∑ ∑

 (5)

ij

j N M
iji 1 j 1

CF

CF
= =

α =
∑ ∑

 (6)

 And the closed form solution is:

ij
j iN M

iji 1 j 1

CM
L

CM
= =

α =
∑ ∑

 (7)

 To be clear the framework of the ATDP model is
shown in Fig. 3.

RESULTS AND DISCUSSION

 To measure the performance of the proposed SA-
based approach against CDLT and GA approaches,
randomly generated experimental configurations were
used. We made the simulation program using C++
language. The estimated expected execution time for
processing a unit dataset on each site, the network
bandwidth between sites, input data size and the ratio of
output data size to input data size were randomly
generated with uniform probability over some
predefined ranges. The network bandwidth between
sites is uniformly distributed between 1 Mbps and 10
Mbps.
 The location of m data sources DSk is randomly
selected and each physical dataset size Lk is randomly
selected with a uniform distribution in the range of 1GB
to 1TB. It is assumed that the computing time spent in a
site i to process a unit dataset of size 1MB is uniformly
distributed in the range 1/rcb to 10/rcb seconds, where rcb
is the ratio of computation speed to communication
speed.

Am. J. Applied Sci., 6 (4): 626-630, 2009

 629

1.0E+04

4.0E+04

1.6E+05

6.4E+05

0.001 0.01 0.1 1 10 100 1000

M
ak

es
pa

n
(s

ec
)

ccRatio

TDP ATDP

Fig. 4: Makespan for the TDP and ATDP models

Table 2: Percentage makespan improvements of ATDP model against

TDP model with different ccRatio
ccRatio TDP (%)
0.001 34
0.01 33
0.1 35
1 26
10 7
100 0
1000 0
Average 20

 We examined the overall performance of each
model by running them under 100 randomly generated
Grid configurations. These parameters are varied:
ccRatio (0.001-1000), M (20-100), N (20-100),
rcb (10-500) and data file size (1 GB-1 TB). When the
number of nodes and the number of data files are both
100, the results are collected and shown in Fig. 4.
 The results showed that the makespan of the
proposed model is better than the previous model,
especially when the ccRatio is less than 1
(communication-intensive applications).
 In summary, the model balances the load among
the nodes more efficiently. The percentage makespan
improvements of ATDP model against TDP model are
clearly demonstrated in Table 2.
 From Table 2, it was found that ATDP model is
20% better than TDP model in terms of makespan.
These results showed that ATDP is the best model
which means by applying this model will balance the
load efficiently for communication intensive
application.
 When we compare the ATDP model to the TDP
model with different size of data files, the ATDP model
produces better result as compared to TDP model. The
performance of ATDP model is improved when the size
of data file is increased. The result is shown in Fig. 5.

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

3.5E+06

1 10 100 1024

Data file size (GB)

TDP

ATDP

M
ak

es
pa

n
(s

ec
)

Fig. 5: Makespan vs. data file size for the TDP and

TDP models

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

3.5E+05

4.0E+05

4.5E+05

5.0E+05

1 10 20 50 100

No. of Node

TDP ATDP
M

ak
es

pa
n

(s
ec

)

Fig. 6: Makespan vs. no. of node ATDP and TDP

models (N = 100, M = 100 and ccRatio = 0.001)

Table 3: Percentage makespan improvements of ATDP model

against TDP model with different data file size
ccRatio TDP (%)
1 0
10 -15
20 -13
50 12
100 35
Average 4

 Furthermore, the graphs are also plotted for
makespan against number of processing node as in
Fig. 6.
 Figure 6, shows that ADLT model is better than
TDP model when the number of processing nodes is
less than 50. When the number of the processing nodes
becomes 50 and above, the ATDP is produce better
results. In average, the ATDP model is better than TDP
model by 4%, Table 3.

Am. J. Applied Sci., 6 (4): 626-630, 2009

 630

 Table 3 shows that, ATDP model produce in
average better results than TDP model. It is also clear
that the proposed the ATDP model produces better
results when the number of processing node is
increased.

