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Abstract: Mathematical modeling and optimizing of snatch lift technique based on dynamic synthesis, 
is the aim of this study. The barbell trajectory is proposed as the performance index, evaluated 
experimentally by several researchers who have introduced some optimum trajectories according to the 
percentage of their owners’ successes. Since none of the mechanical parameters were considered into 
the optimum trajectories, we develop a mechanical approach to fulfill this lack. Therefore, we use a 
biomechanical model comprised of five links to obtain the optimum trajectory of snatch weightlifting 
by means of minimizing a criterion function. To achieve this goal, we should solve the differential 
equations representing the model motion simultaneously with equations representing the performance 
criterion; therefore we use the optimal control approach via Pontryagin Maximum Principle (PMP) 
formulation. The performance criterion is defined as minimizing the sum of actuating torques of all 
joints during the whole snatch. The barbell trajectory of our optimized model is approximately similar 
to one which could be observed in experimental results. By comparing the results of this theoretical 
model with experimental observations of other researchers, it could be concluded that we have 
introduced a good predictive model. Using the biomechanical characteristics of any specific 
weightlifter as the input data to this model and comparing the results with the same weightlifter’s 
experimental data can help the coaches to improve the performance of weightlifters. 
 
Keywords: Sport biomechanics, weightlifting, pontryagin maximum principle, motion analysis. 

 
INTRODUCTION 

 
 Barbell trajectory and other dynamic characteristics 
of motion, like velocity of barbell during weightlifting, 
were the common subjects which have been 
investigated by several researchers[1-8] over the years. 
The importance of optimizing the barbell trajectory is in 
agreement with the most above researchers like 
Garhammer[3] who believed that an error existed on 
trajectory is due to incorrect motion on participated 
joints. Most of the above researchers studied the 
differences between the characteristics of motion of 
elite weightlifters, and categorized several of these 
lifting motion patterns as optimized one, such as the 
study was coordinated by Baumann et al.[7]. These 
patterns were selected because of the percentage of 
success of their owners, and none of mechanical 
parameters were considered. In recent years, some 
researchers used actuating torque as a mechanical 
parameter to introduce optimized patterns for lifting 
tasks. Park et al.[9] investigated the differences in 

motion patterns for goal-directed lifting activities which 
are due to biomechanical constraints or physiological 
responses and believed that the redundancy of degrees 
of freedom makes it possible to have an optimum 
motion pattern. But, there was no attempt to use this 
method for weightlifting which is more complicated 
than simple lifting task.  
 On the other hand, using optimal control theory to 
optimize the gait patterns[10] and the capability of this 
method for sport activities[11, 12] encourage us to extend 
this method to the whole motion of snatch lift. We 
formulate a mathematical model based on dynamic 
principles to predict the barbell trajectory which is 
minimized the specific criterion.  

 
MATERIALS AND METHODS 

 
 The first step to build a biomechanical model of the 
weightlifter is to translate the physical property of 
human into the mathematical one, meaning that we 
convert the whole body to appropriate model of links 
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with proper length, mass and moment of inertia. For 
this purpose, we can use the anthropometric models 
developed by several researchers. One of these models 
was introduced by Chaffin and Anderson[13]. Now we 
have a multi segment model representing the whole 
body, and help us to describe its motion using dynamics 
approach. In this model, the body segments are 
converted to solid links and body joints converted to 
simple revolute joints. The second step is simplifying 
this model to a two dimensional sagittal plane model 
for weightlifting or general lifting activities. This is a 
common assumption used by several researchers[9, 14, 15]. 
The third step is defining a kinematics model which 
represents the number of links and hence the number of 
degrees of freedom (DOF) that is the main factor 
affecting the complication of model, and therefore has a 
direct effect on time and cost of computing and solving 
the problem. The best model is the one that minimizes 
the complication and simultaneously offers a good 
approximation of the whole motion. Several 
researchers[9, 14, 15] used models with five DOF to 
analyze lifting tasks, therefore we used the same five 
link model. 
 Figure 1 shows the schematic diagram of this 
model at initial time which is made by five links 
represent shin, thigh, trunk, upper arm and forearm, 
respectively named L1 to L5. Also, five body joints: 
ankle, knee, hip, shoulder and elbow are represented by 
O1 to O5 respectively. D1 and H1 describe the position 
of barbell related to reference coordinate system of 

