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fail.  
 
Keywords: Availability, Confidence, MTTF, Simulation, Switch failure 

 
INTRODUCTION 

 
Traditionally, most research about the reliability 

(availability) of a repairable system with cold or warm 
standbys assumes that the switchover from a standby to 
an operational unit is perfect. However, this might be 
unrealistic. Although a system with cold standbys has 
the advantage of a zero failure rate, there are also 
drawbacks, such as a higher probability of switching 
failure and longer warm-up times. In this article, we 
study the reliability and availability characteristics of a 
system with two primary units when switching failures 
may occur for cold or warm standbys. In other words, a 
standby unit with a lower failure rate might have a 
higher probability of switching failure. We not only 
investigate the impact of the switching failure to the 
reliability and availability characteristics of the system 
but also present the behavior of asymptotic confidence 
limits for the system performance measures. 

Repairable systems are usually studied with 
reference to the evaluation of their performance 
measures in terms of reliability and availability. Lewis 
[7] first introduced the concept of the standby switching 
failures in the reliability with standby system. Chung [3] 
has ever provided the reliability of k active and s cold 
standbys with multiple repair facilities and multiple 
critical and non-critical errors when the switching 
mechanism is subject to failure. He derived the 
reliability function in terms of LST of system state 
probabilities, which is very complicated and is generally 
unsuitable for computational purposes. As for the 
analysis of two-unit redundant systems, different 
assumptions have been studied extensively in the past, 

and a detailed bibliography is found in Srinivasan and 
Subramanian [15]. However, many of the analysis always 
consider that the switchover from a standby to an 
operational unit is perfect (see Goel and Shrivastava [4], 
Shi and Li [12], Gururajan and Srinivasan [5], Shi and Liu 
[13], Rajamanickam and Chandrasekar [10], Sridharan and 
Mohanavadivu [14], and others). Confidence limits for 
availability and reliability of the two-unit redundant 
systems were investigated by Abu-Salih et al. [1], Jie [6], 
and Masters et al. [9]. Recently, Yadavalli et al. [16] 
examined asymptotic confidence limits for the steady-
state availability of a two-unit parallel system with the 
introduction of preparation time for the service station. 
Chandrasekhar et al. [2] derived a consistent 
asymptotically normal estimator and an asymptotic 
confidence interval for the steady-state availability of a 
two-unit cold standby system in which the failure rate of 
the unit while online is a constant and the repair time 
distribution is a two-stage Erlangian. This paper extends 
their statistical inference for system availability to 
encompass other useful performance measures in more 
realistic systems.  

The main objective of this paper is to study 
asymptotic confidence limits for the mean time to 
failure (MTTF), steady-state availability, and failure 
frequency of a two-unit repairable system with standbys 
subject to switching failures. Problem formulation and 
assumptions are given in Section 2. System reliability 
and availability are developed in Sections 3 and 4, 
estimation and confidence limits are developed in 
Sections 5 and 6, and results are numerically illustrated 
in Section 7. Section 8 provides an example, and the 
final section concludes. 
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Problem Formulation and Notation: In this paper, we 
consider a system which consists of two identical 
primary units operating simultaneously in parallel, two 
standby units (which may be hot, warm, or cold), and a 
reliable service station. 

The assumptions of the model are described as 
follows. Suppose that primary and standby failures 
occur independently of the states of other units and 
follow exponential distributions with parameters λ  and 

)0 where( λαα ≤≤ , respectively. In particular, a cold 
standby has 0=α  and a hot standby has λα = . When 
a primary unit fails, it is immediately replaced by a 
standby if one is available. It is assumed that the 
switchover time is instantaneous. However, the switch 
to a primary unit is imperfect; the switching failure 
probability q depends on the state of the standby unit 
and decreases as α  increases. In particular, a hot 
standby has 0=q . If a standby unit fails to switch to a 
primary unit, the next available standby unit attempts to 
switch. This process continues until switching is 
successful or all the standby units fail. When a standby 
unit switches over successfully, its failure characteristics 
become those of a primary unit. If a primary or a 
standby unit fails, it is immediately sent to the service 
station where service is performed on the first come first 
served (FCFS) convention. It is assumed that the service 
station can serve only one failed unit at a time and that 
service is independent of the number of unit failures. In 
addition, the time to repair a failed unit is exponentially 
distributed with parameter µ . Once a unit is repaired, it 
instantly resumes standby status. 

