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Abstract: In this study we focus on coordination of the production planning of finished products and 
intermediate products in the process industry. The problem consists of two manufacturing facilities 
with similar production environment, one producing the intermediates and the other producing end 
products that are separated by a distance. There is transportation between the facilities. The problem 
considered has been formulated as a Mixed Integer linear Programming problem (MIP). In this study 
we present, integrated approach and two-step approach to solve the production and transportation 
problem over the two manufacturing facilities. Our computational study, which compares the results 
from the two approaches, shows a significant cost reduction is achieved using the integration approach, 
however, the decision maker may not be able to obtain results in real time to be of any use for 
implementation since computational time will increase exponentially as the number of integer 
variables increase. 
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INTRODUCTION 

 
 In recent years, there has been an increased interest 
in coordinated production planning problems in the 
multi product chemical industry. Multi product 
chemical plants use either a continuous production 
system or a batch production system. Coordinated 
production-distribution problem has been active area of 
research in the recent years. Chandra and Fisher[1] 
considered the coordination of production scheduling 
and vehicle routing whose objective is to minimize 
setups, inventories and transportation costs for a single 
production facility, multi-product problem. Their study 
has proven a reduction in total operating cost from 3-
20%. Haq[3] developed a mixed integer program that 
determines production and distribution batch sizes in a 
multi-stage production-inventory-distribution system. 
 J.M. Splitter[5] considered the Supply Chains 
Operations Planning problem of arbitrary supply chain 
structures. The problem is solved with Linear 
Programming models using planned lead times with 
multi-period capacity consumption. Garcia and 
Lozano[2] deals with problem of selecting and 
scheduling the order to be processed by manufacturing 
plant for immediate delivery to the customer sited. The 
problem includes limited production capacity, available 

number of vehicles and the time windows within which 
orders must be served. The problem is presented as 
integer programming model that maximizes the profit 
due to the customer order to be processed, a tabu 
search-based solution procedure is developed to solve 
the problem. 
 Jayaraman and Pirkul[4] studied an integrated 
logistics model for location production and distribution 
facilities in multi-echelon environment. A mixed 
integer programming formulation is provided to the 
integrated model. An efficient heuristic solution 
procedure that utilizes the solution generated from 
Lagrangian relaxation of the problem is presented. The 
integrated model has proven to be cost-minimization 
procedure for analyzing facility logistics strategies in 
the context of production and distribution system 
design studies. 
 This study focuses on coordination of production 
planning of finished products and intermediate products 
that involve coordination of production planning and 
transportation. Moreover, the study presents two 
mathematical modeling approaches to solve the 
problem. The research problem is described in the next 
section, followed by the model formulation and 
computational study. Finally, results and discussions 
and conclusions are presented. 
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PROBLEM DESCRIPTION 
 
 The problem considers a specialty chemical 
manufacturing organization that has two production 
facilities, I and II. The intermediates or semi-finished 
products are manufactured in facility I and finished 
goods are produced in facility II. Each finished good is 
a combination of certain intermediates. The lead time is 
modeled as a time lag between the production of the 
intermediates and availability of intermediates for the 
finished goods. The yield from an intermediate to the 
finished good is also considered. Distilled water which 
constitutes a good portion in making end products is 
produced at facility II at known costs. Intermediates are 
packaged in 150 kg steel drum containers and trucks 
with transportation capacity of 112 drums per trip are 
used to ship the intermediates to facility II. Production 
and transportation of intermediate products must be 
planned to meet three objectives. First, to satisfy the 
demand of end products at facility II. Second, 
considering the production lead time while meeting the 
first objective. Third, avoid having large quantities of 
inventory of intermediate products at facility II. 
 

FORMULATION 
 
 In this section we present two approaches that aim 
to solve production and transportation problem over 
two manufacturing facilities. The first approach 
attempts to integrate the problem on a monolithic 
approach. The second approach attempts to decompose 
the problem into two steps and then provides a solution 
in a sequential manner. Next, the details of the 
formulation for each approach is presented. 
 
An integrated approach: A mixed-integer linear 
programming formulation is proposed. Model 
parameters, decision variables and formulations are 
presented next. 
 
