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Abstract: Efficient neural networks models are trained to predict the maximum deflection of two-way 
on two-way grids with variable geometrical parameters (span and height) as well as cross-sectional 
areas of the element groups. Backpropagation (BP) and Radial Basis Function (RBF) neural networks 
are employed for the mentioned purpose. The inputs of the neural networks are the length of the spans, 
L, the height, h and cross-sectional areas of the all groups, A and the outputs are maximum deflections 
of the corresponding double layer grids, respectively. The numerical results indicate that the RBF 
neural network is better than BP in terms of training time and performance generality.  
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INTRODUCTION 
 
 Many thousands of impressive space structures 
have been built all over the world for covering sport 
stadiums, gymnasiums, leisure centers, aircraft hangars, 
railway stations and many other purposes. A number of 
these structures have spans of well over 200m. Due to 
their three dimensional action, space structures are very 
efficient structural systems to carry heavy loads as well 
as to span large distances. As the use of space structures 
becomes more and more popular, it is essential to 
evolve strategies for their convenient analysis and 
design. In the present investigation, neural network 
techniques are employed for this purpose. Over the last 
decade, artificial intelligence techniques have emerged 
as a robust tool to replace time consuming procedures 
in many scientific or engineering applications. The use 
of neural networks to predict finite element analysis 
outputs has been studied previously in the context of 
many engineering applications[1-5]. The principal 
advantage of a properly trained neural network is that it 
requires a trivial computational effort to produce an 
approximate solution.  
 The main aim of the present study is to train neural 
networks for predicting the maximum deflection of 
double layer grid space structures for static loadings. 
The double layer grids considered are two-way on two-
way and the bar elements are connected by MERO type 
of joints. The length of the spans, L and the height, H, 
of the space structures are variable. Due to the practical 
demands, members are grouped. In this work, three 

groups are considered. That is, all the top, web and 
bottom layer elements are grouped in groups 1 to 3, 
respectively. Cross-sectional areas of the all groups, A, 
are selected from a list of available tube sections in 
STAHL. In the present study, the inputs of neural 
networks are the length of the spans, L, the height, H 
and cross-sectional areas of the all groups, A, while the 
outputs are maximum deflections of the corresponding 
double layer grids. In the present study, 
backpropagation (BP) and Radial Basis Function (RBF)  
networks are employed. Fundamental concepts of BP 
and RBF networks are briefly explained as follows. 
 
Backpropagation neural network: The most popular 
and successful learning method for training the 
multilayer neural networks is the backpropagation 
algorithm. The development of the Backpropagation 
learning was reported by Rumelhart Hinton and 
Williams[6]. The algorithm employs an iterative 
gradient-descent method of minimization which 
minimizes the mean squared error between the desired 
output and network output. The backpropagation 
training procedure is presented below. 
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N, M and n are number of training input patterns, 
dimension of output space and number of iterations, 
respectively.  
    (L)
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where L represent the output layer. 
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where ( l 1)

jy (n )− is the function signal of neuron j in the 

previous layer (l-1) at iteration n. (l)
ijw (n )  is the weight 

of neuron i in layer l that is fed from neuron j in layer 
(l-1). 
 
Then the output signal of neuron i in layer l is 
    l l

i iy (n ) f ( v (n ))=  (4) 
 
where, f (.) is the activation function.  
 If neuron i is in the first hidden layer (l = 1), then 
set 0

i iy (n ) x (n )= . 
 Backward computation (local gradients) 
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is called the local error or local gradients. Equation (5) 
can be simplified to 
for neuron i in output layer L: 
 
    L L L

i i i� (n ) e (n )f ( v (n ))′=  (6) 
 
for neuron i in hidden layer l: 
 
  l l ( l 1) ( l 1)

i i k ki
k

� (n ) f ( v (n )) � (n ) w (n )+ +′= �  (7) 

where, f′(.) is the derivative of the activation function 
with respect to v(n).  
 If the activation function is chosen to be the 
hyperbolic tangent function, then f′(.) is: 
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f ( v ) � (1 f ( v ))
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 Hence, adjust the weights of the network in layer l 
according to the generalized delta rule: 
 
  ( l ) ( l ) ( l ) ( l 1)

ij ij i jw (n 1) w (n ) �� (n ) y (n )−+ = +  (9) 
 
where, µ is the positive constant learning rate, usually 
equals to 0.01. 
 If after updating the weights, the error E is not 
minimized, new iterations are required. 
 
