
American Journal of Applied Sciences 4 (11): 887-895 2007
ISSN 1546-9239
© 2007 Science Publications

Corresponding Author: Tzung-Pei Hong, Department of Computer Science and Information Engineering, National University
of Kaohsiung, Kaohsiung 811, Taiwan, R.O.C.

887

Three Algorithms for Flexible Flow-shop Scheduling

1Tzung-Pei Hong, 2Pei-Ying Huang, 3Gwoboa Horng and 3Chan-Lon Wang

1Department of Computer Science and Information Engineering,
National University of Kaohsiung, Kaohsiung 811, Taiwan, R.O.C.

2Department of Computer Science and Information Engineering
National Taiwan University, Taipei 106, Taiwan, R.O.C.

3Department of Computer Science
National Chung-Hsing University, Taichung 402, Taiwan, R.O.C.

Abstract: Scheduling is an important process widely used in manufacturing, production, management,
computer science, and so on. Appropriate scheduling can reduce material handling costs and time.
Finding good schedules for given sets of jobs can thus help factory supervisors effectively control job
flows and provide solutions for job sequencing. In simple flow shop problems, each machine operation
center includes just one machine. If at least one machine center includes more than one machine, the
scheduling problem becomes a flexible flow-shop problem. Flexible flow shops are thus generalization
of simple flow shops. In this paper, we propose three algorithms to solve flexible flow-shop problems
of more than two machine centers. The first one extends Sriskandarajah and Sethi’s method by
combining both the LPT and the search-and-prune approaches to get a nearly optimal makespan. It is
suitable for a medium-sized number of jobs. The second one is an optimal algorithm, entirely using the
search-and-prune technique. It can work only when the job number is small. The third one is similar to
the first one, except that it uses Petrov’s approach (PT) to deal with job sequencing instead of search-
and-prune. It can get a polynomial time complexity, thus being more suitable for real applications than
the other two. Experiments are also made to compare the three proposed algorithms. A trade-off can
thus be achieved between accuracy and time complexity.

Key words: scheduling, flexible flow shop, LPT scheduling, search, PT scheduling

INTRODUCTION

 Scheduling is an important process widely used in
manufacturing, production, management, computer
science, and so on. In simple flow-shop problems, each
machine center has just one machine[1,3,4,9-11]. If at least
one machine center has more than one machine, the
problem is called a flexible flow-shop problem.
Flexible flow shops are thus generalization of simple
flow shops[2]. Scheduling jobs in flexible flow shops is
considered an NP-hard problem[8,12].
 The problem addressed in the paper is a special case
of the flexible flow shop problem. We assume each
machine center has the same number of parallel
machines which to the best of authors’ knowledge is the
first of its kind. This paper specifically focuses on
minimizing the total completion time of flexible flow
shop. Three algorithms have been developed to solve
flexible flow-shop scheduling problems with more than
two machine centers. The first one extends
Sriskandarajah and Sethi’s method by combining both

the LPT[5] and the search-and-prune approaches to get a
nearly optimal makespan. The LPT approach is first
used to assign jobs to each machine group (flow shop).
The search-and-prune approach is then used to deal
with job sequencing. The second one is an optimal
algorithm, entirely using the search-and-prune
technique. The third one is similar to the first one
except that it uses Petrov’s approach (PT)[11] to deal
with job sequencing instead of search-and-prune.
Experimental results show that the third proposed
algorithm can save much computational time when
compared to the other two although its makespans may
be a little larger. Particularly, the third one has the
polynomial time complexity, avoiding the intractable
problems occurring in the other two algorithms. In
addition, the time complexities and makespans by the
first algorithm lie between those by the other two. A
trade-off for these three algorithms can thus be
achieved between accuracy and time complexity.
 In the past, Johnson first proposed an efficient
algorithm which guaranteed optimality in a two-

