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Abstract: The interconnection network is an essential component of a distributed system or of a 
supercomputer based on large-sale parallel processing. Because in distributed systems the 
communication between processors is based on message exchange, the network topology is of a great 
importance. The interconnection network can be seen as a graph and the properties of a network can be 
studied using combinatorics and graph theory. A number of interconnection network topologies have 
been studied. The Extended Fibonacci Cube, EFC, is a topology which provides good properties for an 
interconnection network regarding diameter, node degree, recursive decomposition, embeddability and 
communication algorithms. In this research we present some properties of the Extended Fibonacci 
Cubes, we define a Gray code for extended Fibonacci cubes and show how a hamiltonian path, a 
hamiltonian cycle and a 2D mesh can be embedded in an Extended Fibonacci Cube. 
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INTRODUCTION 
 
 An interconnection network consists of a set of 
processors, each with a local memory and a set of 
bidirectional (or unidirectional) links that serve for the 
exchange of data between processors. Interconnection 
networks are represented by undirected (or directed if 
the links are unidirectional) graphs G = (V, E) where V 
is the set of nodes, each node corresponding to a 
processor and E is a set of edges, each edge 
corresponding to a link. Some of the key features of 
interest in such an interconnection network are its 
topological properties as node degree, diameter, 
connectivity, structure, the embeddability of other 
topologies and the communication algorithms. 
 A number of interconnection topologies[1,3,5,9] have 
been proposed in the literature. A widely studied 
interconnection topology is the hypercube, or the n-
cube Hn. The hypercube has good properties such as 
symmetry, small diameter and node degree, recursive 
structure, efficient communication algorithms. A 
drawback in the case of the hypercube is the number of 
nodes which is a power of 2 and limits the choice for a 
network interconnection with a given number of nodes. 
 Hsu[5] proposed and studied the properties of a new 
interconnection topology called Fibonacci cube based 
on the Fibonacci numbers. The Fibonacci numbers are 
defined as f0 = 0, f1 = 1, fn = fn-1+fn-2, for n>1. The 

Fibonacci cube of order n has fn nodes, n>1, where fn is 
the n-th Fibonacci number and the nodes can be 
labelled with binary strings of length n-2 with no 
consecutive 1’s. Two nodes are connected if their labels 
differ in exactly one position. It is clear that a Fibonacci 
cube can be seen as resulting from a hypercube after 
some nodes become faulty. The Fibonacci cube can 
emulate many of the basic algorithms for the hypercube 
and there are more Fibonacci numbers in a given 
interval than powers of 2.  
 Wu[11] generalized the Fibonacci cube topology by 
defining the series of Extended Fibonacci Cubes, 
(EFCk)k>0. The Extended Fibonacci Cubes are also 
defined using the same recursive relation as the 
Fibonacci numbers, but changing the initial conditions. 
In this way the number of choices for the number of 
nodes for an interconnection network increases. The 
topological properties and embeddings in Extended 
Fibonacci cubes were studied[6,8,11]. In this research we 
will define a Gray code for extended Fibonacci cubes 
and using this code we will define a hamiltonian path in 
an extended Fibonacci cube. 
 

FIBONACCI CUBES AND EXTENDED 
FIBONACCI CUBES 

 
 The Fibonacci Cube topology is based on the 
properties of Fibonacci numbers. The Fibonacci 
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Fig. 1: Fibonacci cubes Γ2, Γ3, Γ4, Γ5 
 
numbers are defined as f0 = 0, f1 = 1, fn = fn-1+fn-2, for 
n>1. According to Zeckendorf’s lemma any integer 
number k, 0≤k< fn can be written as a sum of Fibonacci 
numbers as it follows: 
 

n 1
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i 2
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+
=

= ⋅ ∈ ⋅ = = −�  

 
 This means that to every integer number k, 0≤k<fn, 
we can associate a Fibonacci code kF = (bn-1…b3 b2)F 

according to its representation as a sum of Fibonacci 
numbers. This code is a binary code which has no two 
consecutive 1’s and is called Fibonacci code. Any 
binary string with no two consecutive 1’s is called 
Fibonacci string. 
 The Fibonacci cube can be defined as follows: 
 
