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Abstract: Multimedia communications require efficient and real-time implementations of multirate  
digital signal processing systems. The backbone structures of multirate systems are digital multirate 
filter banks. Therefore, efficient multimedia communications rely, in the first place,  on real-time 
implementations  of multirate filter banks. In this paper, we describe a Field Programmable Gate Array 
(FPGA) implementation of the analysis and synthesis filter banks which are the fundamental 
components of multirate systems. The implementation utilizes the parallel form of the distributed 
arithmetic technique which enables maximum exploitation of the parallelism inherent in the multirate 
filtering operation.  Performance results demonstrate the effectiveness of the  implementation and 
suggest that the FPGA platform is indeed attractive for implementing multirate filter banks..  
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INTRODUCTION 
 
 Multimedia digital signal processing applications 
require sampling audio and video signals using  
different sampling rates[1]. This requirement has given 
rise to the design, development and application of 
multirate systems in communications, image and video 
processing, speech coding, spectrum analysis, radar and 
antenna systems[2]. The sampling rate conversion 
process in these systems has been traditionally done by 
passing  the multimedia signal  through a digital to 
analog  converter,  and then re-sampling the output 
analog signal at the required rate.  However, this 
method introduces distortion to the signal because of 
the quantization effects inherent in the analog to digital 
conversion process[3].  
 Single-rate digital filters have been used to perform 
the sampling rate conversion process to overcome 
limitations of the analog to digital conversion approach. 
However, single-rate filters proved to be slow in terms 
of processing time due to the many filtering taps that 
must be used. Ultimately, multirate filters were 
developed to offer relatively low sampling rate, thereby 
resulting in fewer filtering taps compared to single-rate 
filters[4]. These filters convert a set of input samples 
into another set that represent the same signals sampled 
at the required frequency. Multirate filters are 
commonly employed  in systems requiring real-time 

performance, and therefore they are still receiving 
considerable attention in modern research. 
 In this paper, a description of a parallel and high 
speed, single-chip implementation of the fundamental 
multirate filter banks is presented. The hardware 
implementation platform is based on Virtex field 
programmable gate arrays (FPGAs)[5]. The fine grained 
parallelism found in Virtex FPGAs is well-matched to 
the high-sample rates and distributed computation often 
found in multirate digital signal processing 
applications[6]. Furthermore, the reconfigurable lookup-
table architecture of Virtex FPGAs makes it possible to 
modify filter coefficients to suit different applications. 
We make maximal utilization of Virtex FPGA 
resources by implementing the computation of the 
fundamental multirate filter banks in accordance with 
the parallel distributed arithmetic technique[7]. This 
technique rearranges the filter operation of the 
fundamental banks in such a way so as to match the 
architecture of Virtex FPGA, resulting in large 
performance gains.  
 This paper  is organized as follows. Section 2 gives 
an overview of the XSV-300 FPGA prototyping board.  
Section 3 introduces the two fundamental multirate 
filter banks; the analysis filter bank and the synthesis 
filter bank. Section 4 presents direct, serial, and parallel 
distributed arithmetic implementations of FIR filters. 
The FPGA implementation of the analysis filter bank is 
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described in section 5, and the FPGA implementation 
of the synthesis filter bank is described in section 6. 
Finally, section 7 discusses the performance results and 
section eight concludes the paper.  
 

FIELD PROGRAMMABLE GATE ARRAYS 
 
 A filed programmable gate array (FPGA) is an 
integrated circuit that contains many identical logic 
cells interconnected by a matrix of wires and 
programmable switch, as shown in Figure 1. A user’s 
design is implemented by specifying the simple logic 
function for each cell and selectively closing the 
switches in the interconnect matrix. The array of logic 
cells and interconnect form a fabric of basic building 
blocks for logic circuits. Complex designs are created 
by combining these basic blocks to create the desired 
circuit [8]. 
 For the particular implementation reported in this 
paper, we have used a prototyping board called the 
XSV-300 FPGA Board, developed by XESS[9]. The 
board, shown in Fig. 2, employs a Xilinx XCV300 
FPGA with 300,000 gates [10]. It can accept video with 
up to 9-bits of resolution and output video                    
images through a 110 MHz, 24-bit  RAMDAC. It can  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: General FPGA architecture 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: The XSV-300 FPGA board 

also process    stereo   audio  signals  with  up  to  20  
bits  of resolution. Two independent banks of 512K x 
16 SRAM are provided for local buffering of signals 
and data. The onboard Virtex FPGA is programmed 
using Verilog HDL; a popular hardware description 
language[11]. The language has capabilities to simulate 
and verify a design model using a Verilog simulator. As 
a programming development environment, Xilinx ISE 
Foundation Series tools have been used. 
 
