
American Journal of Applied Sciences 5 (7): 788-797, 2008
ISSN 1546-9239
© 2008 Science Publications

Corresponding Author: Ali Al-Haj, Department of Computer Engineering, School of Electrical Engineering,
 Princess Sumaya University for Technology, PO Box 1928, Al-Jubeiha, 11941 Amman, Jordan

788

Configurable Multirate Filter Banks

Ali Al-Haj
Department of Computer Engineering, School of Electrical Engineering,

Princess Sumaya University for Technology, PO Box 1928, Al-Jubeiha, 11941 Amman, Jordan

Abstract: Multimedia communications require efficient and real-time implementations of multirate
digital signal processing systems. The backbone structures of multirate systems are digital multirate
filter banks. Therefore, efficient multimedia communications rely, in the first place, on real-time
implementations of multirate filter banks. In this paper, we describe a Field Programmable Gate Array
(FPGA) implementation of the analysis and synthesis filter banks which are the fundamental
components of multirate systems. The implementation utilizes the parallel form of the distributed
arithmetic technique which enables maximum exploitation of the parallelism inherent in the multirate
filtering operation. Performance results demonstrate the effectiveness of the implementation and
suggest that the FPGA platform is indeed attractive for implementing multirate filter banks..

Key words: Multirate Filter Banks, Filed Programmable Gate Arrays (FPGAs), xilinx virtex devices,

parallel distributed arithmetic, efficient parallel implementation

INTRODUCTION

 Multimedia digital signal processing applications
require sampling audio and video signals using
different sampling rates[1]. This requirement has given
rise to the design, development and application of
multirate systems in communications, image and video
processing, speech coding, spectrum analysis, radar and
antenna systems[2]. The sampling rate conversion
process in these systems has been traditionally done by
passing the multimedia signal through a digital to
analog converter, and then re-sampling the output
analog signal at the required rate. However, this
method introduces distortion to the signal because of
the quantization effects inherent in the analog to digital
conversion process[3].
 Single-rate digital filters have been used to perform
the sampling rate conversion process to overcome
limitations of the analog to digital conversion approach.
However, single-rate filters proved to be slow in terms
of processing time due to the many filtering taps that
must be used. Ultimately, multirate filters were
developed to offer relatively low sampling rate, thereby
resulting in fewer filtering taps compared to single-rate
filters[4]. These filters convert a set of input samples
into another set that represent the same signals sampled
at the required frequency. Multirate filters are
commonly employed in systems requiring real-time

performance, and therefore they are still receiving
considerable attention in modern research.
 In this paper, a description of a parallel and high
speed, single-chip implementation of the fundamental
multirate filter banks is presented. The hardware
implementation platform is based on Virtex field
programmable gate arrays (FPGAs)[5]. The fine grained
parallelism found in Virtex FPGAs is well-matched to
the high-sample rates and distributed computation often
found in multirate digital signal processing
applications[6]. Furthermore, the reconfigurable lookup-
table architecture of Virtex FPGAs makes it possible to
modify filter coefficients to suit different applications.
We make maximal utilization of Virtex FPGA
resources by implementing the computation of the
fundamental multirate filter banks in accordance with
the parallel distributed arithmetic technique[7]. This
technique rearranges the filter operation of the
fundamental banks in such a way so as to match the
architecture of Virtex FPGA, resulting in large
performance gains.
 This paper is organized as follows. Section 2 gives
an overview of the XSV-300 FPGA prototyping board.
Section 3 introduces the two fundamental multirate
filter banks; the analysis filter bank and the synthesis
filter bank. Section 4 presents direct, serial, and parallel
distributed arithmetic implementations of FIR filters.
The FPGA implementation of the analysis filter bank is

Am. J. Applied Sci., 5 (7): 788-797, 2008

 789

described in section 5, and the FPGA implementation
of the synthesis filter bank is described in section 6.
Finally, section 7 discusses the performance results and
section eight concludes the paper.