Definition 1: The Fibonacci cube of order n>1, denoted 
by Γn, is defined as Γn = (Vn , En) where the set of nodes 
is   Vn = {0, 1,…, fn -1}   and    the   set o f edges En is 
En = {(i, j)|H(iF , jF) = 1, i, j∈Vn}, where H(iF, jF) is the 
Hamming distance between the Fibonacci codes of 
nodes i and j. 
 The Fibonacci cube of order n has fn nodes and 
there is an edge between two nodes if their Fibonacci 
codes differ exactly in one position. The Fibonacci 
cubes of order 2, 3, 4, 5 are represented in Fig. 1. 
A recursive definition for the Fibonacci cubes has been 
given[5] as follows: 
 
Definition 2: The Fibonacci cube Γn = (Vn, En) of order 
n, n>1, is defined recursively as Vn = 0||Vn-1 ∪10||Vn-2 , 
where Vn-1 and Vn-2 are the set of nodes of the order n-1 
respectively n-2 Fibonacci cubes and || denotes the 
concatenation of strings and there is an edge between 
two nodes if their binary representations differ exactly 
in one position. The initial conditions are Γ2 = ({λ},∅) 
and Γ3 = ({0,1}, {(0,1)}). 
 A Fibonacci cube of order n, Γn, has fn nodes and 
can be recursively decomposed in two Fibonacci cubes 

of order n-1 and n-2. The two Γn-1 and Γn-2 are 
connected by fn-1 edges. The Fibonacci cube has good 
properties: the nodes degree is between n/8 and n-2, the 
diameter is n-2, the node and edge connectivity are 
between n/8 and (n-2)/3 respectively, basic topologies 
such as arrays, rings, meshes, hypercubes can be 
embedded in Fibonacci cubes. But just the Fibonacci 
cubes with an even number of nodes, greater than 2 are 
hamiltonian.  
 Wu[11] introduced a series of Extended Fibonacci 
cubes (EFCk)k>1, using a recursive definition. All the 
cubes in the series have an even number of nodes and 
they are hamiltonian. 
 
Definition 3: The series of Extended Fibonacci cubes, 
(EFCk)k>1, is defined as EFCk(n) = (Vk(n), Ek(n)), 
n>k+1, where Vk (n) = 0||Vk (n-1)∪10||Vk (n-2), n>k+3 
and two nodes are connected by an edge in Ek(n) if their 
binary representation differ in exactly one position. The 
initial conditions are Vk(k+2)={0,1}k, Vk(k+3)={0,1}k+1 
and {0,1}k  denotes the set of binary strings of length k. 
 From this definition we can see that an extended 
Fibonacci cube EFCk(n) can be decomposed in two 
extended Fibonacci cubes EFCk(n-1) and EFCk(n-2) 
and each node in EFCk(n-2) is connected to a node in 
EFCk(n-1). 
 The nodes of an EFCk(n) are labelled with binary 
strings of length n-2, where the first n-k-2 bits represent 
a Fibonacci code and the last k represent any binary 
code. The number of nodes in EFCk(n) is 2kfn-k , where 
fn-k is the (n-k)-th Fibonacci number, n>k+1. We can 
consider the Fibonacci cube Γn as an extended 
Fibonacci cube EFC0(n). The extended Fibonacci cubes 
EFC1(3), EFC1(4), EFC1(5) and EFC2(6) are given in 
Fig. 2. 
Some important properties[6,8,11] of extended Fibonacci 
cubes are:  
• The diameter of EFCk(n) is n-2 
• The degree g(u) of a node u in EFCk(n) is 

n (k 1)
(k 1) g(u) n 2

3
− −� �+ − ≤ ≤ −� �

� �
 

• EFCn-2(n) = Hn-2 for n>2 
• Γn = EFC0(n)⊂ EFC1(n)⊂…⊂ EFCn-2(n) = Hn-2  
 Scarano[8] showed that excepting the initial values, 
the number of nodes in EFCk(n) are distinct for 
different values of k and n, k≥0, n≥k+2. This means 
that using extended Fibonacci cubes, the possibility of 
constructing a hypercube-like topology increases. For 
example,  if   we   want   to   construct  a  cube  with the 
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Fig. 2: Extended Fibonacci cubes EFC1(3), EFC1(4), 