FUNDAMENTAL MULTIRATE FILTER BANKS 

 
 The fundamental multirate filter banks are the 
analysis filter bank and the synthesis filter bank [12]. The 
analysis filter bank is shown in Figure 3a. It consists of  
two decimators connected in parallel; the upper 
decimator is a low pass, H0(z),  followed by a down-
sampler, and the lower decimator is a high pass filter, 
H1(z), followed by a down-sampler. Each down-
sampler operates by taking a filtered sequence x[n] and 
generating an output sequence y[n] according to the 
relation y[n] = x[2n]. All filtered elements in the 
subsequence x[2n+1] are discarded. On the other hand, 
the synthesis filter bank is shown in Fig. 3b. It consists 
of two interpolators connected in parallel; the upper is a 
low pass filter, G0(z),  proceeded by an up-sampler, and 
the lower is a high pass filter,G1(z), proceeded by  an 
up-sampler [12].  Each up-sampler inserts an  equidistant 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Fundamental multirate filter banks 
(a) Analysis filter bank and (b) Synthesis filter bank 
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zero-valued sample  between every two consecutive 
samples on the input sequence x[n] . An output 
sequence y[n] is developed such that  y[n] = x[n/2]  for 
even indices of n, and 0  otherwise. This makes the  
sampling rate of  the output sequence  y[n]  twice as 
large as the sampling rate of the original sequence  x[n]. 

 
FIR FILTER IMPLEMENTATION 

 
 The effectiveness of any implementation of the two 
fundamental multirate filter banks depends, to a great 
extent, on how efficient FIR filters are implemented. 
This is due to the fact that FIR filters, by virtue of their 
stability, are the most commonly used filters in 
multirate systems. In this section we describe three 
possible implementations of FIR filters; a direct 
implementation, a serial distributed arithmetic 
implementation, and a parallel distributed arithmetic 
implementation.   
 
Direct implementation: An FIR filter of length M is 
characterized by the transfer function H(z): 
          
 
 (1) 
 
   
 As shown in Fig. 4, each filter tap consists of a 
delay element, an adder, and a multiplier [13]. However, 
a major drawback of this  implementation is that filter 
throughput is inversely proportional to the number of 
filter taps. That is, as  filter length is increased, the filter 
throughput  is proportionately decreased. Nonetheless, 
we will use this direct structure to implement the 
fundamental filter banks for the sake of  performance 
comparison. 
 
Serial distributed arithmetic implementation: 
Distributed arithmetic is an efficient method of inner 
product computation which constitutes the core of  the 
FIR filter operation[14]. It uses lookup tables and 
addition in place of multiplication. Compared to 
lumped arithmetic-based architectures, distributed 
arithmetic architectures are completive in both speed 
and hardware requirements. In addition they are 
extremely regular, which makes them most suitable for 
programmable logic realization[15].   
 A simple derivation of the distributed arithmetic 
methods is as follows[16]. Let the variable Y hold the 
result of an inner product operation between a data 
vector x and a coefficient vector a. The distributed 
arithmetic  representation the inner product operation is 
given as follows:  

 (2) 
     
 
 
 where the  input data words xi have been 
represented by the 2’s complement number presentation 
in order to bound number growth under multiplication. 
The variable xij is the jth bit of the xi word which is 
Boolean, B is the number of bits of each input data 
word and x0i  is the sign bit.  Distributed arithmetic is 
based on the observation that the function Fj can only 
take 2N different values that can be pre-computed 
offline and stored in a look-up table. Bit j of each data 
xij  is then used to address this look-up table. Equation 
(2) clearly shows that the only three different operations 
required for calculating the inner product. First, a look-
up to obtain the value of Fj, then addition or 
subtraction, and finally a division by two that can be 
realized by a shift.  
 Distributed arithmetic implementation of an FIR 
filter consists of  a look-up table (LUT), a cascade of 
shift registers and a scaling accumulator[17].  The LUT 
stores all possible partial products over the FIR filter 
coefficients, as shown in Fig. 5. Input samples are 
presented to the input parallel-to serial shift register at 
the input signal sample rate. As the input sample is 
serialized, the bit-wide output is presented to the bit-
serial shift register cascade, 1-bit at a time. The cascade 
stores the input sample history in a bit-serial format and 
is used in forming the required inner-product 
computation. The bit outputs of the shift register 
cascade  are used as address inputs to the look-up table. 
Partial results from  the look-up table are summed by 
the scaling accumulator to form a final result at the 
filter output port.  
 Since the LUT size in a distributed                     
arithmetic implementation increases exponentially            
with the number of coefficients, the LUT                         
access time can be a bottleneck for the speed                        
of the whole system when the LUT size becomes              
large.  Hence, we decomposed the 8-bit LUT into               
two 4-bit LUTs, and added their outputs using a               
two-input accumulator. The partitioned-LUT FIR             
filter architecture is shown in Fig. 6.  The total size of 
storage is now reduced since the accumulator is less 
costly     than     the     larger   8-bit  LUT.  Furthermore,  
 
