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Abstract: An interesting application of system identification method is to investigate the heat transfer 
from the exhaust valve, especially the valve burning at high temperatures. This study consists of 
experimental and analytical works. For the experiment, two co-axial rods were used to transfer heat 
constantly at their contact surfaces. Using the measured temperatures at different locations of the rods 
and the analytical method, the temperatures distribution of the rods were calculated; consequently the 
heat transfer coefficient at contact surface was calculated. By applying the system identification 
method and having the temperatures at both sides of the contact surface, the temperature transfer 
function was calculated.  The transfer function is changed as the operating conditions are varied. Using 
the calculated transfer function and the system identification method, a computational model was 
created. By knowing the temperature of one rod, the temperature of the other rod was estimated with 
high accuracy.  
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INTRODUCTION 

 
 The heat is transferred from the exhaust valve to its 
seat as they come into contact with each other during 
the opening and closing of the exhaust valve to avoid 
any damage to the engine. Note that the exhaust valve 
temperature distribution has significant effect on engine 
performance. Therefore, substantial theoretical and 
experimental effort continues for the measurement and 
prediction of periodic contact conductance[1-4]. The 
available information includes data on thermal and 
mechanical properties. From this information, one can 
estimate the thermal resistance of the interface surfaces 
at permanent contact[5-10]. The objective of these studies 
was to estimate the average thermal resistance of the 
surfaces. Examples include heat transfer between a 
valve and seat in an internal combustion engine, a 
soldering iron and work piece on an assembly line, and 
a hot work-piece and die under repetitive forming 
conditions. 
 The engine control unit monitors the coolant 
temperature, engine load, throttle position, engine speed 
and knock sensor to regulate the fuel, spark, and 
cooling processes. To increase the engine’s thermal 
efficiency, the ECU requires a model that estimates the 
thermal behavior of the engine cylinder components. 
The ultimate goal for the researchers is to create a 
model with higher operating temperatures within the 

cylinder without damaging any components. Therefore, 
a mathematical model is necessary to describe the 
thermal behavior of the exhaust valve with attention 
focused on periodic contact resistance, for example see 
reference[11].  
 Howard and Sutton[12], Reed and Mullineux[13], and 
Mikhailov[14] analytically examined the problem of the 
quasi-steady-state heat transfer across two surfaces 
coming into regular, periodic contact under the 
assumption of prefect thermal contact at the interface. 
Vick and Ozisik[15] extended the analysis to include the 
effects of thermal contact interface. In another work by 
Howard[16], similar to his previous work[12], he 
concluded that the earlier theoretical work could predict 
the average contact resistance due to periodic heat flow 
at the surfaces.  Later, Flach and Ozisik[17] employed 
the inverse heat conduction method for predicting time-
dependent thermal contact conductance from 
temperature measurements taken within the mediums. 
Moses and Johnson[18] studied an identical materials 
and for the case of low constant pressure and moderate 
temperature. They concluded the thermal contact 
resistance is not constant.  
 Note that at the contact surfaces, the heat transfer is 
restricted since heat is constrained to pass primarily 
through narrow bridges. This is due to the surface 
irregularities. This limitation causes significant changes 
in temperature distribution across the interface of the 
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two surfaces. Although considerable progress has been 
made towards estimating the exhaust valve temperature, 
we are still far from a coherent and calculating accurate 
temperature distribution of the exhaust valve. Note that all 
researchers have investigated this study using two co-
axial rods and a different method than the system 
identification method.  Here, the acquired results are 
extremely useful as a baseline to investigate the contact 
surface problem in a complex exhaust valve of internal 
combustion engines due to the following: 
* In IC engines, the exhaust valve is in contact with 

the seat approximately  ¾ of the engine cycle.  
* In surface contact problem, two rods can simulate 

the exhaust valve and its seat if the dynamical 
behavior is simulated. The in-house designed 
apparatus has the capability of simulating the valve 
motion mechanism (even for variable frequency). 
For this reason, an electro-motor gearbox 24V-DC 
with maximum speed 2000rpm and maximum 
power 250W has been used.  

* The main challenge in the measurement of the 
interface temperature and the calculation of heat 
transfer from valve into the seat is that installation 
of the thermocouple is very difficult at the interface 
near the valve. Due to high temperature of the 
valve and high motion strong noise is produced. In 
this case, the System Identification Method was 
found to be the best method to satisfy the objective 
of the work. 