Am. J. Applied Sci., 4 (11): 887-895 2007

 888

machine flow-shop problem[6]. Palmer, Petrov and
Gupta then respectively proposed their algorithms for
solving the flow-shop problems of more than two
machines[4,10,11]. The three scheduling algorithms could
process the job data in only one pass. Campbell, Dudek
and Smith (CDS) then proposed a heuristic algorithm
for achieving the same purpose[1]. It, however, needed
to process the job data in multiple passes. Logendran
and Nudtasomboon also proposed a multi-pass
algorithm to solve it[7]. Sriskandarajah and Sethi then
presented a heuristic algorithm based on the Johnson
algorithm for solving flexible flow-shop problems of
two machine centers with the same number of
machines[12]. Many researches in this field are still in
progress.
 As mentioned above, flexible flow-shop problems
are NP-hard. No algorithms can find the optimal
solutions in polynomial time. In the past,
Sriskandarajah and Sethi proposed a heuristic algorithm
to solve the problem of two machine centers, and the
completion time of the derived schedules was close to
the optimum. In this paper, we generalize it and
propose three algorithms to solve the flexible flow-shop
problems of more than two machine centers. Some
related scheduling algorithms are first introduced as
follows.
 The discovery of scheduling algorithms for a set of
independent tasks with arbitrary execution time and an
arbitrary number of processors is a classic sequencing
problem of wide interest and application. Among the
proposed scheduling algorithms, the LPT (Longest-
Processing-Time-first) scheduling algorithm is the
simplest one and is widely used in many real-world
situations.
 Given a set of n independent tasks (T1 to Tn), each
with arbitrary execution time (t1 to tn), and a set of m
parallel processors or machines (P1 to Pm), the LPT
scheduling algorithm assigns the task with the longest
execution time (among those not yet assigned) to a free
processor whenever this processor becomes free. For
cases when there is a tie, an arbitrary tie-breaking rule
can be assumed. The finishing time by the LPT
scheduling algorithm is in general not minimal. The
computational time spent by the LPT scheduling
algorithm is, however, much lower than that by an
optimal scheduling algorithm.
 The PT algorithm[11] was proposed by Petrov to
schedule job sequencing for a flow shop with more than
two machines. Given a set of n flow-shop jobs, each
having m (m>2) tasks (T11, T21, … , Tm1, T12, T22, …, T(m-

1)n, Tmn) that must be executed in the same sequence on

m machines (P1, P2, …, Pm), the PT scheduling
algorithm seeks a nearly minimum completion time of
the last job. It transforms the flow shop problems with
more than two tasks into the ones with exactly two
tasks and uses the Johnson algorithm to solve them.
 Sriskandarajah and Sethi[12] proposed a heuristic
algorithm for solving the flexible flow-shop problem of
two machine centers and the completion time of the
derived schedules was close to the optimum.
Sriskandarajah and Sethi decomposed the problem into
the following three subproblems and solved each
heuristically:

Part 1: Form the machine groups, each of which

contains a machine from each center.
Part 2: Use the LPT method to assign jobs to each

machine group (flow shop).
Part 3: Deal with job sequencing and timing using the

Johnson algorithm.

 In this paper, we will extend above approaches to
solve the flexible flow-shop problems of more than two
machine centers.

Assumptions and Notation: Assumptions and notation
used in this paper are described in this section.

Assumptions:

1. Jobs are not preemptive
2. Each job has m (m > 2) tasks with processing

times, executed respectively on each of m
machine centers.

3. All machine centers have the same number of
parallel machines.

The Search-And-Prune Scheduling Procedure For
Job Sequencing: The search-and-prune procedure
proposed in this paper is used to schedule jobs
sequencing for a flow shop with more than two
machines. An upper bound is used to increase the
performance of the procedure. The procedure will act as
the third part in the first two algorithms proposed later.
Given a set of n flow-shop jobs, each having m (m>2)
tasks (T11, T21, …, Tm1, T12, T22, …, T(m-1)n, Tmn) that must
be executed in the same sequence on m machines (P1,
P2, …, Pm), scheduling seeks the minimum completion
time of the last job. The procedure is stated as follows.

The search-and-prune procedure with an upper
bound for job sequencing:

Input: A set of n jobs, each having m (m > 2) tasks

executed respectively on each of the given m
machines

Am. J. Applied Sci., 4 (11): 887-895 2007

 889

Output: A schedule with a minimum completion time of
the last job.

Step 1: Set the initial upper bound maxv of the final

completion time as∞ .
Step 2: For each possible permutation of task

sequence, do the following steps.
Step 3: Set the initial completion time di of the

machine
iM (i = 1 to m, m is the number of

tasks in a job) to zero.
Step 4: Assign the first job jJ in its schedule

sequence generated in Step 2 to the machines
such that jJ ’s first task T1j is assigned to 1M ,
T2j is assigned to 2M , …, mjT is assigned to

mM .
Step 5: Add the processing time t1j to the completion

time d1 of the first machine 1M ; that is:
d1 = d1 + t1j.