EFC1(5), EFC1(6), EF2(4), EFC2(5), EFC2(6) 
 
number of nodes between 10 and 50 we can choose 
only two hypercubes, H4 and H5 with 16 respectively 32 
nodes, but there are 11 choices of extended Fibonacci 
cubes: EFC1(6), EFC2(6), EFC0(7), EFC2(7), EFC0(8), 
EFC3(7), EFC1(8), EFC0(9), EFC3(8), EFC1(10) and 
EFC4(8) with the number of nodes 10, 12, 13, 20, 21, 
24, 26, 34, 40, 42, 48 respectively. 
 An embedding of a guest graph G = (VG, EG) in a 
host graph H = (VH, EH) is defined as a mapping of the 
nodes VG in VH. The dilation of an edge of G is defined 
as the length of the path onto which the edge in G is 
mapped in H. The dilation of an embedding is the 
maximum dilation of its edges. The congestion of an 
edge is the number of paths in H that contain that edge 
and the congestion of the embedding is the maximum 
congestion of its edges. 
 The load of an embedding is the maximum number 
of processors in G assigned to any processor in H. We 
are interested in this research only in one-to-one 
mappings, so the load of any embedding is one. The 
dilation and congestion of an embedding are measures 
of communication delay and congestion over a link. An 
ideal embedding has low dilation and congestion. 
 Wu[11] gave some embeddings of hypercubes and 
trees in EFCk. 
 A complete binary tree of height n, B(n), has 2n+1-1 
nodes. A n-level double-rooted complete binary tree 

DRCB(n) is obtained from a complete binary tree B(n) 
replacing the root by a path of length two and has 2n+1 
nodes. 
 The following embeddings are described by Wu[11]: 
• EFCk(n) is a subgraph of Hn-2 
• Hk = EFCk(k+2), Hk+1 = EFCk(k+3) and Hn is a 

proper subgraph of EFCk(2n-k+1) for n>k+2 that 
means a hypercube Hn can be embedded in any 
EFCk(2n-k+1) with dilation and congestion 1, 
n>k+2 

• A complete binary tree of height n, B(n) can be 
embedded in EFC1(2n+2) with dilation and 
congestion two 

• A complete binary tree of height n, B(n) can be 
embedded in EFC1(2n+6) with dilation and 
congestion one 

• A double rooted complete binary tree DRCB(2n+4) 
can be embedded in EFC1(3n+9) with dilation and 
congestion two, n≥0 

• DRCB(2n+1) can be embedded in FC(3n+5) with 
dilation and congestion two, n≥0 

 
RESULTS AND DISCUSSION 

 
 Next we will show that in an EFCk(n) we can 
define a hamiltonian path. This path will be constructed 
using a Gray code for extended Fibonacci cubes. This 
code will be defined using the Gray codes for Fibonacci 
strings and for binary strings. 
 The Gray code for binary strings is recursively 
defined as C1 = {0, 1}, Ck = {0Ck-1, 1C’k-1}, k>1 and the 
Gray code for Fibonacci strings is recursively defined 
as G3 ={0, 1}, G4 ={01,00,10}, Gn+2 = {0G’n+1, 10G’n}, 
n>2, where C’k, G’k denotes the reverse sequence of the 
elements in C’k respectively G’k. The Gray code Gn+2 
contains all the Fibonacci codes of length n and the 
Gray code Ck contains all the binary strings of length k.  
 Let Ck = {w1, w2,…,wp}, p = 2k , be the Gray code 
for binary strings of length k, H(wi, wi+1) = 1, 1�i� p-1 
and Gn-k = { v1, v2,…, vq}, q = fn-k , the Gray code for 
Fibonacci strings  of length n-k-2, H(vi ,vi+1)= 1, where 
1�i�q-1.  
 Using these Gray codes we give the following 
definition for a sequence of nodes in an EFCk(n) which 
we will show to be a Gray code for EFCk(n).  
 