 
THEORY AND FORMULATION 

 
 The purpose of this study is to estimate the 
temperatures at contact surface of two rods using the 
system identification method; to calculate the heat 
transfer at contact surface in transient process. Also, the 
temperature transfer function is calculated. In this case, 
the heat flux is known at the boundary. The ultimate 
goal and the extension of this work are to apply these 
results to internal combustion engines. The 
measurement and estimation of the exhaust valve 
temperature is extremely difficult in internal 
combustion engines. By calculating transfer function 
using the system identification method, a computational 
model can be created. By applying the exhaust valve 
seat temperature as input, the exhaust valve temperature 
can be estimated as output with high accuracy.  
 To accomplish this, an experimental apparatus was 
designed and developed to achieve the objective. To 
model the surface temperature and heat flux values 
accurately, the spatial measurements must be close to 
the contact surfaces since the transient effects are not 
accounted for by the extrapolation method. The 
minimum distance between temperature sensor and the 
contact surface is limited by manufacturing limitations. 
Also, care must be taken not to disturb the surface 
characteristics by installing the sensor too close to the 
surface. Due to rapid and significant number of 

contacts, the temperature sensor cannot be mounted 
close to the contact surfaces. Therefore, an improved 
method to estimate the instantaneous contact 
conductance is needed to detect fast periodic variations 
at the contact surface conditions. 
 There are two methods to approach: (1) solve 
directly the coupled, two-region inverse heat 
conduction problem for contact conductance or (2) 
decouple the regions and solve for the surface 
temperature and heat flux in each region irrespective of 
the other. The second approach would be significantly 
more accurate when applied to constant thermo-
physical property regions. This method yields two 
linear estimation problems, which easily can be solved 
without iterations. Also, a computationally efficient 
analytical solution is available for evaluating the direct 
solution.  
 The analytical approach to solve the problem for 
each of the long rods as shown in Fig. 1 is defined as: 

0tandLx0in

)tt)T(x,)(α1()2xt)T(x,2(;t)Tα1(xxT

><<

∂∂=∂∂=            (1) 

( ) ( )
( ) ( ) ( ) )(0,:..;

,
,0

:..;
2

1 xfxTCI
tftLT
tftT

CBxL =




=
=

∆=                  (2) 

 Note that TC1 and TC2 are the estimated 
temperatures in Fig. 1. The diameter

length  of the 

experimental rod was very large and it was perfectly 
insulated. Therefore, the heat transfer through the rod 
can be assumed to be one-dimensional using 
rectangular coordinate. 
 In Eq. (2), since the boundary conditions are time-
dependent, the problem is non-homogeneous. Splitting 
the problem into several simpler problems can often 
solve complicated non-homogeneous problems. 

 
Fig. 1: Thermocouples arrangement of the rods 
 
Solving for ( )tx,T  using Eigen function method yields 
the following: 
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 And for second rod: 
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 Eq. (3) is one-dimensional temperature distribution 
of each rod for transient problems with time-dependent 
boundary conditions that are measured at each instance 
using the installed sensors at 0=x and Lx = . The 
temperature at the end of each rod at contact surfaces, 

1cT  and 2cT  can analytically be calculated using Eq. 
(6). It is calculated by Mack Loren expansion at Lx = . 
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MATERIALS AND METHODS 

 
 The experimental apparatus shown in Fig. 2 
consists of two rods with one of the non-contacting 
ends held at a fixed temperature controlled by an ice-
water reservoir. The other non-contacting ends held at 
constant heat flux using an electrical heater. The two 
rods are suspended by a spring and are free to slide 
along the two Teflon sleeves to reduce friction and 
binding at the sliding contact. The Teflon is cut to allow 
thermocouple to access and move freely in a vertical 
direction as the surfaces come into and move out of 
contact. The adjacent ends are brought into contact and 
are separated cyclically. This consists of a camshaft 
capable to change various rotational velocities by a 
selectable speed DC electro-motor, which is located 
above the upper rod. The schematic diagram of the 
apparatus is shown in Fig. 3. This figure shows the 
positions of six thermocouples, which two of them are 
for calibration of the test rig. 
 