Step 6: If d1 is larger than maxv , go to Step 2 for
trying another permutation.

Step 7: Set jkkkk tddd)1(11),max(+++ += , for k =
1 to (m-1).

Step 8: If 1+kd is larger than maxv , go to Step 2 for
trying another permutation; otherwise, do the
next step.

Step 9: Remove job jJ from the sequence.
Step 10: Repeat Step 4 to 9 until the job sequence is

empty.
Step 11: Set the completion time d as the completion

time md of its m-th machine.
Step 12: If d is smaller than maxv , then set

dv =max .
Step 13: Repeat Step 2 to Step 12 until all possible

permutations have been tested.
Step 14: Set maxv as the final completion time of the

job scheduling and save the schedule that
gives the minimum total completion time.

 After Step 14, scheduling is finished and an optimal
completion time for a flow shop has been found.

The first algorithm for scheduling on a flexible flow
shop with more than two machine centers: A
heuristic algorithm for solving flexible flow-shop
problems of two machine centers is proposed by
Sriskandarajah and Sethi in 1989[12]. In this paper, we
generalize it to solve flexible flow-shop problems of
more than two machine centers. The proposed flexible
flow-shop algorithm is based on the LPT and the
proposed search-and-prune approaches to manage job
scheduling. The algorithm is decomposed into three
parts as Sriskandarajah and Sethi’s method was. The
first part forms the machine groups, each of which
contains a machine from each center. The second part
uses the LPT method to assign jobs to each machine

group (flow shop). The third part deals with job
sequencing and timing using the search-and-prune
procedure for a flow shop. The proposed algorithm is
stated below.

The proposed LPT_ Search-and-prune flexible flow-
shop algorithm:

Input: A set of n jobs, each having m (m > 2) tasks, to

be executed respectively on each of m machine
centers with p parallel machines.

Output: A schedule with a suboptimal completion time.

Part 1: Forming the machine groups
Step 1: Form p machine groups, each of which

contains one machine from each machine
center. Each machine group can be thought of
as a simple flow shop F1, F2, …, Fp.

Step 2: Initialize the completion time f1, f2, …, fp of
each flow shop F1, F2, …, Fp to zero.

Part 2: Assigning jobs to machine groups
Step 3: For each job Jj, 1≤ j ≤ n, find its total

execution time ttj = t1j + t2j +…+ tmj.
Step 4: Sort the jobs in descending order of

processing time ttj; if any two jobs have the
same ttj values, sort them in an arbitrary
order.

Step 5: Find the flow shop Fi with the minimum
processing time fi among all the flow shops; if
two flowshops have the same minimum fi
value, choose one arbitrarily.

Step 6: Assign the first job Jj in the sorted list to the
chosen flow shop Fi, which has the minimum
completion time fi, among all p flow shops.

Step 7: Add the total time ttj of job Jj to the needed
total time of the chosen flow shop, Fi; that is:

fi = fi + ttj.

Step 8: Remove job Jj from the job list.
Step 9: Repeat Steps 5 to 8 until the job list is empty.

After Step 9, jobs are clustered into p groups and are
allocated to the p machine flow shops.

Part 3: Dealing with job sequence in each flow shop
Step 10: For each flow shop Fi, set the initial

completion time of the machines fji (j = 1 to
m, i = 1 to p) to zero.

Step 11: Find the completion time of each flow shop

if by the proposed search-and-prune

procedure in Section 4.

Am. J. Applied Sci., 4 (11): 887-895 2007

 890

Step 12: Find the final completion time

)(max
1

i

p

i
fff

=
= among the completion time

of all the flow shops.

 After Step 12, scheduling is finished and a total
completion time ff has been found.

An Example For The Proposed Heuristic Algorithm:
Assume five jobs, J1 to J5, each having three tasks (t1j,
t2j, t3j), are to be scheduled via three operations. Each
operation is executed by a machine at the corresponding
machine center. Each machine center includes two
parallel machines. Assume the execution times of these
jobs are listed in Table 1. The algorithm proceeds as
follows.