Indices: 
 
I = End product type i at facility II 
K = Intermediates type k at facility I 
t = Time period t 
 
Parameter: 
 
L = Production lead-time for intermediates 
T = Length of planning horizon 
Cit = Production cost per unit of end product i in 

period t 

Sit = Set up cost per batch for end product i in 
period t 

hit = Inventory carrying cost per unit of product i 
per period t 

rt  = Cost per man-hour of regular time labour in  
period t in facility II 

ot = Cost per man-hour of overtime labour in 
period t in facility II 

Ct = Cost per direct trip in period t from facility I to 
facility II 

min
itB  = Minimum  batch size of end product i in 

period t 
max
itB  = Maximum  batch size of end product i in 

period t 
rmt = Total regular time in hours available in period 

t in facility II 
omt = Total overtime in hours available in period t in 

facility II 
mI = Man-hour required to produce one unit of end  

product i 
dit = Demand for end product i in period t 
osit = Overstock limit for end product i in period t 
YI = Yield percentage from intermediate products 

to end product i 
C = Vehicle capacity 
ϖ  = Weight per drum container in kilogram 
PCt = Available production capacity in facility II in 

period t 
SCt  = Available storage capacity in facility II in 

period t 
DW
tC  = Production cost per unit DW per period t 

DW
ia  = Number units of DW required to produce one 

unit of end product i 

ktC
∧

 = Production cost per unit of intermediate 
product k in period t 

ktS
∧

 = Set up cost per batch for intermediate k in 
period t 

kth
∧

 = Inventory carrying cost per unit of 
intermediate product k per period t 

tr
∧

 = Cost per man-hour of regular time labour in  
period t in facility I 

to
∧

 = Cost per man-hour of overtime labour in 
period in facility I 

min

ktB
∧

 = Minimum batch size of intermediate product k 
in period t 

max

ktB
∧

 = Maximum batch size of intermediate product k 
in period t 
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trm
∧

 = Total regular time in hours available in period 
t in facility I 

tom
∧

 = Total overtime in hours available in period t in 
facility I 

km
∧

 = Man-hour required to produce one unit of 
intermediate product k 

ktos
∧

 = Overstock limit for intermediate product k in 
period t 

ika
∧

 = Number units of intermediate product k 
required to produce one unit of end product i 

tPC
∧

 = Available capacity in production facility I in 
period t 

tSC
∧

  = Available storage capacity in facility I in 
period t 

 
Variables: 
 
Xit = The number of units of end product i to be 

produced in period t 
itη  = The number of batches of end product i to be 

produced in period t 
Iit = Ending inventory in units of end product i in 

period t 
Rit = Regular time in hours used in producing end 

product i in period t  
Oit = Overtime in hours used in producing end 

product i in period t 
Wt = The number of direct trips from facility I to the 

facility II in period t 
DW
tD  = Demand of DW in period t 

Dkt = Demand of intermediate type k in period t 

ktX
∧

 = Number of units of intermediate product k to 
be produced in period t 

kt

∧
η  = Number of batches of intermediate product k 

to be produced in period t 

ktI
∧

 = Ending inventory in units of intermediate 
product k in period t 

ktR
∧

 = Regular time in hours used in producing 
intermediate product k in period t 

ktO
∧

 = Overtime in hours used in producing 
intermediate product k in period t  

ktd̂r  = Number of drums of intermediate product k 
transported in period t 

ktI′′′  = Ending inventory in units of intermediate 
product k at facility II in period t 

ktSM
∧

 = Total amount of k intermediate product 
transported from facility I to facility II in 
period t 

 
Objective function 
Minimize: 
 

 

T I

it it it it it it t it t it
t 1 i 1

T L K

kt kt kt ktkt t ktkt kt t
t 1 k 1

T T L
DW DW
t t t t

t 1 t 1

(C X h I S r R o O )

(C X h I S r R o O )

C D C W

= =

− ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

= =

−

= =

+ + η + + +

+ + η + + +

+

��

��

� �

 (1) 

 
Set of constraints 
Plant II: (manufacturing of finished products) 
 
 
 i( t 1) it it itI X I d i− + − = ∀ , t = L+1, L+2…T (2) 

 

 
I

it t
i 1

R rm
=

≤� , t = L+1, L+2…T (3) 

 

 
I

it t
i 1

O om
=

≤�  ,  t = L+1, L+2 …T (4) 

 
 i it it itm X R O i= + ∀ , t = L+1, L+2 …T (5) 
 
 it itI os i≤ ∀ , t = L+1, L+2…T (6) 
 

 
I

it t
i 1

X PC
=

≤� , t = L+1, L+2…T (7) 

 

 
I

it t
i 1

I SC
=

≤� , t = L+1, L+2…T (8) 