In this research, system reliability and availability 
characteristics are studied under the assumption that the 
system fails if the number of primary units is less than 
two; that is, three units fail. Therefore, the system fails 
if and only if 2<i , where i denotes the number of 
primary units in the system. Such model has potential 
applications in both industrial and military systems. For 
example, in an air plane with four engines, it may be 
possible to fly the plane if only two engines functioning.   

However, if less than two engines function, the plane 
will fail to fly (see Li and Chen [8]).  

Before further developing the model, we first present 
the notation used in later sections. 

λ  failure rate of a primary unit 
α  failure rate of a standby unit 
µ  repair rate of a failed unit 
q switching failure probability of a standby 

unit to a primary unit 
P(i, j; t) probability that there are i primary 

units and j standby units working in 
the system at time t, where 1,2=i  
and 2 ,1 ,0=j  

P(i, j;0)       initial probability of P(i, j; t) when t = 0 
s Laplace transform variable 

);,(
~

sjiP  Laplace transform of P(i, j; t) 
T time to failure of the system 

)t(TR  reliability of the system at time 
MTTF mean time to system failure 

 
RELIABILITY ANALYSIS OF THE SYSTEM 

 
At time t = 0, the system commences operation with 

no failed units (and includes two primary units and two 
standby units) and an idle service station. That is, the 
initial conditions for this system are given by 

0)0;0,1(,0)0;0,2(,0)0;1,2(,1)0;2,2( ==== PPPP .   (1) 
The reliability and availability characteristics with 
switching failure probabilities under exponential failure 
times and exponential service times and can be 
developed through the birth and death process. Let P(i, 
j; t) denote the probability that there are i primary units 
and j standby units in the system at time t, where i = 1, 
2, j = 0, 1, 2, and 0≥t . 

The differential equations governing the state 
probabilities of this system are: 

t),1; ,2(t);2 ,(2]22[
t

t);2 ,2(
PP

d
dP ⋅+⋅+−= µαλ                                                            (2) 

 t),0; ,(2t);1 ,(2]2[t);2 ,2(]2)1(2[
t

t);1 ,2(
PPPq

d
dP ⋅+⋅++−⋅+−= µµαλαλ                                (3) 

 t),;0 ,(2]2[t);1 ,(2])1(2[ t);2 ,2()1(2
t

t);0 ,2(
PPqPqq

d
dP ⋅+−⋅+−+⋅−= µλαλλ                               (4) 

);0 ,2(2);1 ,2(2t);2,2(2
t

t);0,1( 2 tPtPqPq
d

dP ⋅+⋅+⋅= λλλ .                                                 (5) 
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Taking Laplace Transforms of both sides in (2)-(5) and using initial condition (1), these equations can be reduced 
to  

s),1; ,2(
~

s);2 ,(2
~

]22[1);2,2(
~

PPsPs ⋅+⋅+−=− µαλ                                                    (6) 

 s),0; ,(2
~

s);1 ,(2
~

]2[s);2 ,2(
~

]2)1(2[);1,2(
~

PPPqsPs ⋅+⋅++−⋅+−= µµαλαλ                                    (7) 

 s),;0 ,(2
~

]2[s);1 ,(2
~

])1(2[ s);2 ,2(
~

)1(2);0,2(
~

PPqPqqsPs ⋅+−⋅+−+⋅−= µλαλλ                                 (8) 

).;0 ,2(
~

2);1 ,2(
~

2s);2,2(
~

2);0,1(
~ 2 sPsPqPqsPs ⋅+⋅+⋅= λλλ                                          (9) 