Table 1: Processing times for the five jobs

t1j t2j t3j

J1 4 7 3
J2 1 5 2
J3 5 2 4
J4 2 5 3
J5 5 5 6

Part 1: Forming the machine groups:
Step 1: Form two machine groups, F1 and F2, each of

which is thought of as a three-machine
flowshop. Without lose of generality, we may
assume the flowshops are constructed as
follows:

F1 → {m11 + m12 + m13},
F2 → {m21 + m22 + m23},

where mij is the i-th machine in the j-th
center.

Step 2: Initialize f1 = f2 = 0, where fi is the initial
completion time of Fi.

Part 2: Assigning jobs to machine groups:
Step 3: For each job Jj, j = 1 to 5, find its total

execution time ttj = t1j + t2j + t3j. For example,
the total processing time of job 1 is calculated
as:

 143743121111 =++=++= ttttt .

The total processing times of the other jobs
can be similarly found and the results are
listed in Table 2.

Table 2: The total processing times of the five jobs

Jobj total processing time jtt

J1 14
J2 8
J3 11
J4 10
J5 16

Step 4: Sort the jobs J1 to J5 in a descending order of

the total processing time (tt j). The following

results are obtained:
 Job list = {J5, J1, J3, J4, J2}.

Step 5: Find the minimum f i between the two

flowshops F1 and F2. Since both the total
processing times of the two flowshops are
equal to zero, any arbitrary flowshop can be
chosen. Without lose of generality, assume F1

is chosen.
Step 6: Assign the first job J5 in the sorted list to the

chosen flowshop F1.
Step 7: Add the total processing time tt5 of job J5 to

the needed total time of the chosen flowshop
F1. Thus:

f1 = f1 + tt5 = 0 + 16 = 16.

 After Step 7, the results of allocating J5 to the
flowshop F1 are shown in Table 3.

Step 8: Remove the job J5 from the job list. After J5

is removed, the job list is then as follows:
Job list = {J1, J3, J4, J2}.

Step 9: Repeat Steps 5 to 8 until the job list is empty.
After Step 9, jobs are clustered into two
groups and are respectively allocated to the
two flowshops. Results are shown in Table 4.

Table 3: The flowshops with allocated jobs and total

processing time

Flowshopi allocated jobs total processing time

F1 J5 16
F2 None 0

Table 4: The jobs in each flow shop

Flowshopi Jobs allocated
F1 J5, J4
F2 J1, J3, J2

Jobj

 Execution
 time

Am. J. Applied Sci., 4 (11): 887-895 2007

 891

Part 3: Dealing with job sequencing in each flow shop:
Step 10: In each flow shop Fi, set the initial

completion time of the machines fji = 0 (j = 1
to 3, i=1 to 2).

Step 11: Find the completion time of each flow shop

if by the proposed search-and-prune

procedure in Section 4. The results are found
as follows:

.18

,20

2

1

=
=

f

f

Step 12: Find the maximal final completion time ff
between the completion times of both the
flow shops. We can thus get:

 ff = 20.

 ff has been found ff is then output as the final total
completion time. The schedule obtained by the above
steps is shown in Fig. 1.

Machine Center 2

Machine Center 1

Machine Center 3

5 10 15 20 25

14t

24t

32t

34t

12t

15t

11t

25t

35t

31t

13t

23t

33t

21m
11m

12m

22m

13m

23m

22t21t

Fig. 1: The final scheduling result in the example

The Second Algorithm: In the first algorithm, the
LPT method is used to assign jobs to machine groups.
The job sequencing and timing in each group is then
done by the search-and-prune procedure. The tasks in a
set of clustered jobs are executed in the same machine
group. The makespans obtained in the above way do
not guarantee to be optimal. For getting an optimal
schedule, the tasks in a set of jobs may be executed in
different machine groups. In this section, we thus
propose another scheduling algorithm based on the
search-and-prune technique to get the optimal solutions,
which can also be used to measure the performance of
the first algorithm. The proposed optimal algorithm is
stated below.

The proposed optimal flexible flow-shop algorithm:
Input: A set of n jobs, each having m (m > 2) tasks, to

be executed respectively on each of m machine
centers with p parallel machines.

Output: A schedule with an optimal completion time.
Step 1: Set the initial upper bound vmax of the final

completion time as∞ .
Step 2: For each possible combination of task

allocation and permutation of task sequence,
do the following steps.

Step 3: In each machine center, set the initial
completion time of each machine to zero.