 
Fig. 2: General view of the experimental setup 

 
Fig. 3: Experimental setup Diagram 
  
The contact faces are free of coatings or surface 
oxidation. Three chromel-alumel K-type thermocouples 
are installed on the centerline of each rod at 0.02m 
intervals. When the experiment is started, a transient 
heat flux passes through the test specimens across the 
interface. During the experiment, first, we used Dimmer 
Device to control the inlet of the electrical heater. But 
some jumps were observed in the curves.  
 It was believed that the jumps in the curves were due 
to the noise, which was deleted from the original 
curves. Then, the Auto-Transe device was used instead 
of the Dimmer. In this case, no jump was observed in 
the curves. Consequently, the signals shown in the 
paper are the exact acquired data. Therefore, in our 
current results, no noise was eliminated from the 
signals. The generated noises in the experiment are due 
to environment factors and apparatus, such as 
thermocouples, A/D board, electrical current, etc. 
 The digital data acquisition system include an Intel 
PC/Pentium II computer, a monolithic thermocouple 
amplifier with cold junction compensation (AD594A 
with four terminals), a single DC power supply, and 
four chromel-alumel type k thermocouples made from 
0.122mm diameter wire. These thermocouples were 
selected because the range of the measurement of the 
K-Type thermocouple is wider and the percentage of its 
error is less than the others such as T-Type 
thermocouple. AD594A board can amplify 10 mVolt 
analog signals up to 5+  to 15± Volts and multiplex 6 
differential analog input signals to one A/D input 
channel. The data-sampling program was written using 
Borland C programming language on the windows 
platform. The A/D device used in this test recorded 3 
temperatures per second. The energy transfer through 
the rods is assumed to be one-dimensional by 
neglecting the transverse heat transfer and perfect 
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insulation of the rods. For this experiment, the rods 
were held together under constant pressure. For Each 
rod two thermocouples are used for the analysis and 
one to study the effectiveness of the calibration and 
insulation of the experimental setup. A separate set of 
experiments was conducted to check the presence of 
radial temperature gradients in the rods. Note that the 
experimental results confirmed the validity of the 
assumption.  
 In one-dimensional steady state condition, if the 
variation of the temperature and the transverse heat 
transfer are insignificant, the heat flux is a function of 
the material property and the distance between two 
points of the rod. According to Eq. (7), the temperature 
difference for these two points is: 

)(),( KxqtxT ∆=∆        (7) 
 To study the above relationship, three 
thermocouples are installed on each rod as shown in 
Fig. 1. The steady state temperatures are recorded in 
Table 1. The temperature difference between each two 
adjacent point is within 1%. Therefore, it confirms the 
one-dimensionality of the heat transfer. For every 20-
recorded data, one was selected for analysis as is shown 
in Fig. 4.  
 
Table 1: Recorded steady state temperatures and temperature 

difference between adjacent points on the rods 
T*(c) T1(c) T2(c) T3(c) T4(c) T**(c) 

222.7 195.3 167.8 95.2 64.4 33.3 

  d1=(T*-T1)         d2=(T1-T2)                   d3=(T3-T4)       d4=(T4-T**)  

          27.4                     27.5                               30.8                   31.1 

                     
1

21
d

dd −                                                      
3

43
d

dd −  

                        0.4 (C)                                                      1.0 (C) 
 

 
Fig. 4: Temperature data used for calibration 

corresponding to Fig. 1 

 

 
Fig. 5: Temperatures close to contact surface for 

q1=70 Kw/m2 corresponding to Fig. 4. 
 
 In this transient heat transfer, at the start of 
experiment (t=0) the hot rod is heated by an electrical 
heater (installed at the end of warm rod); then, the cold 
rod starting to warm up by the hot rod until it reaches 
steady state condition. Note that this work is not a 
periodic contact problem. Therefore, the contact 
interval is the duration of the experiment. 
 Two experiments were conducted at different 
operating conditions, various heat flux, initial, and 
boundary conditions. To determine the temperature at 
the adjacent contacting surface, temperature distribution 
is calculated using Eq. (6) from the measured data (Fig. 
5 and 6). They show a temperature drop across the 
contact interface (temperature difference 
between 1CT and 2CT ) due to the contact resistance. The 
heat fluxes values are 70 and 95 Kw/m2 as are shown in 
the caption of the figures 5 and 6. The mean interface 
pressure was approximately equal to the valve and seat 
interface pressure of the investigated engine, which is 
about 20 Kpa. The pressure is constant during the 
experiment. Note that the transfer function can be 
identified to predict this contact resistance using system 
identification method. 
 