This system of linear equations can be solved to yield 

],2224)24([
1

);2 ,2(
~ 222 µλµλαλµλµαλ ++++++++= qss

D
sP                                  (10) 

],24)1(2)1(4)(2[
1

);1 ,2(
~ 22 αµλαλµλαλλ ++−+−++−= qqsq

D
sP                                 (11) 

)],(2)(4)2)((2)22[(
1

);0 ,2(
~ 2 qqqqsqq

D
sP µαµλαλλαλαλλλ ++−+−+++−=                     (12) 

and 

)],24()2)((2)224([
2

);0 ,1(
~ 22 qqsqqqsq

sD
sP µαλµαλαλµααλλ ++++++++++=                 (13) 

where     ])1(4)(2)(12[)236( 223 sqssD µλµµαααλλµαλ ++++++++++=  
)24(2))(2(4 qq µαλλµαλαλλ ++++++ . 

After inversion, we obtain )t;0,1(P , the probability that the system fails at time t. That is, )t;0,1(P  is the 
probability that the system fails at or before time t. Thus the reliability of the system is 

);0,1(1)t( tPR −= . 

Let T  be the time to failure of the system; the Laplace transform of the failure density 

,
)t;0,1()t(

)t(
dt

dP
dt

dR
T =−=  

is then given by 
),0;0,1();0,1(

~
)(

~
PsPssT −⋅=  

From the listed above equations, we have 

122 )]24()2)((2)224([2)(
~ −++++++++++= DqqsqqqsqsT µαλµαλαλµααλλ .       (14) 

Instead of inverting this expression (14) to get the distribution of T, we will be content with obtaining the mean 
time to failure (MTTF) using the derivative of )(

~
sT  with respect to s while s=0:                

)]24()2)((2[2
)()(12)1(4])2(4[2 222

qq
qqqq

MTTF
µαλµαλαλλ

αµααλλλµαλλ
+++++

−+−+−−+−++= .             (15) 

4. AVAILABILITY ANALYSIS OF THE SYSTEM 
 

This section we will investigate the steady-state 
system availability and frequency. A set of differential 

equations for the availability case can be established in 
a manner similar to that used for the reliability analysis 
in Section 3. The first two equations are the same as (2) 
and (3). However, the equations (4) and (5) are 
rewritten in the following forms: 

 t),;0 ,(1t);0 ,(2]2[t);1 ,(2])1(2[ t);2 ,2()1(2
t

t);0 ,2(
PPPqPqq

d
dP ⋅+⋅+−⋅+−+⋅−= µµλαλλ          (16) 
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Table 1: (a). Asymptotic confidence interval limit of MTTF for 0.1,05.0,1.0 === µαλ  and various values of q  

   n=30   n=50   n=100  

q  MTTF TFTM ˆ  
Lower 
limit Upper limit TFTM ˆ  

Lower 
limit Upper limit TFTM ˆ  

Lower 
limit Upper limit 

0.00 112.3333 123.7826  12.9326  234.6326  102.7311  31.3499  174.1122  114.0839  55.5577  172.6102  
0.01 105.3657 116.5117  15.1114  217.9121  96.6838  31.4009  161.9667  106.7421  53.6691  159.8151  
0.50 15.0652 17.5202  10.3524  24.6881  14.5242  9.9184  19.1299  14.7480  11.4127  18.0832  

 
Table 1: (b). Asymptotic confidence interval limit of )(∞A  for 0.1,05.0,1.0 === µαλ  and various values of q  

   n=30   n=50   n=100  

q  )(∞A  )(ˆ ∞A  
Lower 
limit Upper limit )(ˆ ∞A  Lower 

limit Upper limit )(ˆ ∞A  Lower 
limit Upper limit 

0.00 0.988142 0.988203  0.973327  1.003078  0.988087  0.976432  0.999742  0.988151  0.979668  0.996633  

0.01 0.987364 0.987472  0.972019  1.002925  0.987347  0.975239  0.999455  0.987342  0.978498  0.996186  