Radial basis function neural network: The 
backpropagation algorithm for the design of a 
multilayer neural network described earlier may be 
viewed as a form of stochastic approximation. Radial 
Basis Functions (RBFs) take a different approach by 

viewing the design of a neural network as a curve-
fitting problem by finding a best fit to the training data 
in a multidimensional space. The use of RBF in the 
design of neural networks was first introduced by 
Broomhead and Lowe[7]. The RBF network basically 
involves three entirely different layers; an input layer, a 
hidden layer of high enough dimension and an output 
layer. The transformation from the hidden unit to the 
output space is linear. Each output node is the weighted 
sums of the outputs of the hidden layer. However, the 
transformation from the input layer to the hidden layer 
is nonlinear. Each neuron or node in the hidden layer 
forming a linear combination of the basis (or kernel) 
functions which produces a localized response with 
respect to the input signals. This is to say that RBF 
produce a significant nonzero response only when the 
input falls within a small localized region of the input 
space. The most common basis of the RBF is a 
Gaussian kernel function of the form: 
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where, lϕ  is the output of the lth node in hidden layer, 
x
�  is the input pattern, lc

� is the weight vector for the lth 
node in hidden layer, i.e., the center of the Gaussian for 
node l, l�  is the normalization parameter (the measure 
of spread) for the lth node and P is the number of nodes 
in the hidden layer. The outputs are in the range from 
zero to one so that the closer the input is to the center of 
the Gaussian, the larger the response of the node. The 
name RBF comes from the fact that these Gaussian 
kernels are radially symmetric; that is, each node 
produces an identical output for inputs that lie a fixed 
radial distance from the center of the kernel lc

� . The 
network outputs are given by: 
 
   T

i i ly w (x ), i 1,2,...,Q= ϕ =� �  (11) 
 
where, yi is the output of the ith node, iw

� is the weight 
vector for this node, Q is the number of nodes in the 
output layer and l (x )ϕ �  is the vector of outputs from the 
hidden layer (augmented with an additional component 
or a bias which assumes a value of one). 
 To train the hidden layer of RBF networks no 
training is accomplished and the transpose of training 
input matrix is taken as the layer weight matrix[7].  
 
    T=C �  (12) 
where, C and � are input layer weight matrix and 
training input matrix, respectively.  
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 In order to adjust output layer weights, a 
supervised training algorithm is employed. If for each 
input vector iX in the training set, the outputs from the 
hidden layer are made a row in a matrix� , target 
vectors iT are placed in corresponding rows of target 
matrix T and each set of weights associated with an 
output neuron is made a column of the matrix W, 
training consists of solving the following matrix 
equation[7]: 
 
   1−= � =T �W W � T  (13) 
 
Matrix �  is, in general, not square, it is not invertible, 
only its pseudo inverse can be found by singular value 
decomposition (SVD) method[7]. 
 In order to design neural networks MATLAB[8] is 
employed. In order to produce the training set a 
computer program is developed. The structural analysis 
is based on the finite element formulation of the 
displacement method.  
 

RESULTS AND DISCUSSION 
 
 The space structure model selected is described. 
Then, some information about data selection and the 
neural networks training are provided.  
 
Model description: The double layer grid considered is 
the type of two-way on two-way and the bar elements 
are connected by MERO type of joints. Each span 
contains 15 bays of equal length in both directions. The 
structure is assumed to be supported at corners of 
bottom layer each on three nodes. The double layer grid 
is shown in Fig. 1. The length of the spans, L, is varied 
between 25 and 75 m with the steps of 5 m. the height, 
h, is  varied  between  0.035 and  0.095 L with the steps 
 

 
 
Fig. 1: Double layer grids (two-way on two-way) 

of 0.2 m. Due to the practical demands, members are 
grouped. Cross-sectional areas of the all groups, A, are 
selected from a list of available tube sections in STAHL 
given in Table 1. In this work, three element groups are 
considered. That is, all the top, bottom and web layer 
elements are grouped in groups 1 to 3, shown in Fig. 2, 
respectively. The sum of dead and live load equal to 
250 kg m−2 is applied to the nodes of the top layer.  
 