FIELD PROGRAMMABLE GATE ARRAYS

 A filed programmable gate array (FPGA) is an
integrated circuit that contains many identical logic
cells interconnected by a matrix of wires and
programmable switch, as shown in Figure 1. A user’s
design is implemented by specifying the simple logic
function for each cell and selectively closing the
switches in the interconnect matrix. The array of logic
cells and interconnect form a fabric of basic building
blocks for logic circuits. Complex designs are created
by combining these basic blocks to create the desired
circuit [8].
 For the particular implementation reported in this
paper, we have used a prototyping board called the
XSV-300 FPGA Board, developed by XESS[9]. The
board, shown in Fig. 2, employs a Xilinx XCV300
FPGA with 300,000 gates [10]. It can accept video with
up to 9-bits of resolution and output video
images through a 110 MHz, 24-bit RAMDAC. It can

Fig. 1: General FPGA architecture

Fig. 2: The XSV-300 FPGA board

also process stereo audio signals with up to 20
bits of resolution. Two independent banks of 512K x
16 SRAM are provided for local buffering of signals
and data. The onboard Virtex FPGA is programmed
using Verilog HDL; a popular hardware description
language[11]. The language has capabilities to simulate
and verify a design model using a Verilog simulator. As
a programming development environment, Xilinx ISE
Foundation Series tools have been used.

FUNDAMENTAL MULTIRATE FILTER BANKS

 The fundamental multirate filter banks are the
analysis filter bank and the synthesis filter bank [12]. The
analysis filter bank is shown in Figure 3a. It consists of
two decimators connected in parallel; the upper
decimator is a low pass, H0(z), followed by a down-
sampler, and the lower decimator is a high pass filter,
H1(z), followed by a down-sampler. Each down-
sampler operates by taking a filtered sequence x[n] and
generating an output sequence y[n] according to the
relation y[n] = x[2n]. All filtered elements in the
subsequence x[2n+1] are discarded. On the other hand,
the synthesis filter bank is shown in Fig. 3b. It consists
of two interpolators connected in parallel; the upper is a
low pass filter, G0(z), proceeded by an up-sampler, and
the lower is a high pass filter,G1(z), proceeded by an
up-sampler [12]. Each up-sampler inserts an equidistant

Fig. 3: Fundamental multirate filter banks
(a) Analysis filter bank and (b) Synthesis filter bank

Am. J. Applied Sci., 5 (7): 788-797, 2008

 790

zero-valued sample between every two consecutive
samples on the input sequence x[n] . An output
sequence y[n] is developed such that y[n] = x[n/2] for
even indices of n, and 0 otherwise. This makes the
sampling rate of the output sequence y[n] twice as
large as the sampling rate of the original sequence x[n].

FIR FILTER IMPLEMENTATION

 The effectiveness of any implementation of the two
fundamental multirate filter banks depends, to a great
extent, on how efficient FIR filters are implemented.
This is due to the fact that FIR filters, by virtue of their
stability, are the most commonly used filters in
multirate systems. In this section we describe three
possible implementations of FIR filters; a direct
implementation, a serial distributed arithmetic
implementation, and a parallel distributed arithmetic
implementation.

Direct implementation: An FIR filter of length M is
characterized by the transfer function H(z):

 (1)

 As shown in Fig. 4, each filter tap consists of a
delay element, an adder, and a multiplier [13]. However,
a major drawback of this implementation is that filter
throughput is inversely proportional to the number of
filter taps. That is, as filter length is increased, the filter
throughput is proportionately decreased. Nonetheless,
we will use this direct structure to implement the
fundamental filter banks for the sake of performance
comparison.

Serial distributed arithmetic implementation:
Distributed arithmetic is an efficient method of inner
product computation which constitutes the core of the
FIR filter operation[14]. It uses lookup tables and
addition in place of multiplication. Compared to
lumped arithmetic-based architectures, distributed
arithmetic architectures are completive in both speed
and hardware requirements. In addition they are
extremely regular, which makes them most suitable for
programmable logic realization[15].
 A simple derivation of the distributed arithmetic
methods is as follows[16]. Let the variable Y hold the
result of an inner product operation between a data
vector x and a coefficient vector a. The distributed
arithmetic representation the inner product operation is
given as follows:

 (2)

 where the input data words xi have been
represented by the 2’s complement number presentation
in order to bound number growth under multiplication.
The variable xij is the jth bit of the xi word which is
Boolean, B is the number of bits of each input data
word and x0i is the sign bit. Distributed arithmetic is
based on the observation that the function Fj can only
take 2N different values that can be pre-computed
offline and stored in a look-up table. Bit j of each data
xij is then used to address this look-up table. Equation
(2) clearly shows that the only three different operations
required for calculating the inner product. First, a look-
up to obtain the value of Fj, then addition or
subtraction, and finally a division by two that can be
realized by a shift.
 Distributed arithmetic implementation of an FIR
filter consists of a look-up table (LUT), a cascade of
shift registers and a scaling accumulator[17]. The LUT
stores all possible partial products over the FIR filter
coefficients, as shown in Fig. 5. Input samples are
presented to the input parallel-to serial shift register at
the input signal sample rate. As the input sample is
serialized, the bit-wide output is presented to the bit-
serial shift register cascade, 1-bit at a time. The cascade
stores the input sample history in a bit-serial format and
is used in forming the required inner-product
computation. The bit outputs of the shift register
cascade are used as address inputs to the look-up table.
Partial results from the look-up table are summed by
the scaling accumulator to form a final result at the
filter output port.
 Since the LUT size in a distributed
arithmetic implementation increases exponentially
with the number of coefficients, the LUT
access time can be a bottleneck for the speed
of the whole system when the LUT size becomes
large. Hence, we decomposed the 8-bit LUT into
two 4-bit LUTs, and added their outputs using a
two-input accumulator. The partitioned-LUT FIR
filter architecture is shown in Fig. 6. The total size of
storage is now reduced since the accumulator is less
costly than the larger 8-bit LUT. Furthermore,

Fig. 4: Direct FIR filter structure

M 1
k

k 0
H(z) h[k]z

−
−

−

= ∑

B 1 N N B 1
j j

ij i i 10 j 0
j 1 i 1 i 1 j 1

Y x 2 (x) F 2 F
− −

− −

= = − =

 
= α + α − = − 

 
∑ ∑ ∑ ∑

h[0]
h[1]

Z -1

h[2] h[3] h[4]

-1Z -1 Z Z -1

h[N-1]

Y[n]

-1ZX[n]

Am. J. Applied Sci., 5 (7): 788-797, 2008

 791

Fig. 5: Serial distributed arithmetic implementation of the FIR filter

Fig. 6: Partitioned serial distributed arithmetic implementation of the FIR filter

partitioning the larger LUT into two smaller LUTs
accessed in parallel reduces access time. In addition,
throughput of the filter is maintained regardless of the
length of the FIR filter.

Parallel distributed arithmetic fir filter: As with
most hardware applications, we can obtain more
performance by using more hardware. In this case,
more than one bit sum can be computed at a time by

Am. J. Applied Sci., 5 (7): 788-797, 2008

 792

Fig. 7: Two-bit parallel distributed arithmetic implementation of the FIR filter

duplicating the LUT and adder tree. A parallel
implementation of the inherently Serial
Distributed Arithmetic (SDA) FIR filter, shown
in Fig. 6, corresponds to partitioning the input
sample into M sub-samples and processing these
sub-samples in parallel. Such a parallel
implementation requires M-times as many memory
look-up tables and so comes at a cost of increased logic
requirements. We describe below the implementation of
our PDA FIR filter at two different degrees of
parallelism; a 2-bit PDA FIR filter and a fully parallel
8-bit PDA FIR filter.

 A 2-bit Parallel Distributed Arithmetic (PDA) FIR
filter implementation is shown in Fig. 7. It corresponds
to feeding the odd bits of the input sample to an
SDA LUT adder tree, while feeding the even bits,
simultaneously, to an identical tree. Compared to the
serial DA filter, shown is Fig. 6, the shift registers are
each replaced with two similar shift registers at half the
bit size. The odd bit partials are left shifted to properly
weight the result and added to the even partials before
accumulating the aggregate by a 1-bit scaling adder.
Finally, since two bits are taken at a time, the scaling
accumulator is changed from 1-to-2-bit shift (1/4) for
scaling.

Am. J. Applied Sci., 5 (7): 788-797, 2008

 793

Fig. 8: Single-bit parallel distributed arithmetic implementation of the FIR filter

 As for the fully parallel 8-bit PDA FIR filter
implementation, the 8-bit input sample is partitioned
into eight 1-bit sub-samples so as to achieve maximum
speed. Fig. 8 and 9 show the ultimate fully parallel
PDA FIR filter, where all 8 input bits are computed in
parallel and then summed by a binary-tree like adder
network. The lower input to each adder is scaled down
by a factor of 2. No scaling accumulator is needed in
this case, since the output from the adder tree is the
entire sum of products.