0.50 0.921012 0.925043  0.876820  0.973266  0.924305  0.886569  0.962041  0.918463  0.889607  0.947318  

 
Table 1: (c). Asymptotic confidence interval limit of )(∞F  for 0.1,05.0,1.0 === µαλ  and various values of q  

   n=30   n=50   n=100  

q  )(∞F  )(ˆ ∞F  Lower limit Upper limit )(ˆ ∞F  Lower limit Upper limit )(ˆ ∞F  Lower limit Upper limit 

0.00 0.010780 0.009681  0.000299  0.019062  0.011683  0.002894  0.020472  0.010686  0.004726  0.016645  

0.01 0.011487 0.010280  0.000586  0.019975  0.012408  0.003325  0.021490  0.011415  0.005236  0.017594  

0.50 0.071808 0.061509  0.035761  0.087256  0.074229  0.050154  0.098305  0.073531  0.056550  0.090512  

 
Table 2: (a). The biases and the mean square errors of MTTF for 0.1,05.0,1.0 === µαλ  and various values of q  

  n=30 n=50 n=100 n=200 

q  MTTF Bias MSE Bias MSE Bias MSE Bias MSE 

0.00 112.3333 11.4493  3329.7996  -9.6023  1418.5938  1.7506  894.7358  -0.3673  411.2180  

0.01 105.3657 11.1460  2800.8309  -8.6819  1184.8127  1.3764  735.1419  -0.3041  341.0013  

0.50 15.0652 2.4550  19.4019  -0.5410  5.8149  -0.3172  2.9964  0.0388  1.5072  

 
Table 2: (b). The biases and the mean square errors of )(∞A  for 0.1,05.0,1.0 === µαλ  and various values of q  

  n=30 n=50 n=100 n=200 

q  )(∞A  Bias MSE Bias MSE Bias MSE Bias MSE 

0.00 0.988142 0.000060  0.000058  -0.000056  0.000035  0.000009  0.000019  -0.000003  0.000009  

0.01 0.987364 0.000108  0.000062  -0.000017  0.000038  -0.000022  0.000020  0.000002  0.000010  

0.50 0.921012 0.004031  0.000622  0.003293  0.000382  -0.002549  0.000223  0.000390  0.000100  
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Table 2: (c) The biases and the mean square errors of )(∞F  for 0.1,05.0,1.0 === µαλ  and various values of q  

  n=30 n=50 n=100 n=200 

q  )(∞F  Bias MSE Bias MSE Bias MSE Bias MSE 

0.00 0.010780 -0.001099  0.000024  0.000903  0.000021  -0.000094  0.000009  0.000024  0.000005  

0.01 0.011487 -0.001207  0.000026  0.000921  0.000022  -0.000072  0.000010  0.000021  0.000005  

0.50 0.071808 -0.010299  0.000279  0.002422  0.000157  0.001724  0.000078  -0.000212  0.000035  

 
Table 3: The coverage probability for 0.1,05.0,1.0 === µαλ  and various values of q   

 TFTM ˆ  )(ˆ ∞A  )(ˆ ∞F  

q  n=30 n=50 n=100 n=30 n=50 n=100 n=30 n=50 n=100 

0.00 0.914  0.927  0.946  0.942  0.896  0.927  0.937  0.949  0.915  

0.01 0.918  0.929  0.945  0.943  0.897  0.928  0.937  0.950  0.916  

0.50 0.936  0.948  0.957  0.952  0.933  0.947  0.953  0.960  0.948  

 

t).00t);0 ,(1][);0 ,2(2);1 ,2(2t);2,2(2
t

t);0,1( 2 ;,P(PtPtPqPq
d

dP
⋅+⋅+−⋅+⋅+⋅= µµλλλλ       (17) 

Moreover, we still need an equation for state (0, 0), which governs the system given by: 

t).;0 ,(0);0 ,1(
t

t);0,0(
PtP

d
dP

⋅−⋅= µλ                                                           (18) 