000 ZYX  locked at ankle joint. The model motion can 
be described by the five relative joint coordinates which 
are defined by: 

)(5 , ... 1,),( 0001 0
YXZXX Z ×=== − iq iii (1) 

Let us add the following complementary notations: 
T

5 ),...,( qq1=q , vector of joint coordinates 
T

5 ),...,( qq1 ��� =q , vector of joint velocities 
T

5 ),...,( qq1 ������ =q , vector of joint accelerations 

where 22 d/dd/d tqq,tqq iiii == ���  
According to Fig. 1, we define the dimension and 
inertia characteristics of the model by: 
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Fig. 1:  Proposed model at initial position 
 
 Numerical values of these dimensional parameters 
are calculated based on total body mass and total length 
of weightlifter using the formula suggested in[13]. 
We want to solve the dynamics equations of motion 
which are in the form of differential equations and 
simultaneously minimize the actuating torques we need 
to produce the snatch motion. This form of problem 
called optimal control problem. There are some direct 
and indirect methods for solving this problem which are 
well described by Chettibi[16].   
 Since our intended purpose is using Pontryagin 
Maximum Principle (PMP) to solve our dynamic 
optimization problem, we use the formulation of 
dynamic model in the state space form. As indicated by 
Rostami[10], the Hamiltonian dynamic model not only 
fulfills this requirement but, as well, strengthens the 
robustness of algorithms which are used to solve the 
optimization problem. 
Firstly, the Lagrangian of the model is introduced by: 

)(),(),( qqqqq VTL −= ��  (2) 
where V is the gravity potential and T is the kinetic 
energy defined by: 

qqMqqq ��� )(2/1),( TT =  (3) 
M is the )( nn ×  mass matrix of the kinematics chain. 
Equations of motion may be derived by Lagrange’s 
formula: 
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where a
iQ  represents the joint actuating torque exerted 

by 1−iL  on iL  at iO  and d
iQ  is joint dissipative 

torque. 
Secondly, the conjugate momenta is defined by: 

niqLp ii ,...,1,/ =∂∂= �  (5) 
and the Hamiltonian 

),(),( qqqppq �� LH T −=  (6) 

where T
npp ),...,( 1=p  

By recasting Lagrange’s equations in (4) and in 
Hamiltonian form 
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Now, considering (2) and (3), the expression of p  can 
be written through (5) by: 

qMp �=  
or, inversely 

pMq 1−=�  
Using these expressions in (3) and (6), one obtains: 

VH T += − pMpqp 12/1),(  
Then, (7) becomes more explicitly 
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where iiii qVVq ∂∂≡∂∂≡ −− /,/ ,
11

, MM  

The 1
,
−
iM  term makes (8) impracticable but, defining 

the vector T
nGG ),...,( 1=G  (see (8)) and using the 

mathematical formula 1
,

1
,

1)( −−− −= MMMM ii , these 

equations can be recast by: 
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By this formulation, Hamiltonian equations are ideally 
structured for applying the Pontryagin Maximum 
Principle (PMP). 
Now, we define: 
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The double set of equations (7) can be recast by the 
differential vector-equation: 

))(),(()())(()( ttttt uxBuxFx F≡+=�  (10) 
where F  is a nonlinear function and B  is the constant 

)2( nn ×  matrix as following: 
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In this equation, initial and final states will be specified 
by: 
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It will be assumed that initial and final Lagrangian 

phase-variables f
k

f
k

i
k

i
k qqqq �� ,,,  have specified values. 