Table 1: Available cross-sectional areas 
No. Area (cm2)  No. Area (cm2) 
1 175 6 379 
2 195 7 402 
3 222 8 451 
4 275 9 588 
5 307 10 719 

 

(a)

 
 

(b)

 

(c)

 
 
 
Fig. 2: (a): Top layer (group 1), (b): bottom layer 

(group 2), (c): web layer (group 3) 
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Data selection and neural networks training: Inputs 
of the neural networks are the length of the spans, L, 
the height, h and cross-sectional areas of the all groups, 
A1, A2, A3, while the outputs are maximum deflections 
of the corresponding double layer grids.  
 
 { } { }T max

1 2 3IV L h A A A , OV �= =  (14) 

 
where, IV and OV are input and output vectors, 
respectively. Also, max�  represents the maximum 
deflection of the double layer grids. 
 Backpropagation (BP) and Radial Basis Function 
(RBF) neural networks are employed. In order to 
provide the training set a computer program is 
developed. In this program, the randomly produced 
double layer grids are analyzed and their maximum 
deflections are saved as the output vectors components. 
The structural analysis is based on the finite element 
formulation of the displacement method. As the size of 
problem   is   very   large,  a   training set including 
3500 samples is produced. From which, 3000 and 500 
samples are selected to train and test the performance 
generality of the neural networks, respectively. The 
results of testing performance generality of the BP and 
RBF neural networks are summarized in Table 2. Error 
percentages of the neural networks in testing phase are 
also shown in Fig. 3, 4. 
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Fig. 3: Errors of BP network in test phase 
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Fig. 4: Errors of RBF network in test phase 

Table 2: Available cross-sectional areas 
Network Training time (sec) Max Error (%) Mean Error (%) 
BP 492.50 34.693 4.982 
RBF 47.72 14.304 2.554 

 
CONCLUSION 

 
 Efficient neural networks are trained to predict the 
maximum deflection of two-way on two-way grids. The 
elements of the double layer grids are divided into three 
groups. Span, height and cross-sectional areas of the 
double layer grids are taken into account as the inputs 
of the neural networks. The outputs are chosen to be the 
maximum deflection of the structures. It is obvious that, 
with mentioned inputs, the size of the problem becomes 
very large. In order to attain accurate prediction, a large 
training set is required. Therefore, 3500 samples are 
generated on a random basis and 3000 and 500 ones are 
selected for training and testing, respectively. Two well 
known neural networks, Backpropagation (BP) and 
Radial Basis Function (RBF) are trained for the 
mentioned purpose. The numerical results demonstrate 
efficiency of the both networks. Also, it is observed that 
the RBF is better than BP in terms of training time and 
approximation errors.  
 

REFERENCES 
 
1. Hajela, P. and L. Berke, 1991. Neurobiological 

computational models in structural analysis and 
design. Comput. Struct., 41: 657-667. 

2. Berke, L., S.N. Patnaik and P.L.N. Murthy, 1993. 
Optimum design of aerospace structural 
components using neural networks. Comput. 
Struct., 48: 1001-1010. 

3. Theocharis, P.S. and P.D. Panagiotopoulos, 1993. 
Neural networks for computing in fracture 
mechanics: methods and prospects of applications. 
Comput.     Methods     Applied     Mech.    Eng., 
106: 213-228. 

4. Adeli, H. and P. Hyo Seon, 1995. Optimization of 
space structures by neural dynamics. Neural 
Networks, 8 (5): 769-781. 

5. Topping, B.H.V. and A. Bahreininejad, 1997. 
Neural computing for structural mechanics. UK: 
Saxe Coburg. 

6. Haykin, S., 1994. Neural Networks: A 
Comprehensive Foundation, Macmillan, New 
York, NY. 

7. Wasserman, P.D., 1993. Advanced Methods in 
Neural Computing, New York: Prentice Hall 
Company, Van Nostrand Reinhold. 

8. The language of technical computing, 2006. 
MATLAB, Math Works Inc. 