In steady-state, let );,(lim),( tjiPjiP
t ∞→

=  and hence the balance equations can be reduced: 

1), ,2()2 ,(2]22[ PP ⋅=⋅+ µαλ                                                       (19) 
 0), ,(2)2 ,2(]2)1(2[)1 ,(2]2[ PPqP ⋅+⋅+−=⋅++ µαλµαλ                               (20) 

 0), ,1()1 ,(2])1(2[ )2 ,2()1(2)0 ,(2]2[ PPqPqqP ⋅+⋅+−+⋅−=⋅+ µαλλµλ                    (21) 

),0 ,0()0 ,2(2)1 ,2(2)2,2(2)0 ,1(][ 2 PPPqPqP ⋅+⋅+⋅+⋅=⋅+ µλλλµλ                      (22) 
).0 ,1()0 ,0( PP ⋅=⋅ λµ                                                                (23) 

Solving the above equations for ),( jiP  we get 

)0 ,0(
)]24()2)((2[2

)2 ,2(
2

4

P
qq

P
µαλµαλαλλ

µ
+++++

= ,                              (24) 

)0 ,0(
)]24()2)((2[

)(
)1 ,2(

2

3

P
qq

P
µαλµαλαλλ

αλµ
+++++

+= ,                                (25) 

)0 ,0(
)]24()2)((2[

]))(2[(
)0 ,2(

2

2

P
qq

q
P

µαλµαλαλλ
λµαλαλµ

+++++
+++= ,                               (26) 

and 

        )0 ,0()0 ,1( PP
λ
µ= ,                                                                   (27) 

where )]24()2)((2[2)0 ,0( 2 αµλµαλαλλ +++++= qqP ×  
324 )(2{ µλλλαµ qq ++++ 222 ])2(2))(2[(2 µαλαλαλαλ qq ++++++  

         12 )]})(2[(4)]2())(2[(4 −++++++++ αλαλλµλαλαλαλλ q .     (28) 
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Since both states (0,0) and (1,0) are system down states, the steady-state availability of the system is given by 

)0,2()1,2()2,2()( PPPA ++=∞  

)0 ,0(
)]24()2)((2[2

])2)([(2
2

24

P
qq

q

µαλµαλαλλ
λµµαλαλµµ
+++++

+++++= .                                                (29) 

From (29), the steady-state unavailability is 

)(1)( ∞−=∞ AU , 

and the downtime in minutes per year is 608760)( ××∞U . 

Using the results by Shi and Liu[13], the failure frequency of the system in steady-state is expressed as 

)0,2(2)1,2(2)2,2(2)( 2 PqPPqF λλλ ++=∞  
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  )0 ,0(
)]24()2)((2[

)])(2(2)[(
2

22

P
qq

qq

µαλµαλαλλ
µαλαλµλµ
+++++

++++= .                                              (30) 

Estimates For MTTF, Availability, And Failure Frequency: Let nXXX ,,, 21 �  be a sample of failure times for 
primary units with p.d.f. 

0  ,0    ,)( >∞<<= − λλ λ xexf x . 

nYYY ,,, 21 �  be a sample of failure times for standby units with p.d.f. 

0  ,0    ,)(  >∞<<= − αα α yeyg y , 
and nZZZ ,,, 21 �  be a sample of repair times for failed units with p.d.f. 

 0  ,0    ,)(  >∞<<= − µµ µ zezh z . 
Let X  and Y  represent the sample means of the times to failure for primary units and standby units, 

respectively, and Z  represent the sample mean of the times to repair for failed units. Then λ1][ =XE , α1][ =YE , 

and .1][ µ=ZE  It can be easily shown that X , Y , and Z are the maximum likelihood estimates of λ1 , α/1 , 

and µ1 , respectively. Let TFTM ˆ  be the estimator of MTTF. Inserting (15), we finally obtain 

.
)]2/2()2)([(2

]2/))(()(6)1(2))2(4([ˆ
22

2222222

YXqZXZYYXqYXYXZ

ZZYXYXZYqqZYXXqYZYqX
TFTM

+++++
++−+−−+−++=    (31) 