Definition 4: We call an extended Fibonacci sequence 
the sequence defined as: 
 

EGk(n) = {v1Ck , v2C’k , v3Ck ,…, vqC”k }, q = fn-k 
where, vi Ck = {vi w1,vi w2,…,vi wp}, p = 2k and vi C’k = 
={vi wp, vi wp-1,…,vi w1} represent the sequences of 
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strings obtained from concatenation of string vi with all 
the strings wj in Ck, respectively C’k, i∈{1,..., q} and 
C”k = Ck if q is odd and C”k = C’k if q is even. 
 The   extended   Fibonacci  sequence  defined  has 
pq = fn-k⋅2k elements and the strings in EGk(n) are 
exactly the nodes of EFCk(n). 
 We will prove that the extended Fibonacci 
sequence defined is a Gray code. 
 
Lemma 5: The extended Fibonacci sequence is a Gray 
code. 
 
Proof: We need to prove that the Hamming distance 
between two consecutive binary strings in EGk(n) is 1. 
Let x and y be two consecutive binary strings in 
EGk(n). If x and y are in the same viCk or viC’k 
subsequence, we have that the Hamming distance 
between  x and y is H(x,y) = H(viwj,viwj+1) = H(wj, 
wj+1) = 1     for      j = 1,p-1     or     H(x,y) = H(viwj, 
viwj-1) = H(wj,wj-1) = 1 for j = 1,p. If x is the last string 
in viCk and y the first string in vi+1C’k or x is the last 
string   in   viC’k    and   y    the first in vi+1Ck then 
H(x,y) = H(viwp,vi+1wp) = H(vi,vi+1) = 1, 1�i �q-1 or 
H(x,y) = H(viw1,vi+1w1) = H(vi,vi+1) = 1, 1�i �q-1. The 
Hamming distance between two consecutive strings in 
EGk(n) is 1 and EGk(n) is a Gray code. 
 We can give now the following theorem: 
 
Theorem 6: Any extended Fibonacci cube EFCk(n) 
contains a hamiltonian path. 
 
Proof: The extended Fibonacci sequence EGk(n) 
contains all the nodes in EFCk(n). The Hamming 
distance between two consecutive elements in EGk(n) is 
one, so two consecutive elements in EGk(n) are 
neighbours in the extended Fibonacci cube EFCk(n). 
This means that the sequence EGk(n) defines a 
hamiltonian path in EFCk(n). 
  
For   example,   for   EFC2(6) the Gray code C2 is C2 = 
{00,01,11,10} and the Gray code for Fibonacci strings 
G4 is G4 = {01, 00, 10}. The extended Fibonacci 
sequence is EG2(6) = {01C2, 00C’2,10C2} = {0100, 
0101, 0111, 0110, 0010, 0011, 0001, 0000, 1000, 1001, 
1011, 1010}   and  defines  a  hamiltonian  path  in 
EFC2(6). 
  
Wu[11] showed how a hamiltonian cycle can be 
embedded in EFC1. We will show next how a 
hamiltonian cycle can be embedded in any, EFCk, k≥ 1 
using the extended Fibonacci sequence defined in 4. 
We give first two lemmas. 

Lemma 7: In any Gray code Ck = {w1,w2,…,wp-1, wp}, 
k>1, p = 2k , w1 and wp have 0 as their last digit and w2 
and wp-1 have 1 as their last digit.  
 Of course, the same property holds for C’k. 
 The proof of this lemma follows immediately using 
mathematical induction. 
 Let Ck be the Gray code of order k, Ck = { w1 , w2 , 
…, wp }, p = 2k and Ck

0 and Ck
1 the subsequences of Ck 

that contains only the strings with 0, respectively 1 on 
their last position (the two subsequences have the same 
number   of   elements), Ck

0 = {wi10, wi20,…, wim0}, 
Ck

1= {wi11, wi21,…, wim1}, with i1<i2<…<im and 
j1<j2<…<jm, where m = 2k-1. 
 