IDENTIFICATION 
 

Concept: System Identification method allows building 
mathematical models of dynamic systems based on 
measured data. This is accomplished by adjusting 
parameters within a given model until the result 
matches relatively well with the measured data. Model 
validation can be carried out by using a separate set of 
data, which differs from estimating data, to evaluate the 
model’s properties and for validation purposes. The 
procedure to model a dynamical system is shown in 
flowchart 1. 
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Fig. 6: Temperatures close to contact surface for 
q2=95 Kw/m2 corresponding to Fig. 4. 
 
 The techniques are applied to general models. The 
auto regressive (ARX) and the auto regressive moving 
average (ARMAX) models are based on different 
equations and all types of linear state-space models. For 
parametric models, the model structure should be 
specified. If inputs, outputs, and disturbances are u, y, 
and e, respectively, their relationship can be depicted 
as, 

 

 
Flowchart 1: System identification flowchart 
 
 Note that the disturbance may be due to corrupted 
input-output data and normally is entirely 
unpredictable. They are swept sine and white noise. 
Note that the white noise is a combination of different 
frequencies. 
 Assuming unit-sampling interval, the input signal 
is )`(tu and output signal is )(ty  for: Nt ,...,2,1=  

If the signals are related by a linear system, 
)()()()( tvtuqGty +=                     (8) 

 Where q is the shift operator and )(qG , is called 
the transfer function and )(tv  is an additional, non-
measurable noise that can be described as filtered white 
noise: 

)()()( teqHtv =                    (9) 
G and H in Eq. (8), which are in terms of frequency 
(ω ), is described as rational functions of 1−q  and 
specify the numerator and denominator coefficients. 
A commonly used parametric and simple model is ARX 
that corresponds to: 
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Where B and A are polynomials in the delay 
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 Here, the numbers an and bn are the orders of 
)(qA and )(qB , respectively. The number kn is the 

number of delays from input to output. Note that for 
any identification problem, there are several methods to 
approach the problem. In some of them, the objective 
functional needs always to be in the analysis. In this 
paper, we used the so-called black-box method to 
identify the transfer function.  
In this method the input and output are known by 
experimental and computational solutions and the 
objective functional does not needs to be in the 
analysis. 
Parametric Model Structure: The general form of 
common black-box parametric model structure is: 

e(t)D(q))C(q)(
)nu(tF(q))B(q)(A(q)y(t) k

+
−=

                       (12) 

 The model structures are linear difference 
equations, which relate the current output y(t)  to a 
finite number of previous outputs k)-y(t  and 
inputs k)-u(t . Depend on polynomials used in Eq. (12), 
several model structures can be selected. Table 2 shows 
the polynomials for each model.  
 
Table 2: Polynomials of different black-box parametric models 
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Structure of State-Space Model: The basic State-
Space model can be written as: 

)()()()(
)()()()1(

tetDutCxty
tKetButAxtx

++=
++=+

                              (13) 

This is equivalent to Eq. (8), which )(qG  and )(qH are 
given by Eq. (14) and Eq. (15). 

DBAqICqG nx +−= −1)()(                  (14) 

nynx IKAqICqH +−= −1)()(                           (15) 

 Here nxI  is the xn by xn identity matrix and yn  is 

the dimension of )(ty  and )(te . The most important 
structure index is the model order; i.e., the dimension of 
the state vector x . Assigning K to zero gives an Output-
Error method; i.e., the difference between the models’ 
simulated output and the measured data is minimized.   
 
Validation: Table 3 and Table 4 show the model order, 
FPE, loss function, and percentage of the difference of 
the model structures and measured data. The most 
important structure index is the model order. The 
numbers an , bn , fn , cn , dn  are the orders of )(qA , 

)(qB , )(qF , )(qC , and )(qD  polynomials in general 
form of the parametric model structure (Eq.(12)), 
respectively. The number kn is the number of delays 
from input to output. 
 Loss function is the value of the identification 
criterion for estimation purposes. It is equal to the 
determinant of the covariance matrix of the prediction 
errors, i.e., the determinant of noise variance. Another 
computing model selection criterion is FPE. In this 
study minimum difference of measured and estimated 
data is used for choosing the model structure. 
 