 

 kt k (t L 1) kt k( t L)SM I D I k
∧

+ − +′′′ ′′′+ − = ∀  (9) 
 
 t = 1, …T-L  
 
 ktI k′′′ ≤ ϖ∀ , t = L+1, L+2…T (10) 
 

 
I ik i( t L)

kt
i 1 i

a X
D k

Y

∧

+

=

= ∀� , t = 1,.…T-L (11) 
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DWI

DW i it
t

i 1 i

a X
D

Y=

=� , t = L+1,..…T (12) 

 
 min max

it it it it itB X B iη ≤ ≤ η ∀ , t = L+1,…T (13) 
 
Transportation: 
 

 
K

t kt
k 1

W w dr C k
∧

=

≥ ∀� , t = 1, 2…T-L (14) 

 
Plant I: (manufacturing of intermediates) 
 

 k( t 1) ktktktI X SM I k
∧ ∧ ∧ ∧

− + − = ∀ , t = 1, 2… T-L (15) 
 

 
K

kt t

k 1

R rm
∧ ∧

=

≤� , t = 1, 2… T-L (16) 

 

 
K

kt t

k 1

O om
∧ ∧

=

≤� , t = 1, 2… T-L (17) 

 

 kt ktk ktm X R O k
∧ ∧ ∧

= + ∀ , t = 1, 2… T-L (18) 
 

 kt ktI os k
∧ ∧

≤ ∀ , t = 1, 2…T-L (19) 
 

 
K

kt t

k 1

X PC
∧ ∧

=

≤� , t = 1, 2…T-L (20) 

 

 
K

kt t

k 1

I SC
∧ ∧

=

≤� , t = 1, 2…T-L (21) 

 

 kt ktSM dr k
∧ ∧

= ϖ ∀ , t = 1, 2…T-L (22) 
 

 
min max

kt kt ktkt ktB X B k
∧ ∧ ∧ ∧ ∧
η ≤ ≤ η ∀ , t = 1,…T-L (23) 

 

 

kt

X ,I ,R ,O ,X , I ,R ,O ,kt kt kt ktit it it it

DWI ,D ,SM 0tkt

∧ ∧ ∧ ∧

∧
′′′ ≥

 (24) 

 

 ktktit t, ,dr ,W
∧ ∧

η η  are integers (25) 
 
 In the above formulation, Eq. 1 represents the 
objectives function which calls for minimizing its four 
terms. The first and second terms determine the 

production, inventory, setup, regular and overtime costs 
at production facility I and II, respectively. The third 
term determines the distilled water cost at facility II and 
the fourth term determines the transportation costs. 
Equation 2 is the demand, inventory relationship for 
end products at facility II. Equation 3 and 4 state the 
regular and overtime limitations at facility II. Equation 
5 presents the workforce limitations, while Eq. 6 
enforces the overstock limitations for end products. 
Equation 7 and 8 states production capacity and storage 
limitations at facility II. Equation 9 is the 
transportation, demand, inventory relationship for 
intermediate products at facility II. Equation 10 
represents the restrictions imposed on the level of 
quantities of intermediate products to be stored at 
facility II per period. 
 Equation 11 determines the quantities of each 
intermediates needed for end product to be 
manufactured. Equation 12 determines the quantities of 
distilled water needed for end products manufacturing. 
Equation 13 enforces minimum and maximum batch 
size requirements for end products manufacturing. 
Equation 14 defines the relationship between number of 
transportation trips, capacity of the vehicle and the 
number of drums to be transported per planning period. 
Equation 15 is the demand, inventory transportation 
relationship for intermediate products at facility I. 
 Equation 16 and 17 state the regular and overtime 
limitations at facility I. Equation 18 presents the 
workforce limitations, while Eq. 19 enforces the 
overstock limitations for intermediate products. 
Equation 20 and 21 states production capacity and 
storage limitations at facility II. Equation 22 converts 
quantities of intermediate products to be transported 
into number of drum containers to be transported. 
Equation 23 enforces minimum and maximum batch 
size requirements for intermediate products 
manufacturing Equation 24 represents the non-
negativity constraint. Equation 25 describes the integer 
variables. 
 