Lemma 8: Any two consecutive elements in Ck

0 
respectively in Ck

1 , k>2, have the Hamming distance 
one. 
 
Proof: We use the induction to prove this lemma. 
 For k = 3, C3 = {00, 01, 11, 10}, C3

0 = {00, 10}, 
C3

1 = {00, 10} and the Hamming distances are 1. 
 For k=4, C4 = {000, 001, 011, 010, 110, 111, 101, 
100}, C4

0 = {000, 010, 110, 100}, C3
1 = {001, 011, 111, 

101} and the Hamming distances are 1.  
 Suppose that for k = c, the Hamming distances 
between consecutive elements in Cc

0 and Cc
1 are 1.  

 We will show that the property holds for k = c+1. 
Let Cc+1 = {0Cc, 1C’c} be the Gray code of order c+1 
and let x0 and y0 be two consecutive elements in C0

c+1. 
If x0 and y0 are both in 0Cc or 1Cc then they are 
consecutive in Cc

0 and the Hamming distance is 1. If 
0x0 is the last string finishing with 0 in 0Cc and 1y0 the 
first string finishing with 0 in 1Cc then, according to 
lemma 7, x0 is the last element in Cc and y0 is the first 
element in C’c and x = y. Then H(x0,y0) = 1 for any 
two consecutive elements x0, y0 in Cc

0. In the same 
way, the Hamming distance between two consecutive 
elements in Cc

1 is 1 and the lemma is proved. 
 Using these two lemmas we can prove the 
following theorem: 
 
Theorem 8: Any extended Fibonacci cube EFCk(n), 
k>1, n>k+1, is hamiltonian. 
 
Proof: Let EGk(n) be the extended Fibonacci sequence, 
EGk(n) = {v1Ck, v2C’k, v3Ck ,…, vqC”k}, q = fn-k with Ck 
and C’k the Gray codes of order k and vi, 1�i�fn-k the 
Fibonacci strings with length n-k-2 and we denote 
EGk(n) = {z1, z2,…, zpq-1, zpq}, pq = 2kfn-k. We define 
the subsequences EGk

0(n) = {z1
0, z2

0,…, zm
0} and 

EGk
1(n) = {z1

1, z2
1,…, zm

1} that contain the consecutive 
strings in EGk(n) that have the symbol 0 respectively 1 
on their last position, m = pq/2. From the definition of 
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EGk(n) is easy to see that EGk
0(n) = {v1Ck

0,v2C’k
0, 

v3Ck
0,v4C’k

0,…,vqC”k
0}, EGk

1(n)= {v1Ck
1, v2C’k

1, v3Ck
1, 

v4C’k
1,…, vqC”k

1}. 
 Let x0 and y0 be two consecutive elements in 
EGk

0(n). If x0 and y0 are consecutive elements in a 
subsequence viCk

0 or viC’k
0 then, according to lemma 8, 

the Hamming distance between them is 1 (this can 
happen only if k>2). If x0 is the last element in a viCk

0 
and   y0 is the first element in vi+1C’k

0 then, using 
lemma 7, the Hamming distance   between them is 
H(x0, y0) = H(viwp, vi+1wp) = H(vi, vi+1) = 1. If x0 is the 
last element in a viC’k

0 and y0 is the first element in 
vi+1Ck

0 then the Hamming distance between them is 
H(x0, y0) = H(viw1, vi+1w1) = H(vi, vi+1) = 1. This 
means that the Hamming distance between two 
consecutive elements in EGk

0(n) is 1. In the same way, 
the Hamming distance between two consecutive 
elements in EGk

1(n) is one. The first two elements in 
EGk(n) are the first two elements in v1Ck and the last 
two elements in EGk(n) are the last two elements in 
vqC”k. According   to   lemma   7,   z1 = z1