Step 4: Set the variable g to one, where g represents
the number of the current machine center to
be processed.

Step 5: Schedule the first tasks of all jobs in the
machines of the first machine center. That is,
for each task T1i of the i-th job allocated to
the j-th machine Dj1 in the first machine
center, do the following substeps according to
the scheduling order in the permutation and
combination generated:
(a)Add the processing time t1i to the

completion time dj1 of the machine Dj1.
That is:

 dj1 = dj1 + t1i, and
c1i = dj1.

(b)If dj1 is larger than vmax, neglect all the
permutations and combinations with this
sequence in the first machine center and go
to Step 2 for trying another permutation
and combination.

Step 6: Set g = g + 1.
Step 7: Schedule the g-th tasks of all jobs in the

machines of the g-th machine centers
according to the permutation and combination
generated. For each task Tgi of the i-th job
allocated to the j-th machine Djg in the g-th
machine center, do the following substeps in
the scheduled order:
(a)Find the completion time djg of the

machine Djg as:

djg = max(djg, c(g-1)i)+ tgi, and
cgi = djg.

(b)If djg is larger than vmax, neglect all the

permutations and combinations with this
sequence in the first g machine centers and
go to Step 2 for trying another permutation
and combination.

Step 8: Repeat Steps 6 and 7 until g > m.
Step 9: Set the completion time dm of the current

Am. J. Applied Sci., 4 (11): 887-895 2007

 892

schedule = ()jm

p

j
d

1
max

=
 among the p machines

in the m-th machine center.

Step 10: If dm is smaller than vmax, then set vmax = dm.
Step 11: Repeat Steps 2 to 10 until all the possible

permutations and combinations have been
tested.

Step 12: Set the optimal final completion time of the
job scheduling ff = vmax.

 After Step 12, a globally optimal completion time ff
has been found. In the above two algorithms, the
permutations and combinations of task sequences or
machine centers must be tested, causing the execution
time is intractable in the worst case. Below, we propose
another heuristic algorithm to reduce the computation
time.
The Third Algorithm: The third algorithm is based on
the PT approach to manage job scheduling. The
algorithm is decomposed into three parts as the first
algorithm. The first part forms the machine groups,
each of which contains a machine from each center.
The second part uses the LPT method to assign jobs to
each machine group (flow shop). The third part deals
with job sequencing and timing using the PT procedure
for a flow shop. The proposed algorithm is stated
below.

The proposed LPT_PT flexible flow-shop algorithm:
Input: A set of n jobs, each having m (m > 2) tasks, to

be executed respectively on each of m machine
centers with p parallel machines.

Output: A schedule with a nearly completion time.
Part 1: Forming the machine groups: The same as in

the first algorithm.
Part 2: Assigning jobs to machine groups: The same

as in the first algorithm.
Part 3: Dealing with job sequencing in each flow shop:
Step 10: For each flow shop Fi, set the initial

completion time of the machines fji (j = 1 to
m, i=1 to p) to zero.

Step 11: For each job j, calculate ∑
=

=
2/

1

m

k
kj

C
j tt and

∑
+=

=
m

mk
kj

D
j tt

1)2/(
 for even m, and ∑

+

=
=

2/)1(

1

m

k
kj

C
j tt

and ∑
+=

=
m

mk
kj

D
j tt

2/)1(

 for odd m.

Step 12: Schedule the jobs in each flow shop fi

according to the Cjt and D
jt values by the

Johnson algorithm. Denote the schedule in Fi
as QFi.

Step 13: For each flowshop Fi, assign the first job Jj
in QFi to the machines such that J1j is
assigned to F1i, J2j is assigned to F2i, …, and
Jmj is assigned to Fmi.

Step 14: Add the processing time t1j to the completion
time of the first machine f1i ; that is:

f1i = f1i + t1j .
Step 15: Set f(k+1)i =max(fki, f(k+1)i)+ t(k+1)j, for k =1 to

(m-1).
Step 16: Remove job Jj from QFi.
Step 17: Repeat Steps 13 to 16 until QFi is empty.
Step 18: Set the final completion time of each

flowshop fi = the completion time of the m-th
machine fmi.

Step 19: Find the maximum final completion

time)f(maxff i

p

1i=
= among the completion time

of all the flowshops.
 After Step 19, scheduling is finished and a total
completion time ff has been found.