 
 
 
 
 
Fig. 4: Direct FIR filter structure 
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Fig. 5: Serial distributed arithmetic implementation of the FIR filter 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6: Partitioned serial distributed arithmetic implementation of the  FIR filter 
 
partitioning   the  larger  LUT  into  two  smaller   LUTs 
accessed in parallel reduces access time. In addition, 
throughput of the filter is maintained regardless of the 
length of the FIR filter. 

Parallel distributed arithmetic fir filter: As with 
most hardware applications, we can obtain more 
performance by using more hardware. In this case, 
more than one bit sum can be computed at a time by  
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Fig. 7: Two-bit parallel distributed arithmetic implementation of the FIR filter 
 
duplicating the LUT and adder tree. A parallel 
implementation of the inherently Serial                   
Distributed Arithmetic (SDA) FIR filter, shown              
in Fig. 6, corresponds to partitioning the input                
sample into M sub-samples and processing these              
sub-samples in parallel. Such a parallel              
implementation requires M-times as many memory 
look-up tables and so comes at a cost of increased logic 
requirements. We describe below the implementation of 
our PDA FIR filter at two different degrees of 
parallelism; a 2-bit PDA FIR filter and a fully parallel 
8-bit PDA FIR filter. 

 A 2-bit Parallel Distributed Arithmetic (PDA) FIR 
filter implementation is shown in Fig. 7. It corresponds 
to feeding the odd bits of the input sample to an               
SDA LUT adder tree, while feeding the even bits, 
simultaneously,  to an identical tree. Compared to the 
serial DA filter, shown is Fig. 6, the shift registers are 
each replaced with two similar shift registers at half the 
bit size. The odd bit partials are left shifted to properly 
weight the result and added to the even partials before 
accumulating the aggregate by a 1-bit scaling adder. 
Finally, since two bits are taken at a time, the scaling 
accumulator is changed from 1-to-2-bit shift (1/4) for 
scaling. 
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Fig. 8: Single-bit parallel distributed arithmetic implementation of the FIR filter 
 
 As for the fully parallel 8-bit PDA FIR filter 
implementation, the 8-bit input sample is partitioned 
into eight 1-bit sub-samples so as to achieve maximum 
speed. Fig. 8 and 9 show the ultimate fully parallel 
PDA FIR filter, where all 8 input bits are computed in 
parallel and then summed by a binary-tree like adder 
network. The lower input to each adder is scaled down 
by a factor of 2. No scaling accumulator is needed in 
this case, since the output from the adder tree is the 
entire sum of products.  
 
ANALYSIS FILTER BANK IMPLEMENTATION 

 
 In this section, we describe an FPGA-based 
implementation of the analysis  multirate filter banks. 
We  first describe the architecture of the filter bank as it 
will be implemented on the Viretx FPGA. Next, we 
present a simulation waveform which verifies the 
functionality of the analysis filter bank implementation. 
Finally we present performance figures. The 
implementation  has been physically realized on the 
XSV-300 FPGA prototyping board described earlier in 
this paper. 
 
Architecture: We implemented the analysis filter bank 
as shown in Fig. 10. For the sake of performance 
comparison, the FIR filter block diagram shown in the 
figure was implemented in three structural forms; 

direct, serial and parallel distributed arithmetic 
structures.  In the figure, an  active-high output control  
pin, labeled  DATA RDY, has been implemented in the 
FIR filter and connected directly to the CLK input of a 
1-bit counter. The input port  of the FIR filter is 
connected to the input samples source, whereas the 
output port  is connected to a  parallel-load register. The  
register loads its input bits in parallel upon receiving a 
high signal on its CLK  input from the counter, and 
blocks  its input otherwise.   
 Assuming unsigned 8-bit input samples, each of 
the two parallel decimators  operates as follows. When 
the DATA RDY signal is activated, the FIR filter 
triggers the counter to advance to the next state every 
time it completes a filtering operation. If  the new state 
is 1, the parallel-load register is activated, and it  stores 
the data received  at  its input from the FIR filter. If the 
new state is 0, the register is disabled, and  
consequently  the FIR output is  blocked  from entering 
the register, and ultimately discarded. The  above 
procedure repeats,  so that when the counter has 1 on its 
output, the FIR data is stored , and when it has a 0 on its 
output, the FIR data is discarded. Fig.  10: FPGA-based 
implementation of the analysis filter bank. 
 