ANALYSIS FILTER BANK IMPLEMENTATION

 In this section, we describe an FPGA-based
implementation of the analysis multirate filter banks.
We first describe the architecture of the filter bank as it
will be implemented on the Viretx FPGA. Next, we
present a simulation waveform which verifies the
functionality of the analysis filter bank implementation.
Finally we present performance figures. The
implementation has been physically realized on the
XSV-300 FPGA prototyping board described earlier in
this paper.

Architecture: We implemented the analysis filter bank
as shown in Fig. 10. For the sake of performance
comparison, the FIR filter block diagram shown in the
figure was implemented in three structural forms;

direct, serial and parallel distributed arithmetic
structures. In the figure, an active-high output control
pin, labeled DATA RDY, has been implemented in the
FIR filter and connected directly to the CLK input of a
1-bit counter. The input port of the FIR filter is
connected to the input samples source, whereas the
output port is connected to a parallel-load register. The
register loads its input bits in parallel upon receiving a
high signal on its CLK input from the counter, and
blocks its input otherwise.
 Assuming unsigned 8-bit input samples, each of
the two parallel decimators operates as follows. When
the DATA RDY signal is activated, the FIR filter
triggers the counter to advance to the next state every
time it completes a filtering operation. If the new state
is 1, the parallel-load register is activated, and it stores
the data received at its input from the FIR filter. If the
new state is 0, the register is disabled, and
consequently the FIR output is blocked from entering
the register, and ultimately discarded. The above
procedure repeats, so that when the counter has 1 on its
output, the FIR data is stored , and when it has a 0 on its
output, the FIR data is discarded. Fig. 10: FPGA-based
implementation of the analysis filter bank.

Functional simulation: The analysis filter bank was
modeled and verified using Verilog’s functional
simulator. The corresponding simulation waveform is

Am. J. Applied Sci., 5 (7): 788-797, 2008

 794

Fig. 9: Eight-bit parallel distributed arithmetic implementation of the FIR filter

shown in Fig. 11. As shown in the figure, an input
sample, X, has a rate of 1sample/1 clocks and the two
output samples, Y0 and Y1, have a rate of 1sample/
2clocks. The output sampling rate of the output is
clearly half the input sampling rate. We also
maintained sufficient precision of the analysis filter
bank outputs, Y0 and Y1, where their values have been
represented using 20 bits. Allocating sufficient bits to
the intermediate and output coefficients has been a
necessary step to keep the perfect synthesis capabilities
of the synthesis filter bank.

Performance Evaluation: The analysis filter bank has
been implemented using four different structures of the
FIR filter; direct structure, serial distributed arithmetic
structure, 2-bit parallel distributed arithmetic structure,
and 8-bit parallel structure. The throughput (MHz) and
hardware utilization (slices) of the four implementation
are listed in table 1. It is noted from these results that
the 8-bit parallel distributed arithmetic implementation
outperforms the other implementations with regard to
the throughput performance. However, this parallel
implementation requires the most hardware resources,

Am. J. Applied Sci., 5 (7): 788-797, 2008

 795

Fig. 10: FPGA-based implementation of the analysis filter bank

Fig. 11: Simplified functional Verilog simulation of the

analysis filter

and this is expected since more parallelism exploitation
requires more hardware resources.

SYNTHESIS FILTER BANK
IMPLEMENTATION

 In this section, we describe an FPGA-based
implementation of the synthesis multirate filter banks.
We repeat what we have done with the analysis filter
bank. First, we describe the FPGA-based architecture of
the synthesis filter bank. Next, we present the
simulation waveform which verifies the functionality of
the synthesis filter bank implementation, and finally we
present performance figures. The implementation
described has been physically realized on the XSV-300
FPGA prototyping board described earlier in this paper.

Architecture: We implemented the synthesis filter
bank as shown in Fig. 12. The input port of the FIR
filter is connected to the output port of a parallel-load
register; whereas the input port of the register is
connected directly to the input samples source. The
operation of the register depends on the signal received
on its active-high CLR (clear) input from the most
significant output bit of a 4-bit counter.