0,   z2 = z1
1, 

zpq-1 = zm
0, zpq = zm

1 . We define the sequence {EGk
0(n), 

(EGk
1(n))’} = {z1

0,z2
0,…,zm

0,zm
1,zm-1

1,…,z1
1} in which 

the Hamming distance between two consecutive 
elements is 1 and the Hamming distance between the 
first and the last element is 1. This means the sequence 
defines a hamiltonian cycle in the extended Fibonacci 
cube EFCk(n). 
 In other words, a hamiltonian cycle in an extended 
Fibonacci cube can be defined from the extended 
Fibonacci sequence EGk(n) traversing the nodes with 0 
on their last position from the first to the last and then 
the nodes with 1 on their last position from the last to 
the first as they appear in EGk(n).  
 As a consequence of theorem 8, we can give the 
following corollary: 
 
Corollary 9: Any ring of length 2k⋅fj , j<n-k, can be 
embedded with dilation and congestion one in an 
extended Fibonacci cube EFCk(n), where fj is the j-th 
Fibonacci number.  
 
Proof: Using the recursive structure of the extended 
Fibonacci cube, an EFCk(n) has as subgraphs all 
extended Fibonacci cubes EFCk(m), k+1<m<n. All 
EFCk(m) are hamiltonian, then rings of length 2kfm-k can 
be embedded in EFCk(m) and it follows that rings of 
length 2kfm-k can be embedded in EFCk(n), k+1<m<n.  
 For EFC2(6) the extended Fibonacci sequence is 
EG2(6) = {0100, 0101, 0111, 0110, 0010, 0011, 0001, 
0000, 1000, 1001, 1011, 1010}, EG2

0(6) = {0100, 0110, 
0010, 0000, 1000, 1010}, EG2

1(6) = {0101, 0111, 0011, 
0001, 1001, 1011} and a hamiltonian cycle in EFC2(6) 

can be defined as { EG2
0(6), (EG2

1(6))’} = {0100, 0110, 
0010, 0000, 1000, 1010, 1011, 1001, 0001, 0011, 0111, 
0101}. 
 The hamiltonian cycle in EFC2(6) is represented in 
Fig. 3, the dashed lines are the edges not in the 
hamiltonian cycle. 
 A two dimensional mesh can also be embedded in 
an extended Fibonacci cube. We use the construction 
presented for Fibonacci cubes[13]. 
 
Theorem 9: A 2D mesh with fn-k lines and 2k columns 
can be embedded in an extended Fibonacci cube 
EFCk(n) with dilation and congestion one. 
 
Proof: We define the two dimensional mesh as it 
follows: we label the i-th line of the mesh with the i-th 
Fibonacci code in Gn-k = {v1 , v2 ,…, vq}, q = fn-k and the 
j-th column with the j-th binary string in Ck = {w1, 
w2,…, wp }, p = 2k. The label of the node in the line i 
and column j will be the concatenation of the line label 
with the column label. The defined mesh has fn-k lines 
and 2k columns, each node of the mesh corresponding 
to the node with the same label in the extended 
Fibonacci cube EFCk(n). If viwj is the label of a node in 
line i and column j of the mesh, then its neighbours are 
vi-1wj, vi+1wj, viwj-1, viwj+1. The Hamming distance 
between the node and its neighbours in the mesh is 1 so 
these nodes are neighbours in the extended Fibonacci 
cube EFCk(n) too, that means the congestion and the 
dilation of the embedding are one.  
 For the extended Fibonacci cube EFC2(6), the two 
dimensional mesh with 22 = 4 columns and f4 = 3 lines 
will be constructed in Fig. 4, the dashed lines are the 
edges not in the mesh. 
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Fig. 3: Hamiltonian cycle in EFC2(6) 
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Fig. 4: 2D mesh embedding in EFC2(6) 

 
CONCLUSIONS 

 
 The capacity of an interconnection network to 
emulate a basic topology as hamiltonian path or cycle 
and 2D mesh, hypercubes and trees, is of a great 
importance in the case that links in the network fail. In 
this case the network can keep functioning with a 
relatively small number of links. Other advantages are 
that a lot of algorithms are already developed for these 
basic topologies. The extended Fibonacci cube can 
efficiently emulate these basic topologies. Together 
with its recursive structure, small degree and diameter, 
various numbers of nodes, the embeddings presented in 
this research make the extended Fibonacci cube a 
topology to consider as interconnection topology. 
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