TWO-STEP APPROACH 
 
First step optimization (Plant II) 
Minimize: 
 

 

T I

it it it it it it t it t it
t 1 i 1

T
t t
DW DW

t 1

(C X h I S r R o O )

C D

= =

=
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 (26) 
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Table 1: Results of integrated and two stage approach 
  Two stage approach 
  ------------------------------------------------------------ 
 Integrated approach Step 1 (facility II) Step 2 (facility I) 
Length of planning 12 periods 12 periods 12 periods 
Integer restrictions 6 periods 6 periods 6 periods 
Objective function total cost 17, 714, 171 18, 018, 395 
Facility I cost* 8, 728, 556  8, 472, 990 
Facility II cost* 8, 985, 615 9, 545, 405 
No. of variables 1412 312 1100 
No. of constraints 2603 612 1991 
No. of integers 145 30 115 
No. of iterations 3604 754 3275 
Solution time (sec) 108  14  6 
*: Cost in monetary units (MU) 
 
Sets of Constraints: Constraints 2, 3, 4, 5, 6, 7, 8, 12 
and 13 and the nonegativity 
 
Second step optimization (Plant I and 
transportation) 
Minimize: 
 

 

T L K

kt kt kt ktkt t ktkt kt t
t 1 k 1

T L

t t
t 1

(C X h I S r R o O )

C W

− ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

= =

−

=
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 (27) 

 
Sets of Constraints: Constraints 9, 10, 11, 14, 15, 16, 
17, 18, 19, 20, 21, 22, 23 and the nonegativity. 
 
 

COMPUTATIONAL STUDY 
 
 The model's application is now illustrated using 
data taken from the specialty chemical firm. The case 
considered consists of five end products that are 
produced as a result of using eleven intermediate 
products and distilled water which can be described in 
the following manner: Product A is a lubricant agent 
that can be produced as a result of blending three 
intermediate products. The second product is B, a water 
soluble corrosion inhibitor that requires four 
intermediate products to be blended with distilled water 
(DW). The third end product C is a sulphuric lubricant 
that can be produced by blending six intermediate 
products. Product D, an anti foaming product that is 
manufactured as a result of blending two intermediate 
products and distilled water (DW). The fifth product E; 
a corrosion inhibitor requires three intermediate 
products to be manufactured. Figure 1 illustrates the 
end products, intermediate structure and solvents used 
in the study. In this study, the models were developed 
using OPL Studio version 3.6 and solved using CPLEX 
version 8. Models were executed with Pentium IV 2.80  

End

A B C D E

DW 1 2 3 4 5 6 7 8 9 10 11

Intermediate and solvent  
 
Fig. 1: End Products and intermediates product 

structure 
 
GHz processor, while Microsoft Excel is used to export 
and import data and solution. Since the input data 
needed for our computational study is overwhelming, 
we have provided a small problem that consists of five 
end products that require eleven intermediates and 
single solvent to be produced as portrayed in Fig. 1. 
 

RESULTS AND DISCUSSION 
 
 Models for both approaches are developed for 12 
time periods; our extensive computational works 
conclude that in order to find optimal solution in good 
computational time, the number of integer variables has 
to be reduced. One practical way of solving this 
problem that we have find it useful is to restrict the 
integer variables to certain time horizon, in our case, 
the solutions are developed for 12 time periods of 
which 6 are with integer restrictions and the remaining 
planning periods are free from such restrictions. Table 1 
compares the two approaches. 
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 In Table 1, the integrated approach methodology 
has resulted in solving MIP problem that has 1412 
variables, 2603 constraints and 145 integers. The 
computational time consumed to reach an optimal 
solution is 108 sec and model requires 3604 iterations 
to be solved. Examining the results for the two-step 
solution, the solution time to obtain an optimal solution 
has been reduced by about 24%. The integrated 
approach reduces objective function value by about 
1.68%. 
 

CONCLUSION 
 
 In this study we have developed a mixed integer 
linear programming problem that coordinates the 
production planning and transportation issues 
surrounding a specialty chemical plant. Our results 
indicate that the integrated approach to the problem is 
more beneficial in terms of cost savings. However, 
solving reasonably industrial size problem that include 
hundreds of products is not possible, since the 
computational time will increase exponentially as the 
number of integer variables increase. Consequently, the 
decision maker may not be able to obtain results in real 
time to be of any use for implementation purposes. One 
way around this problem is to restrict integer variables 
to certain time horizon as indicated earlier. It is worth 
noting that in case of the two-step approach, the integer 
restriction constitutes no problem in finding optimal 
solutions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 It is well known that MIP has an obvious weakness 
in solving reasonably industrial case. Currently the 
authors are involved in developing a genetic algorithm 
heuristic to provide a solution. However, the 
contribution of this research is providing MIP 
formulation that can provide solution for the small size 
problem which will be used in our future research to 
validate the performance of the heuristic avoiding the 
problem of testing one heuristic against another. 
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