Furthermore, let )0,0(P̂  be an estimator of )0,0(P  (the probability of all units failed including standby in the 
system). From (28), it yields 

.
))(2(2)22)()(2[(2)]1([2

)]24()2)((2[2
)0,0(ˆ

422223224

2

XqZXYXYXqZZXXYXYXZZYXqqYXYX

ZXYXqZYYXqZYXYXZ
P

+++++++++++++
+++++

= (32) 

Using the results (24)-(27) in the previous sections, we easily obtain the estimators of )0,1(P , )0,2(P , )1,2(P , and 
)2,2(P  as follows 

)0,0(ˆ)0,1(ˆ P
Z
X

P = , 

)0,0(ˆ
)42())(2(2

)2)((
)0,2(ˆ

2

2

P
YXqZYZXZYXqYXYXZ

ZYXqYXYX
P

+++++
+++= , 

)0,0(ˆ
)]42())(2(2[

)(
)1,2(ˆ

2
P

YXqZYZXYXqYXYXZZ

YXYX
P

+++++
+= , 

and 

)0,0(ˆ
)]42())(2(2[2

)(
)2,2(ˆ

3

2

P
YXqZYZXYXqYXYXZZ

YX
P

+++++
= . 

From (29)-(30), we can obtain an estimator of )(∞A  

)0,0(ˆ
)]42())(2(2[2

])2)([(2)(
)(ˆ

3

22

P
YXqZYZXYXqYXYXZZ

YXqYXZXZYYXZYX
A

+++++
+++++=∞ ,                                      (33) 

and an estimator of )(∞F  

)0,0(ˆ
)]42())(2(2[

))(2(2)(
)(ˆ

3

2

P
YXqZYZXYXqYXYXZZX

YXqZXZYYXZYXq
F

+++++
++++=∞ .                                      (34) 
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Confidence Limits For MTTF, Availability, And 
Failure Frequency: From the discussion in the 

previous sections, we know that TFTM ˆ , )(ˆ ∞A , and  

)(ˆ ∞F  are real-valued functions in X , Y , and Z  
which are also differentiable. Using the application of 
the multivariate central limit theorem (see Rao[11]), it 
follows that 

)],,(),,[( 321 θθθ−ZYXn  converges to ),0(3 �N in 
distribution as ,∞→n  

where )
1

,
1

,
1

(),,( 321 µαλ
θθθ = and the dispersion 

matrix � ×= 33
2
, ][ jiσ  is given by 

�= ).,,( 2
3

2
2

2
1 θθθdiag  

Using the result by Rao[11] again, we have 

]ˆ[ MTTFTFTMn −  converges to ))(,0( 2
13 θσN  in 

distribution as ,∞→n  with 

�
=

�
�

�
�
�

�

∂
∂=

3

1

2
2

2
1 )(

i
ii

i

MTTF σ
θ

θσ , 

where ).,,( 321 θθθθ =  

Let )ˆ(2
1 θσ  be the estimator of )(2

1 θσ  which is 
obtained by replacing θ  with a consistent estimator 

).,,(ˆ ZYX=θ  Since )(2
1 θσ  is a continuous function of 

θ , we know that )ˆ(2
1 θσ  is a consistent estimator of 

)(2
1 θσ  (see Wackerly et al.[17]). Thus 

.  as  )()ˆ( 2
1

2
1 ∞→→ nθσθσ  

Using Slutsky's theorem, we have 

)ˆ(

]ˆ[

1 θσ
MTTFTFTMn −

 converges to )1,0(N  in 

distribution as ,∞→n which leads to 

,1]
)ˆ(

]ˆ[
Pr[ 2

1
2 γ

θσ γγ −=<−<− z
MTTFTFTMn

z  

where 2γz  is determined from standard normal tables 

or statistical software packages. Hence, the asymptotic 
100(1-γ )% confidence limits for MTTF are given by 

           .
)ˆ(ˆ 1

2
n

zTFTM
θσ

γ±                         (35) 

Continuing in the same way for )(∞A  and )(∞F  we 
obtain 

       ,
)ˆ(

)(ˆ 2
2

n
zA

θσ
γ±∞                          (36) 

and 

,
)ˆ(

)(ˆ 3
2

n
zF

θσ
γ±∞                       (37) 

where            �
= ∂

∞∂=
3

1

222
2 ,]

)(
[)(

i i
ii

A σ
θ

θσ  

and            �
= ∂

∞∂=
3

1

222
3 .]