 Assuming the input samples source sends out
successive samples separated by 16 clock periods, the
interpolator operates as follows. Let an input sample be
transferred, through the parallel-load register, to the
FIR filter. The transfer process takes place during the
first eight counts of the 4-bit counter in which the
counter's MSB remains 0, thus enabling the register to
transfer its input data to its output port. During the next
eight counts, the MSB of the count becomes 1, and thus
clearing the register and consequently transferring zeros
to its output. The zero output is maintained until the last
count (FFFF H) is reached. The above procedure
repeats so that an input sample enters the FIR filter
during the first eight clocks, followed by a zero during
the next eight clocks, and so on.

Functional simulation: The synthesis filter bank
operation was modeled and verified using Verilog’s
functional simulator. The simulation waveform is
displayed in Fig. 13. As shown in the figure, the
synthesis filter bank up-samples each of the two input
samples arriving at a rate of 1 sample/2 clocks and
sends out their filtered summation at a rate of
1sample/1clock.

Performance Evaluation: Similar to the analysis filter
bank, the synthesis filter bank has been implemented
using different FIR structural forms; direct structure,
the serial distributed arithmetic structure, 2-bit parallel
distributed arithmetic structure, and 8-bit parallel
distributed arithmetic structure. The throughput and
hardware utilization of the four implementation are
listed in Table 2, for the sake of comparison. The
results demonstrate again the superiority of the parallel
distributed arithmetic implementation over the other

Register
FIR

X

n DATA
IN

DATA
OUT

m
D

CLOCK
Counter

CLK OUT

1-bit

m-bit

m
Q Y o

CLK CLK

n

FIR
CLK

DATA
IN

DATA
OUT

m
Register

m-bit
CLK

D
m

Q Y 1

Am. J. Applied Sci., 5 (7): 788-797, 2008

 796

Fig. 12: FPGA-based implementation of the synthesis filter bank

Fig. 13: Simplified functional Verilog simulation of the

analysis filter

Table 1: Performance of different implementations of the analysis

filter bank.
Implementation Throughput Utilization
 (MHz) (slice)
Direct 42.33 186 (6%)
Serial Distributed Arithmetic 78 125 (4%)
2-bit Parallel Distributed Arithmetic 144.3 277 (9%)
8-bit Parallel Distributed Arithmetic 178.2 556 (18%)

Table 2: Performance of different implementations of the synthesis

filter bank
Implementation Throughput Utilization

 (MHz) (slice)
Direct 34.8 206 (7%)
Serial Distributed Arithmetic 71.1 154 (5%)
2-bit Parallel Distributed Arithmetic 139.5 338 (11%)
8-bit Parallel Distributed Arithmetic 169.5 676 (22%)

implementations. Its also worthwhile comparing the
performance of the analysis and synthesis filter banks.
Referring back to Tables 1 and 2, its obvious that the
throughput of the synthesis filter bank is lower than the
throughput of the analysis filter bank. This is due to the
fact that, the synthesis filter bank is a little more
computation-intensive than the analysis filter bank by
virtue of the up-sampling operation which inserts a zero
sample between every two successive input samples.
Moreover, the synthesis filter bank architecture

employs a summation node at the end, as shown in
Figure 3b, to reconstruct two incoming signal. This is
reflected in a slight increase in the number of Virtex
slices compared to the slices needed by the analysis
filter bank.

RESULTS AND DISCUSSION

 We carried out four different implementations of
the fundamental multirate filter banks as follows. The
first was a conventional implementation in which the
direct FIR structure was used. The second, third and
fourth implementations were based on serial and
parallel distributed arithmetic.
 Referring back to the results given in Tables 1 and
2, its noted that the throughput of any of the three
distributed arithmetic implementations is higher than
the throughput of the direct conventional
implementation. This is due to the fact that, distributed
arithmetic replaces the time-consuming conventional
multiply accumulate operations with fast look-up tables
and shift operations. Furthermore, partial products of all
multiply accumulate operations were pre-computed
offline and stored in the LUTs, thus saving a great a
mount of real-time computation. As for Virtex slice
utilization, the serial distributed arithmetic
implementation uses less hardware resources than the
direct implementation which uses conventional
arithmetic. This is because the conventional arithmetic
multiplier requires more logic resources than the
distributed arithmetic multiplier which requires small
LUTs, simples adders and shift registers.
 Comparing the performance figures of the serial
and parallel distributed arithmetic implementations, we
note that there is a considerable throughput increase for