Table 3: Models properties and comparison of the measured and 

estimated results 
Parametric 
model ARMAX BJ OE State Space 

model ARX 

an  2 0 0 10 

bn  2 2 2 10 

fn  0 2 2 0 
cn  2 2 0 0 
dn  0 2 0 0 

kn  1 1 1 

4 state and 
4 recursive 
input, output 
and noise 
are used 
utilizing 
N4SID 
algorithm. 1 

FPE 2.05 1.16 4.20 2.52 1.24 

Loss function 2.03 1.13 4.17 2.47 1.20 
%Difference 
(Measured and 
Model 
Estimation data) 

4.9 5.2 6.8 9.1 11.4 

 

Table 4: Comparison of the measured and estimated results for 
lower order models 

Parametric 
model ARMAX BJ OE State Space 

model ARX 

FPE 2.16 1.13 4.49 2.20 1.89 

Loss function 2.15 1.11 4.47 2.18 1.88 
%Difference 
(Measured and 
Model 
Estimation data) 

7.2 4.2 7.4 11.7 7.4 

  
RESULTS AND DISCUSSION 

 
 Figure 5 and 6 show the measured temperatures of 
T1 and T2 at hot rod, where T3 and T4 at cold rod for 
two different heat fluxes. In these figures, 1CT  and 2CT  
are the temperatures at the adjacent contact surfaces 
that are estimated using Eq. (6). The measured T1, T2, 
T3, and T4 show different values when the system is 
turned on. This is due to the fact that the end of the non-
contacting part of the hot rod is at the ambient 
temperature. The end of non-contacting part of the cold 
rod is in the ice-water reservoir. This causes a small 
temperature difference between the two rods. 
 The heat transfer coefficient of the contact surface 
is shown in Fig. 7. The trends show decreasing the heat 
flux, temperature distribution, and the heat transfer 
coefficient )(thc for the case of non-periodic contact. 
The results are similar to what was reported by other 
investigators[18]. The comparison of our results with 
reference[18] is acceptable because part of their research 
was performed under quasi-steady condition. 
 When the system is started to acquired data, the 
heat   transfer   coefficient )(thc  is very low up to 1200 
second. Then, it decreases slowly until it reaches steady 
state condition. 
 According to Table 3, the ARMAX model matches 
very well; but the ARX doesn't match very well with 
experimental data.  The residual of ARMAX model is 
shown in Fig. 8. Finally, the ARMAX model is chosen 
as parametric model structure. 
 Since the data-sampling interval is constant, the 
case is time-invariable. The general form of 
discontinuous time-invariable single-input and single-
output (SISO) system for the ARMAX model is: 
( ) ( ) ( ) ( ) ( ) ( )knzCkuzBkzzA 111 −−− +=                    (16) 

 Where ( )ku and ( )kz  represent the input variable 
and output signal, respectively. The ( )kn  is the 
disturbance of the system. In discontinuous time cases, 
notation of shift operator q, output y, and noise e 
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convert to k, z, and n. ( )1−zA , ( )1−zB  and ( )1−zC  is 
described as:  
( ) na

na zazazazA −−−− ++++= ...1 2
2

1
1

1             (17) 

( ) nb
nb zbzbzbzB −−−− +++= ...2

2
1

1
1              (18) 

( ) nc
nc zczczczC −−−− ++++= ...1 2

2
1

1
1                  (19) 

 The input and output signals are temperature at 
adjacent contacting surfaces ( 1CT and 2CT ): 
( ) ( ) ( ) NkkTkzKTku CC ,...,2,1,0;;)( 21 ===               (20) 

 According to the definition of shift (time-delay) 

operator 1−z : 

( ) ( ) ( ) ( )1,1 1
1

12
1

2 −=−= −− kTzkTkTzkT CCCC               (21) 
 Here, the disturbance is white noise with variance 
of 1 and average of zero. Combination of Eq. (16) and 
Eq. (21) gives: 

( ) ( ) ( ) ( )kVkTzGkT CC +×= −
2

1
2                    (22) 

 The estimated dynamic model of the system from 
the measured input and output data can be identified in 
the form of Z transfer function: 

( ) ( )
( ) na

nb

nb
nb

zaza
zbzb

zA
zBzG

−−

−−

−

−
−

×++×+

×++×
==

...1
...