)(
[)(

i i
ii

F σ
θ

θσ  

 Numerical Illustration: In this section we provide 
numerical results of the mean time to system failure, 
MTTF, steady-state availability, )(∞A , and failure 
frequency, )(∞F , for different values of system 
parameters. The results of )( and ),( , ∞∞ FAMTTF  are 
shown in Fig.1-3 for the following three cases, 
respectively. 
   Case 1: We choose 0.1=µ  and 01.0=α  and vary 

the values of q  and λ . 
   Case 2: We select 01.0=λ  and 0.1=µ  and vary 

the values of α  and  q . 
 Case 3: We choose 1.0=q  and 05.0 =α  and vary 

the values of λ  and µ . 

Cases 1-3 are analyzed graphically to study the 
effects of various system parameters on , MTTF  

),(∞A  and .MTTF  Fig.1 shows that (i) MTTF increases 
as either q  or λ  decreases, (ii) )(∞A  decreases as 
either q  or λ  increases, (iii) )(∞F  increases as either 
q  or λ   increases. From Fig.2, we observe that (i) 

MTTF increases as either α  or q  decreases, (ii) )(∞A  
decreases as either α  or q  increases, (iii) )(∞F  
increases as either α  or q  increases. Fig.3 depicts that 
(i) MTTF decreases as λ  increases or µ  decreases, (ii) 

)(∞A  increases as λ  decreases or µ  increases, and 
(iii) )(∞F  increases as λ  increases or µ  decreases. 

Next, we perform asymptotic confidence limits for 
,MTTF ),(∞A  and )(∞F  for various values of system 

parameters. The following cases are analyzed to study 
the effects of various parameters on the estimating 
behavior of the system performance measures: results 
are respectively shown in Fig.4 and Table 1. 
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Case 4: We set ,0.1 and  ,01.0 ,1.0 === µαλ  and 
consider q = 0.0, 0.01. 

Case 5: We set ,0.1 and  05.0 ,1.0 === µαλ  and 
examine q = 0.0, 0.01, 0.5. 

Asymptotic 95% upper and lower confidence limits 
of ,MTTF ),(∞A  and )(∞F  are shown in Fig.4. One 
observes from Fig.4 that (i) at a 0.05 significance level, 

,MTTF ),(∞A  and )(∞F  lie between the upper and 
lower confidence limits for different values of q , and 
(ii) for a given sample size, the confidence interval 
bands are almost the same when q  varies from 0.0 to 
0.01. The true values, estimates, and upper and lower 
95% confidence limits of ,MTTF ),(∞A  and )(∞F  are 
shown in Tables 1(a)-(c). Table 1 shows the effects on 
estimating behavior of ,MTTF ),(∞A  and )(∞F  for 
different values of q . It is evident from the results that 
the estimators approach the true values of 

,MTTF ),(∞A  and )(∞F  as the sample size gets 
larger. It should also be noted that the confidence 
intervals narrow as the sample size grows. 

ROBUSTNESS OF CONSISTENT ASYMPTOTIC 
NORMAL (CAN) ESTIMATOR FOR TFTM ˆ , 

)(ˆ ∞F , AND )(ˆ ∞A  
 

In order to see how good the normal approximation 
based on proposed above is, a simulation study of 
sensitivity is carried out to check on how accurate of 
this approximation is. 