CONCLUSION

 In this study, an improvement version of TDP
model called ATDP model proposed. The ATDP model
reduces the makespan and balances the load more
efficiently than the TDP model. The experiment results
showed that ATDP model improved with an average of
20% of the makespan compared to TDP model. With
such improvement, the proposed model can be
integrated in the existing data grid schedulers in order
to improve the performance.

REFERENCES

1. Richard ,R.J.A., A.J. Ajay and C. Eswaran, 2008.

Implementation of computational grid services in
enterprise grid environments. Am. J. Applied Sci.,
5:1442-1447.
http://www.articlearchives.com/computing-information-
technology/computer-networks/1885216-1.html.

2. Jaechun, N. and P. Hyoungwoo, 2005. GEDAS: A
data management system for data grid
environments. Lecture Notes Comput. Sci.,
3514:485-492.
http://www.springerlink.com/content/lw2t4dwv3th
w3b86/.

3. Venugopal, S., R. Buyya and K. Ramamohanarao,
2006. A taxonomy of data grids for distributed data
sharing, management and processing. ACM
Comput.Surv.,38:1-53.
http://portal.acm.org/citation.cfm?id=1132952.113
2955.

4. Robertazzi, T.G., 2003. Ten reasons to use
divisible load theory. IEEE Comput., 36: 63-68.
DOI: 10.1109/MC.2003.1198238.

5. Wong, H.M., B. Veeravalli, Y. Dantong and
T.G. Robertazzi, 2003. Data intensive grid
scheduling: Multiple sources with capacity
constraints. Proceeding of the IASTED Conference
on Parallel and Distributed Computing and
Systems, Nov. 3-5, Marina del Rey, USA,
pp:7-11.
http://www.actapress.com/PaperInfo.aspx?PaperID
=13753&reason=500.

6. Bharadwaj, V., D. Ghose and T.G. Robertazzi,
2003. Divisible load theory: A new paradigm for
load scheduling in distributed systems. Clust.
Comput.,6: 7-17. DOI: 10.1023/A:1020958815308.

7. Ranganathan, K. and I. Foster, 2002. Decoupling
computation and data scheduling in distributed
data-intensive applications. Proceeding of the 11th
IEEE International Symposium on High
Performance Distributed Computing, July 24-26,
IEEE Computer Society Washington, DC., USA.,
pp:352.
http://portal.acm.org/citation.cfm?id=823346.

8. Kim, S. and J. B. Weissman, 2004. A genetic
algorithm based approach for scheduling
decomposable data grid applications. Proceeding of
the International Conference on Parallel
Processing, Aug. 15-18, IEEE Computer Society
Press, Washington DC., USA., pp: 406-413. DOI:
10.1109/ICPP.2004.9.

9. Boukerram, A. and S.A.K. Azzou, 2006.
Implementation of load balancing algorithm in a
grid computing. Am. J. Applied Sci., 3: 810-1813.
http://www.articlearchives.com/computing-information-
technology/distributed-computing/761515-1.html.

10. Takefusa, A., O. Tatebe, S. Matsuoka and
Y. Morita, 2003. Performance analysis of
scheduling and replication algorithms on grid
datafarm architecture for high energy physics
applications. Proceedings on the 12th IEEE
International Symposium on High Performance
Distributed Computing, June 22-24, IEEE
Computer Society Press, Washington DC., USA.,
pp:34.
http://portal.acm.org/citation.cfm?id=822087.8234
02.

11. Viswanathan, S., B. Veeravalli and
T.G. Robertazzi, 2007. Resource-aware distributed
scheduling strategies for large-scale computational
cluster/grid systems. IEEE Trans. Parall. Distribut.
Syst.,18:1450-1461.

 DOI: 10.1109/TPDS.2007.1073.
12. Othman, M., M. Abdullah, H. Ibrahim and S.

Subramaniam, 2007. Adaptive divisible load model
for scheduling data-intensive grid applications:
Computational science. Lecture Notes Comput.
Sci., 4487: 446-453. DOI: 10.1007/978-3-540-
72584-8_59.