Consequently, initial and final Hamiltonian states )( itx  

and )( ftx  will be entirely specified as well. 
 Let us mention that a complementary 
transformation remains to be achieved in order to make 
perfect formulation (9, 10 and 12). It consists in 
rescaling all the variables of the problem to homogenize 
their order of magnitude. Therefore, we introduce the 
following reference quantities: QITML  and,,, , 
respectively represent length, mass, time, moment of 
inertia and torque of reference which can be defined 
and linked by: 
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where il  and im  are the length and the mass of link iL  

, and max,a
iQ  is the maximal value of a

iQ . Also, let τ  

be the reduced time Tt /=τ . Then, we define 
dimensionless state variables ix : 
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together with the normalized actuating torque: 
QtQQtQu i

a
i

a
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a
ii ντ /)(/)()( max, ≡=  (15) 

where iν  stands for the dimensionless coefficient 

QQa
i /max, . 

With these new variables, equation (10) remains 
formally unchanged except the matrix 2B  that becomes 

),...,( 12 ndiag νν=B . 
 Initial and final constraints specify the conditions 
of start position and the end of second pulling phase or 
start of catching phase. Initial conditions are primarily 
formulated by:  
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The first two equations (16a,b) define the position of 
the mass center of barbell, and the last two equations 
(16c,d) indicate that barbell has no initial velocity at the 
beginning of motion, i.e., “Lift-off” phase. 
We formulate quite similar conditions in final time: 
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The two first ones, express the position of mass center 
of barbell at the end of second pulling phase (or at the 
beginning of “catch” phase) of the snatch lift, and the 
last two equations indicate the horizontal and vertical 
velocities of barbell at this point. 
Constraints (16, 17) can be formally expressed by: 
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 In order to respect joint stops, to prevent counter-
flexion and to moderate total joint coordinate 
variations, we have to prescribe bounds on the joint 
coordinates, defined by the box constraints: 

maxmin )(,,],[ iii
fi qtqqnittt ≤≤≤∈  (19) 

where min
iq  and max

iq  are specified values. 
This set of double inequalities can be recast under the 
standard form of n2  simple constraints: 

��

�
�
�

−=≤

−=≤

++ )())((where,0))((

)())(( where,0))((
min

max

tqqthth

qtqthth

iiinin

iiii

qq

qq
(20) 

 In contrast with state or kinematics constrains, we 
use control constraints term for the inequalities defining 
limitation on torques acting on the mechanical system. 
Torques which are produced by actuators (i.e., muscles) 
have limited values. When they are considered at the 
joint level, with the notations introduced before, we can 
write: 

max,|)(|,],0[ a
i

a
i QtQTt ≤∈∀   (21) 

These box constraints allow the set of feasible 
normalized control-variables iu  shown in (15), to be 
defined by: 

},]1,1[|),...,,...,{( 1 niuuuu i
n

niu ≤−∈ℜ∈=   (22) 
 It is the time to formulate an optimal control 
problem. We want to generate an optimal motion by 
minimizing a performance criterion representing a 
dynamic cost. Roughly speaking, we have the choice 
between minimizing actuating torques[17], or energy 
expenditure[18]. Since our model stands and moves in a 
vertical plane, it is essentially submitted to gravity. For 
this reason, we have used the first choice by introducing 
the integral cost: 
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t
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where the Lagrangian is the quadratic function of the 
normalized control variables iu   

� =≡ n
i iii uL 1

222/1),( νξux   (24) 

where iξ  is weighting factor and ii uν  represents 
dimensionless joint actuating torque as defined by (15). 
Inequality constraints which were defined in (20) can 
be easily dealt with using computing techniques similar 
to penalty method developed in the frame of 
mathematical programming[19]. We have chosen to 
implement an exact penalty method defined by 
introducing the positive function: 

0,)))((,0max())((, ≥+=≤ +
iiiih bbththNi xx   (25) 