Let ),,(
����

ZYX=Ω , �� ,2,1=  be a sequence of 
independent and identically distributed  3-dimensional 
random vectors. From each single simulation 
(replication) 

�
Ω with sample size n, we can obtain 

jTFTM ˆ , )(ˆ ∞jF , and )(ˆ ∞jA . The histograms of these 

jTFTM ˆ , )(ˆ ∞jF , and )(ˆ ∞jA  are shown in Fig.5-7, 

respectively, based on N=1,000 replications. As 
expected the spread of the distributions will decrease 
with increasing sample size n by the law of large 
numbers (see De Groott[18]). The simulation results also 
indicate that the asymptotical normality of TFTM ˆ , 

)(ˆ ∞F , and )(ˆ ∞A  for 100≥n  are obviously.  

The biases and mean square errors of TFTM ˆ , 

)(ˆ ∞F , and )(ˆ ∞A  for different sample size of n are 
displayed in Tables 2. One observes from Tables 2 that 

the biases and mean square errors are smaller as n gets 
larger. In particular, the bias magnitude approaches to 
zero when n is large enough. Finally, Table 3 shows the 
coverage probability respectively for TFTM ˆ , )(ˆ ∞F , 

and )(ˆ ∞A  at different sample size of n; it shows that 
the coverage probabilities are close to the nominated 
value of 0.95 when n is sufficient large. Since the 
number of confidence intervals, within which the true 
value of interested is contained, follows a binomial 
distribution with  p=0.95 and N=1,000, the 99% 
confidence interval for the coverage probability itself 
can also be constructed as 

0177.095.01000/)95.01(95.0575.295.0 ±=−±   
(i.e. from 0.9322 to 0.9678) 

In particular, when 100≥n  all these CAN 
estimators perform well on interval estimation based on 
simulation results in Table 3, which give reasonably 
good probability coverage for TFTM ˆ , )(ˆ ∞F , and 

)(ˆ ∞A . 
From the analysis listed above, we can say that the 

consistent estimators  )ˆ(2 θσ i  )3 ,2 ,1( =i  are robust, 
and confidence intervals based on the previous section  
with 50≥n  have moderately good performance. In 
contrast, the confidence intervals perform well 
adequately when 100≥n  

AN EXAMPLE 
 

Consider a duplex system consists of two processors 
connected in parallel. Besides the two primary units, 
there are two standby units so that when a unit breaks 
down, a standby unit is immediately substituted and 
thus the reliability of the system is improved. Units in 
operation or standby state are subject to breakdowns 
which occur by a Poisson process. When a unit is 
broken, it is repaired by an operator. System reliability 
characteristics are defined as previous section. During a 
sufficiently large amount of time 0t  (in order to obtain 
enough information), the managers collect three sets of 
thirty observations concerning failures: time to failure 
of primary units )( iX , to failure of standby units ( iY ), 
and to repair of the failed units )( iZ . Simulated sample 
means are computed as follows:  

.8646.0  and  ,7010.18 ,9749.2 === ZYX  

If 1.0=q , it follows from (31)-(34) that we obtain 
the estimated system performance measures as 
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.1458.0)(ˆ,8372.0)(ˆ,2334.9ˆ =∞=∞= FATFTM  

Using (35)-(37), approximate 95% confidence 
intervals for ,MTTF ),(∞A and )(∞F are respectively 
given by 

(3.4217, 15.0450), 

(0.6864, 0.9881), 

and 

(0.0573, 0.2343). 

CONCLUSIONS 
 

In this paper, we study a two-unit system with 
standbys and switching failures. We derive the explicit 
expressions for the system performance measures such 
as MTTF, steady-state availability, and failure 
frequency. Some numerical illustrations are performed. 
The results indicate that the performances of this 
system are different from those of a system without 
switching failures. Confidence interval formulas for the 
MTTF, steady-state availability, and failure frequency 
are developed for this redundant repairable system with 
standbys and switching failures. We also provide the 
numerical simulations to examine the statistical 
behavior of varying the switching failure probability q, 
which gain some further insight on the system 
performance measures. 
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