Experiments: This section reports on experiments
made to show the performance of the proposed
scheduling algorithms. They were respectively
implemented by Visual C++ at an AMD Athlon(tm) XP
1800+ PC. In the first part of the experiments, five sets
of problems were tested, respectively for 3 to 7 jobs.
Each job has three tasks and each machine center has
two parallel machines. The execution time of each task
was randomly generated in the range of 5 to 50. Each
set of problems was executed for 20 tests and the
makespans and computation times were measured. The
proposed optimal approach did not work for more than
seven jobs in limited time of 10 hours in our
environments due to the large amount of computation
time.
 The optimal approach considered all possible
combinations and used a pruning technique to increase
its efficiency. The makespans obtained in this way were
optimal. The makespans for problems of three to seven
jobs by the three proposed methods are shown in Fig. 2
to 4.

35

40

45

50

55

1 3 5 7 9 11 13 15 17 19

Test number

M
a
ke

sp
a
n

The Optimal Algorithm The First Algorithm The Third Algorithm

Fig. 2: Makespans of 20 tests for three jobs

Am. J. Applied Sci., 4 (11): 887-895 2007

 893

45

50

55

60

65

70

1 3 5 7 9 11 13 15 17 19

Test number

M
a
ke

sp
a
n

The Optimal Algorithm The First Algorithm The Third Algorithm

Fig. 3: Makespans of 20 tests for five jobs

115

140

165

190

1 3 5 7 9 11 13 15 17 19

Test number

M
a
ke

sp
a
n

The Optimal Algorithm The First Algorithm The Third Algorithm

Fig. 4: Makespans of 20 tests for seven jobs

40

116

192

268

344

420

3 5 7 9 11 13 15 17 19 21 23 25

Job number

A
ve

ra
ge

 m
ak

es
pa

n

The Optimal Algorithm The First Algorithm The Third Algorithm

Fig. 5: Average makespans obtained by the three

proposed algorithms

From Figs. 2 to 4, it is easily seen that the makespans
by the proposed three algorithms have the following
relation: Algorithm 3 > Algorithm 1 > Algorithm 2. It is
totally consistent with our expectation. The deviation
percentages for the first and the third algorithms from
the optimal algorithm for processing different numbers
of jobs are shown in Table 5. The average deviation
percentage for the first and the third proposed heuristic
algorithm from the optimal algorithm is respectively
5.05% and 6.19%. Note that the deviation rate for the
second algorithm is 0% since it is an optimal approach.

0

103

206

309

412

515

3 5 7 9 11 13 15 17 19 21 23 25

Job number

C
P

U
 ti

m
e

(m
in

)

The Optimal Algorithm The First Algorithm The Third Algorithm

Fig. 6: The average CPU times for processing different

numbers of jobs

Table 5: The distribution of deviation rates for different

numbers of jobs and the run number is 20

Proble

m

Size
Run

number

The first algorithm The third algorithm

n
No.

Optimals

Largest

Deviatio

n (%)

Average

Deviatio

n (%)

No.

Optimals

Largest

Deviatio

n (%)

Average

Deviatio

n (%)

3 20 16 3.70 0.51 15 12.20 1.12

4 20 11 13.33 2.47 11 13.33 2.58

5 20 2 16.98 7.28 1 16.98 7.80

6 20 0 14.93 7.80 0 27.89 9.89

7 20 0 14.73 7.17 0 16.31 9.57

Total 100 29 5.05 27 6.19

 In the second part of the experiments, we extend the
job number to 25. The average makespan for problems
with three to twenty-five jobs are shown in Fig. 5 for
comparison. Note that the optimal approach can process
no more than seven jobs in this environment.
 The average CPU times for problems of three to
twenty-five jobs are shown in Fig. 6. The optimal
algorithm proposed cannot run over seven jobs in ten
hours due to its high time complexity.
 From Figs. 5 and 6, it is easily seen that the first
and the third algorithms got a little larger makespans
than the second one did. The computational time
needed by the second algorithm was, however, much
larger than that needed by the other two approaches,
especially when the job number was large. Actually,

Am. J. Applied Sci., 4 (11): 887-895 2007

 894

since the flexible flow-shop problem is an NP-hard
problem, the second approach can work only for a small
number of jobs.
 As to the first and the third algorithms, the latter got
a little larger makespan but used less computational
time than the former one. The former can be applied for
solving a medium-sized problem.
 At the last part, experiments for large job numbers
ranging from 3 to 8000 were executed for verifying the
efficiency of the third approach. The average CPU
times for different jobs are shown in Fig. 7. It can be
observed that all the execution times are less than 0.8
seconds. Hence, the third approach is feasible and
efficient even for a large number of jobs. It is thus more
suitable than the other two proposed approaches for real
applications.