Each positive constant ib  in (25) defines an augmented 
constraint. This penalty technique consists in 
minimizing +

ih  functions when the constraint is 
infringed, in order to bring ih  functions back to zero. 
This operation is carried out by minimizing the 
augmented criterion: 
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where T
Nh

hh ),...,( 1
+++ =h  and ),...,(diag 1 hNζζ=hD  

are weighting matrices. 
The functional rJ  has to be minimized by sufficiently 
great value of the penalty multiplying factor r .  At this 
point, the minimization problem may be summarized 
by: finding a phase trajectory )(tt x→  and a control 
vector )(tt u→ , minimizing rJ , namely: 

great
,
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    (27) 

and satisfying the state equation: 
)())(()(,],[ ttFtttt fi Buxx +=∈ �  (28) 

together with the boundary conditions: 
ffii tt xxxx == )(,)(    (29) 

where nt 2)( ℜ∈x  and nt ℜ∈)(u . 
Defining the Pontryagin function: 

),())((),,(,2 uxBuxwwuxw LFH Tn −+=ℜ∈  (30) 
The Maximum Principle states that if ))(),(( ttt ux→  is 
a solution of (27-29), then there is a co-state function 

nttt 2)(,)( ℜ∈→ ww , satisfying the co-state 
equation: 

xw ∂−∂= /)( Ht T
�    (31) 

and the maximally condition: 
))(,),((max))(),(),(( ttHtttH u wvxwux v∈=   (32) 

 A prominent interest of the PMP lies in condition 
(32) which allows the constraints on u  to be exactly 
satisfied, and yields through (24), (28) and (30) an 
explicit expression of the optimal control under the 
form of the saturation function[20]: 
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defined here by: 
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Substituting the expression (33) for u  in (28) and (31), 
the unknown functions x  and w  appear as a solution 
of the differential system of the type: 
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accompanied by the boundary conditions (29). 
 Typically, we deal with a two-point boundary 
value problem. The two-point boundary value problem 
(35, 29) can be solved using computing techniques such 
as finite difference algorithm or shooting method. We 
have chosen the latter approach because of its 

efficiency and the simplicity of the implementation. 
This technique was described[21] as the so-called 
transition matrix method and other mathematicians like 
Kincaid and Cheney[22] defined it as the so-called 
shooting method.  
 Because of the non-linearity of equations (35), we 
have used the multiple shooting method by solving the 
two-point boundary value problem when considering a 
short motion step. Then the optimization problem can 
be solved iteratively by increasing boundary values 
until the desired final values are reached. In the same 
way, any optimal solution can be used by a guess 
solution to solve swiftly a problem relating to the 
previous one. This method was described as the so-
called multiple shooting method[22].  
 

RESULTS AND DISCUSSION 
 
 We solved a problem for a weightlifter with 55 kg 
mass and 1.6 m height who lifts a 90 kg barbell by 
snatch technique. Other dimensional parameters were 
calculated base on this information in a manner 
described before. We selected the summation of 
actuating torques of all joints as the optimization 
criterion and solved our problem between two points 
representing the start of snatch and the start of catch 
phase respectively. The start of catch phase was so 
selected that the barbell has a good condition to 
continue its motion and the weightlifter could move 
under the bar quickly. Figure 2 shows the barbell 
trajectory during the snatch lift from the time just prior 
to when the barbell left the floor (“lift-off”) until just 
after the bar reached at the end of second pull. At this 
point the barbell continues to move as a “projectile” 
and let the athlete to complete “move under the bar” to 
catch it. In the experiments, the typical form of 
trajectory described by Garhammer[3, 8] showed that 
when the barbell was lifted from the “lift-off” phase, it 
moved toward the athlete during the first pull, then 
away from the athlete and finally toward him again as it 
began to descend during the catch phase. Figure 2 
shows this typical form roughly. One can see the good 
agreement between optimized trajectory and 
experimental results shown in Fig. 2 according to the 
study published by Garhammer[3]. 
 Figure 3 is the graph which shows how the vertical 
barbell velocity changes with the time during snatch lift 
until the start of catch phase, and how they can be 
continued due to the projectile motion of barbell. 
Furthermore, we have observed the experimental 
diagram[3] that shows the increase of vertical velocity to 
about 2 m/s and decreasing it as the barbell moves 
toward the final position as shown in Fig. 3 with scaled 
time according to our model. Although our model is 
more simple than an athlete, comparing these two 



Am. J. Applied Sci., 5 (5): 524-531, 2008 
 

 529 

velocities, one can see the good qualitative agreement 
between our optimized results with the experimental 
results which the elite weightlifters can achieved. 