1
1

1
1

1

1
1               (23) 

 Where 2, =ba nn and 1=kn . 
Finally, 

( ) ( )
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( ) ( ) 2111 61.058.11 −−−− +−== zzzCzH              (25) 
 As shown in Fig. 8, the differences of the estimated 
and measured data are within 1%. 
 Note that, the conductive heat transfer is a first 
order temperature difference. So, the selection of the 
lower order model is suggested; i.e. 1=== cba nnn . 
Consequently new model structures are defined. 
 According to Table 4, Box-Jenkins model matches 
very well with the measured data and less with state 
space N4SID model. From the reason that the lower 
order Box-Jenkins is more accurate than the ARMAX 
second order model; so we select it as the final transfer 
function of system. For discontinuous time-invariable 
single input-output system, the Box-Jenkins model is: 
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 Combination of Eq. (20), Eq. (21), Eq. (22) and Eq. 
(27) gives: 
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 The transfer function of the system is: 
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 And the transfer function of disturbance is: 

( ) ( )
( ) 21

1

1

1
1

027.003.11
96.01

z
zCzH

−−

−

−

−
−

+−
−

==
zz

z
D

               (30) 

 In transient and steady state cases, Eq. (29) is the 
transfer function of the system and can predict the 
thermal contact behavior with high accuracy, using the 
temperature of one end by knowing the other adjacent 
surface temperature.  

 
 
Fig. 7: Heat transfer coefficient at contact surface 

 

 
Fig. 8: Residual of the ARMAX model 
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 The errors due to different sources are discussed in 
Tables 1-4 and figure 8. Table 1 indicates the relative 
measured temperature error at steady state conditions, 
which is 0.4 percent for the hot rod and 1.0 percent for 
cold rod. In Table 3, the relative error and the measured 
values of the temperature is shown, while Table 4 is for 
the models of lower order. Figure 8 shows the 
difference between the measured and estimated 
temperatures from the ARMAX model that their 
maximum is 4 centigrade. Figure 7 show the heat 
transfer coefficient at contact surface  

 
CONCLUSION 

 
 The system identification method is an excellent 
method to estimate the temperature at contact surfaces 
with high accuracy. Also, the heat transfer coefficient at 
the contact surface and the temperature transfer 
function were calculated. In this method, using the 
calculated transfer function and knowing the 
temperature of one rod, the temperature of the other rod 
was estimated. One of the advantages of this method is 
that no prior information of the variation of the 
unknown quantities is needed since the solution 
automatically determines the functional form over a 
specified domain. The most common Black-Box 
parametric model structures are examined. The results 
of the temperature distribution at the rods were 
compared with the method of Inverse Cauchy. 
 This method can be utilized for the estimation of 
the exhaust valve temperature, which is extremely 
difficult to measure.  By using the calculated transfer 
function, a computational model can be created. By 
assigning the exhaust valve seat temperature as input, 
the exhaust valve temperature can be estimated. 
 
Nomenclature 
T temperature [C]  
x  distance [m] 
t   time [s] 
L  distance between thermocouples[m] 
f  boundary condition  
Tinf  ambient temperature [C]  

)(tan  Fourier series coefficients 

1cT  temperature of contacting face on valve [C]  

2cT  temperature of contacting face on  seat [C] 
AD  analog to digital 
Vol. voltage [volt] 
q heat flux [W/m2] 
K  thermal conductivity coefficient [w/m.K] 

)(tu  input signal [C] 

( )ty  output signal [C] 
( )tG  continues transfer function  
( )tV  continues noise term  

1−q  shift operator [s]  
( )qH  noise transfer function  

n order of polynomial  
( )te  noise structure 
( )tx  state variable  

I identity matrix  
( )ku  discontinuous input variable 
( )kz  discontinuous output variable 
( )kn  discontinuous noise variable 

na  coefficient of polynomial A 

nb  coefficient of polynomial B 
( )1−zG   Z transfer function 

an  order of polynomial 

kn  delay from input to output 
k  time delay index 

1−z  shift operator of Z transfer function 
FPE        Final Prediction Error 
ARMA   Auto Regressive Moving Average 
N4SID Numerical Algorithm for Subspace State-

Space System Identification 
 

GREEK SYMBOLS 
 

ω  frequency variable [1/s] 
∂  partial differential operator 
α  Thermal diffusion Coefficient [m2/s] 

ρ  density [kg/m3] 
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