Functional  simulation: The analysis  filter bank  was  
modeled   and verified using Verilog’s functional 
simulator. The corresponding  simulation  waveform   is 
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Fig. 9: Eight-bit parallel distributed arithmetic implementation of the FIR filter 
 
shown in Fig. 11. As shown in the figure, an input 
sample, X, has a rate of 1sample/1 clocks and the two 
output samples, Y0 and Y1, have  a rate of 1sample/ 
2clocks. The output sampling rate of the output is 
clearly half the input sampling rate. We also  
maintained sufficient  precision of the analysis filter 
bank outputs, Y0 and Y1, where their values have been 
represented  using 20 bits. Allocating sufficient bits to 
the intermediate and output coefficients has been a 
necessary step to keep the perfect synthesis capabilities 
of the synthesis filter bank. 

Performance Evaluation: The analysis filter bank  has 
been implemented using four different structures of the 
FIR filter; direct structure,  serial distributed arithmetic 
structure,  2-bit parallel distributed arithmetic structure, 
and 8-bit parallel structure. The throughput (MHz) and 
hardware utilization (slices) of the four implementation 
are listed in table 1. It is noted from these results that 
the 8-bit parallel distributed arithmetic implementation 
outperforms the other implementations with regard to 
the throughput performance. However, this parallel 
implementation requires the  most  hardware  resources,  
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Fig. 10: FPGA-based implementation of the analysis filter bank 
 
 
 
 
 
 
 
 
 
Fig.  11: Simplified functional Verilog simulation of the 

analysis filter 
 
and this is expected since more parallelism exploitation 
requires more hardware resources.  
 

SYNTHESIS FILTER BANK 
IMPLEMENTATION 

 
  In this section, we describe an FPGA-based 
implementation of the synthesis multirate filter banks. 
We repeat what we have done with the analysis filter 
bank. First, we describe the FPGA-based architecture of 
the synthesis filter bank. Next, we present the 
simulation waveform which verifies the functionality of 
the synthesis filter bank implementation, and finally we 
present performance figures. The implementation 
described has been physically realized on the XSV-300 
FPGA prototyping board described earlier in this paper. 
 
Architecture: We implemented the synthesis filter 
bank as shown in Fig. 12. The input port of the FIR 
filter is  connected to the output port of a  parallel-load 
register; whereas the input port of the register is 
connected directly to the  input samples source. The 
operation of the register depends on the signal received  
on its active-high CLR (clear) input from the most 
significant output bit  of a 4-bit counter. 

 Assuming the input samples source sends out 
successive samples separated by 16 clock periods, the  
interpolator operates as follows. Let an input sample be 
transferred, through the parallel-load register,  to the 
FIR filter. The transfer process takes place during the 
first eight counts of the 4-bit counter in which the 
counter's MSB  remains 0, thus enabling the register to 
transfer its input data to its output port.  During the next 
eight counts, the MSB of the count becomes 1, and thus 
clearing the register and consequently transferring zeros 
to its output. The zero output is maintained until the last 
count (FFFF H) is reached. The above procedure 
repeats so that an input sample enters the FIR filter 
during the first eight clocks,  followed by a zero during 
the next eight clocks, and so on. 
 
Functional simulation: The synthesis filter bank  
operation was  modeled  and  verified using Verilog’s 
functional simulator. The simulation waveform is 
displayed in Fig. 13. As shown in the figure, the 
synthesis filter bank  up-samples each of the two  input 
samples arriving at a rate of 1 sample/2 clocks and 
sends out their filtered summation at a rate of 
1sample/1clock. 
 