 
Fig. 2: Optimized and experimental barbell trajectory 

during snatch lift 
  

 
Fig. 3: Optimized and experimental vertical velocity 

of barbell during snatch lift 
  
 In Fig. 4, the motion sequences of our model in the 
form of joint space between the initial and final posture 
of snatch lift can be observed. The final position is 
selected at the start of catch phase in a manner 
described before. According to this Figure coaches can 
help their weightlifters at closing the gap between their 
motion and optimized one. Also this Figure shows us 
the validity of results which is obtained by solving the 
optimization problem. 
 Figures 5 and 6 respectively show how angular 
velocities of joints and actuating torques at joints were 

changed between initial and final positions shown in 
Fig. 4 during the snatch lift. The role of each joint in 
making a complete snatch lifting motion can be realized 
by these diagrams considering kinematics or kinetics 
aspect. For example the importance and descending role 
of hip joint and also the ascending role of ankle and 
knee joints during the snatch lift can be easily seen. 
Also these variables are good parameters to show us the 
practical differences between an actual snatch motion 
of weightlifter and the ideal optimized one which he 
could achieved. We can reduce these differences by 
advise our weightlifter about the correct velocity he 
should reached or the strength training he should do to 
compensate the weakness of particular joint. 

 
Fig. 4: Optimized model motion during snatch lift 

until the start of catch phase 

 
Fig. 5:  Optimized joint angular velocities until the 

start of catch phase 
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Fig. 6: Optimized actuating joint torques until the 

start of catch phase  
 

CONCLUSION 
 
 Barbell trajectory which is produced by our 
optimized model shows the typical form we can see in 
experimental data. Since we obtain this optimized 
trajectory by using dynamic motion equations, we 
ensure that this trajectory can be produced by a real 
weightlifter while other optimizing strategy like 
geometrical path optimization could not give this 
possibility to us. On the other hand, we believe that the 
results show the relative success to predict the optimal 
motion based on our selective criterion. Therefore, we 
can conclude that the selecting criterion is in agreement 
with that is selected by weightlifter. However selecting 
the best criteria to improve the performance of 
weightlifters, requires more studies and it could be 
consists of more than one criterion combined together 
during the full snatch. We can select several parameters 
such as actuating torques, time of snatch lift, energy 
expenditure, injury risk, and critical stress on body 
joints as the criteria which should be minimized during 
an optimized snatch lift.  
 The results of this optimization can help us to train 
our weightlifters to behave like our optimized 
kinematics parameters or to make their characteristics 
like resultant kinetics parameters. Comparing the actual 
parameters of our case of study with optimized one, can 
guide us to achieve these useful comments. But the 
problem we are faced is the lack of sufficient 
experimental inputs such as the correct values for 
maximum capacity of torque production of each joint. 
We believe that the modeling with correct 
characteristics of each athlete can lead us to get better 
results tailored for our case of study. 
 This dynamic model can provide an insight into 
control and improve the motions during the snatch lift. 
The ability to introduce and modify the proper criterion 
which is in agreement with human motion pattern is 
another point that we notice in solving the problem and 

we believe that we are successful regarding to this 
matter. 
 The determination of optimal motion during the 
whole motion of snatch lift can help coaches to train 
weightlifters on a more systematic manner. This model 
can help them, not only to increase their success but 
also to reduce their injury risks. Finally, the Pontryagin 
Maximum Principle seems quite appropriate to deal 
with an extended problem of this type. Successfully 
performing this dynamic optimization was very hard 
due to the extreme non-linearity of the system of 
differential equations which is resulting from 
mathematical formulation and we have to use numerical 
techniques to overcome to this problem. However, the 
good results that we obtained from optimization 
problem showed that this method is very reliable. 
Therefore the fair success of our model encourages us 
to continue our approach and improve our model by the 
models which have more degrees of freedom in the near 
future.  
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