0

0.13

0.26

0.39

0.52

0.65

1000 2000 3000 4000 5000 6000 7000 8000 9000

Job number

C
P

U
 ti

m
e

(s
ec

)

The Third Algorithm

Fig. 7: The average CPU times for processing 3 to

8000 jobs by the third approach

CONCLUSION

 Appropriate scheduling cannot only reduce
manufacturing costs but also reduce the material
handling cost and time. Finding good schedules for
given sets of jobs can thus help factory supervisors
control job flows and provide for good job sequencing.
Scheduling jobs in flexible flow shops has long been
known an NP-hard problem. In this paper, we propose
three algorithms to solve flexible flow-shop problems
of more than two machine centers. The first one extends
Sriskandarajah and Sethi’s method by combining both
the LPT and the search-and-prune approaches to get a
nearly optimal makespan. It is suitable for a medium-
sized number of jobs. The second one is an optimal
algorithm, entirely using the search-and-prune

technique. It can work only when the job number is
small. The third one is similar to the first one, except
that it uses Petrov’s approach (PT) to deal with job
sequencing instead of search-and-prune. It can get a
polynomial time complexity, thus being more suitable
for real applications than the other two. Experimental
results show that the computational times by the
proposed three algorithms have the following relation:
Algorithm 3 < Algorithm 1 < Algorithm 2, and the
makespans have the following relation: Algorithm 3 >
Algorithm 1 > Algorithm 2. It is totally consistent with
our expectation. A trade-off can thus be achieved
between accuracy and time complexity. The choice
among the three proposed approaches to solve a flexible
flow-shop problem thus depends on the problem size,
the allowed execution time and the allowed error. In the
future, we will consider other task constraints, such as
setup times, due dates and priorities.

REFERENCES

1. Campbell, H. G., R. A. Dudek and M. L. Smith,

1970. A heuristic algorithm for the n job, m
machine sequencing problem. Management
Science., 16: B630-B637.

2. Chung, S. C. and D. Y. Liao, 1992. Scheduling
flexible flow shops with no setup effects. The 1992
IEEE International Conference on Robotics and
Automation., pp: 1179-1184.

3. Dudek, R. A., S. S. Panwalkar and M. L. Smith,
1992. The lessons of flowshop scheduling research.
Operations Research., 40: 7-13.

4. Gupta, J. N. D., 1971. A functional heuristic
algorithm for the flowshop scheduling problem.
Operations Research., 40: 7-13.

5. Hong, T. P., C. M Huang and K. M. Yu, 1998. LPT
scheduling for fuzzy tasks. Fuzzy Sets and
Systems., 97: 277-286.

6. Johnson, S. M., 1954. Optimal two- and three-stage
production schedules with set-up times included.
Naval Research Logistics Quarterly., 1: 61-68.

7. Logendran, R. and N. Nudtasomboon, 1991.
Minimizing the makespan of a group scheduling
problem: a new heuristic. International Journal of
Production Economics., 22: 217-230.

8. Morton, T. E. and D. W. Pentico, 1993. Heuristic
Scheduling Systems with Applications to
Production Systems and Project Management. John
Wiley & Sons Inc., New York.

Am. J. Applied Sci., 4 (11): 887-895 2007

 895

9. Nawaz, M., J. E. E. Enscore and I. Ham, 1983. A
heuristic algorithm for the m-machine, n-job flow-
shop sequencing problem. Omega., 11(1): 91-95.

10. Palmer, D. S., 1965. Sequencing jobs through a
multi-stage process in the minimum total time- a
quick method of obtaining a near optimum.
Operational Research Quarterly., 16(1): 101-107.

11. Petrov, V. A., 1966. Flow Line Group Production
Planning. Business Publications, London.

12. Sriskandarajah, C. and S. P. Sethi, 1989.
Scheduling algorithms for flexible flow shops:
worst and average case performance. European
Journal of Operational Research., 43: 143-160.