DATA

FIR
X o m mD Q IN

DATA
OUT

OUTCLOCK CLK
Counter
1-bit

Register
CLK

CLR
m-bit CLK

n

X 1 m

CLKm-bit

CLK
Register

D Q m DATA
IN

FIR
OUT
DATA

CLR

n

+ Y

Am. J. Applied Sci., 5 (7): 788-797, 2008

 797

a reasonable increase in slice count between the serial
and the 8-bit parallel distributed arithmetic
implementation. The results clearly demonstrate the
speed/cost scalability of the distributed arithmetic
algorithm, and suggest that in between the serial
distributed arithmetic and fully parallel distributed
arithmetic there exist opportunities to increase
performance by a factor of two or more, with
corresponding reasonable increase in logic
requirements.
 Finally, its worth mentioning that we carried out
two software implementation of the fundamental filter
banks. The first was on an advanced digital signal
processor [18], and the other on a Pentium III processor.
The performance figures we obtained were much
inferior to all FPGA implementations described in this
paper.

CONCLUSIONS

 Multirate digital signal processing systems employ
filter banks to enable sampling rate conversion of
digital signals. Efficient and high speed
implementations of fundamental multirate filter banks
are required. In this paper, we presented several
implementations of the fundamental filter banks,
analysis and synthesis filter banks, and showed that the
one based on parallel distributed arithmetic gave the
best performance results. The implementation was
carried out on an FPGA-based, reconfigurable hardware
platform, which is well-suited for the implementation of
distributed arithmetic lookup tables. Performance
results demonstrated clearly the effectiveness of parallel
distributed arithmetic on FPGA-based platforms.

REFERENCES

1. Jovanovic-Dolecek G., 2002. Multirate Systems:

Design and Application. Idea Group Publishers,
2. Harris F., 2004. Multirate Signal Processing for

Comm. Systems. Prentice Hall.
3. Proakis J. and D. Manolakis, 1995. Digital Signal

Processing. Prentice Hall.

4. Vaidyanathan P., 1993. Multirate Systems and
Filter Banks. Prentice Hall.

5. Wolf W., 2004, FPGA-Based System Design. New
Jersey: Prentice Hall.

6. Xilinx Corporation, 2000. Virtex Data Sheet.
7. White S., 1989. Applications of Distributed

Arithmeti to Digital Signal Processing: A Tutorial,
in IEEE ASSP Magazine, pp: 4-19.

8. Seals, R. and G. Whapshott, 1997. Programmable
Logic: PLDs and FPGAs. UK: Macmillan.

9. Xess Corporation. www.xess.com
<http://www.xess.com>.2002.

10. Xilinx Corporation, 1998. Xilinx breaks one
million-gate barrier with delivery of new Virtex
series.

11. Ciletti M., 1999. Modeling, Synthesis, and Rapid
Prototyping with the Verilog HDL, New Jersey:
Prentice Hall.

12. Vaidyanathan P., 1990. Multirate Digital Filters,
Filter Banks, Polyphase Networks, and
Applications: A Tutorial, in Proceedings of the
IEEE, vol. 78, no.1, pp: 56-93.

13. Mitra S., 1998. Digital Signal Processing.
McGraw Hill.

14. Koren I., 1993. Computer Arithmetic Algorithms,
Prentice Hall, New Jersey.

15. New B., 1995. A Distributed Arithmetic Approach
to designing scalable DSP Chips, EDN Magazine.

16. Peled A., A New Hardware Realization of Digital
Filters, IEEE Trans. On Acoustics, Speech and
Signal Processing., Vol. 22, No. 5, pp: 456-462,
December 1973.

17. Taylor F., An Analysis of the Distributed
Arithmetic Digital Filter, IEEE Trans. On
Acoustics, Speech and Signal Processing, Vol. 34,
No. 5, pp: 1165-1170, May 1986.

18. Texas Instruments Corporation,2000. TMS
320C6711 Data Sheet.