Performance Evaluation: Similar to the analysis filter 
bank, the synthesis filter bank has been implemented 
using different FIR structural forms; direct structure, 
the serial distributed arithmetic structure, 2-bit parallel 
distributed arithmetic structure, and 8-bit parallel 
distributed arithmetic structure. The throughput and 
hardware utilization of the four implementation are 
listed in Table 2, for the sake of comparison. The 
results demonstrate again the superiority of the parallel 
distributed  arithmetic  implementation   over  the  other  
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Fig. 12: FPGA-based implementation of the synthesis filter bank 
 
 
 
 
 
 
 
Fig. 13:  Simplified functional Verilog simulation of the 

analysis filter 
 
Table 1:  Performance of  different implementations of the analysis 

filter bank. 
Implementation Throughput Utilization
 (MHz) (slice) 
Direct   42.33 186 (6%) 
Serial Distributed Arithmetic  78 125 (4%) 
2-bit Parallel  Distributed Arithmetic 144.3 277 (9%) 
8-bit Parallel  Distributed Arithmetic 178.2 556 (18%) 
 
Table 2:  Performance of different implementations of the synthesis  

filter bank 
Implementation Throughput Utilization

 (MHz) (slice) 
Direct   34.8 206 (7%) 
Serial Distributed Arithmetic  71.1 154 (5%) 
2-bit Parallel  Distributed Arithmetic 139.5 338 (11%) 
8-bit Parallel  Distributed Arithmetic 169.5 676 (22%) 
 
implementations. Its also worthwhile comparing the 
performance of the analysis and synthesis filter banks. 
Referring back to Tables 1 and 2, its obvious that the 
throughput of the synthesis filter bank is lower than the 
throughput of the analysis filter bank. This is due to the 
fact that, the synthesis filter bank is a little  more 
computation-intensive than the analysis filter bank by 
virtue of the up-sampling operation which inserts a zero 
sample between every  two successive input samples. 
Moreover, the synthesis filter bank architecture 

employs a summation node at the end, as shown in 
Figure 3b, to reconstruct two incoming signal. This is 
reflected in a slight increase in the number of Virtex 
slices compared to the slices needed by the analysis 
filter bank. 
 

RESULTS AND DISCUSSION 
 
 We carried out four different  implementations of 
the fundamental multirate filter banks as follows.  The 
first was a conventional implementation  in  which the  
direct FIR structure was used. The second, third and 
fourth implementations were based on serial and 
parallel distributed arithmetic.   
 Referring back to the results given in Tables 1 and 
2, its noted that the throughput of  any of  the three 
distributed arithmetic  implementations is higher  than 
the throughput of the direct  conventional 
implementation. This is due to the fact that, distributed 
arithmetic replaces the time-consuming conventional 
multiply accumulate operations with fast look-up tables  
and shift operations. Furthermore, partial products of all 
multiply accumulate operations were pre-computed 
offline and stored in the LUTs, thus saving a great a 
mount of real-time computation.  As for Virtex slice 
utilization, the serial distributed arithmetic 
implementation uses less hardware resources than the  
direct implementation which uses conventional 
arithmetic. This is because the conventional arithmetic 
multiplier requires more logic resources than the 
distributed arithmetic multiplier which requires small  
LUTs, simples adders and shift registers.  
 Comparing the performance figures of the serial 
and parallel distributed arithmetic implementations, we 
note that there is a considerable throughput increase  for 
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a reasonable increase in slice count between the serial 
and the 8-bit parallel distributed arithmetic 
implementation. The results clearly demonstrate the 
speed/cost scalability of the distributed arithmetic 
algorithm, and suggest that in between the serial 
distributed arithmetic and fully parallel distributed 
arithmetic there exist opportunities to increase 
performance by a factor of two or more, with 
corresponding reasonable increase in logic 
requirements.  
 Finally, its worth mentioning that we carried out 
two software implementation of the fundamental filter 
banks. The first was on an advanced digital signal 
processor  [18], and the other on a Pentium III processor. 
The performance figures we obtained were much 
inferior to all FPGA implementations described in this 
paper. 
 

CONCLUSIONS 
 
 Multirate digital signal processing systems employ 
filter banks to enable sampling rate conversion of 
digital signals. Efficient and high speed 
implementations of fundamental multirate filter banks 
are required. In this paper, we presented several 
implementations of the fundamental filter banks, 
analysis and synthesis filter banks, and showed that the 
one based on parallel distributed arithmetic gave the 
best performance results. The implementation was 
carried out on an FPGA-based, reconfigurable hardware 
platform, which is well-suited for the implementation of  
distributed arithmetic lookup tables. Performance 
results demonstrated clearly the effectiveness of parallel 
distributed arithmetic  on FPGA-based platforms.   
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