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Abstract: Turning is one of the most efficient preferred and cutting processes currently known. It was 
a challenging task for researchers to study the different dynamic properties explores its special 
dynamical properties, including conditions that insure the stability of the cutting process and the 
associated nonlinear vibrations. The main goal of this study was to develop and study a simple model, 
which describe the dynamic interactions in the uncoupled machine tool and cutting process system. A 
general one-degree-of-freedom mathematical model of orthogonal metal turning was established and 
examined.  
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INTRODUCTION 

 
 The principle directions of development in 
machine-building technology are related with further 
improvement of parts quality and acceleration of 
growth rates of production efficiency. 
 The perspective method for solving the posed 
problems is the use of adaptive self-adjusted systems 
and devices during turning and the other operations. 
These devices are based on the automatic control of the 
cutting process; this will ensure an improvement in the 
mechanical working accuracy by means of the dynamic 
setting of the machine tool during the process. The later 
can be achieved by stabilizing the cutting forces and 
employing a mechanism to correct the elastic 
displacement (movement) for the used technological 
systems. 
 As a rule, all cutting anal devices have a lowered 
rigidity and oscillating stability. This makes it difficult 
when such devices are employed in metalworking. 
 Large relative vibrations between the tool and the 
workpiece in a metal cutting process can compromise 
the productivity and accuracy of the used 
manufacturing technique. This is particularly dangerous 
when a sudden and uncontrolled rise of vibration 
amplitude occurs. In many practical situations, the 
conditions in which such an instability appears can be 
explained an adequately by linear dynamics derived 
model. However, more comprehensive insight can be 
gained only if the dynamic interactions between the 
machine tool and the cutting process are treated as a 
nonlinear model. An example of such behavior is self-
excited oscillations, so-called chatter[1]. 
 Several investigations into nonlinear dynamic have 
shown an existence and importance of chaotic motion 
occurring in machining. The studies conducted by 

Garbec[2], Wiercigroch[3], Wiercigroch and Cheng[4] and 
Foong et al.[5] are good examples of those 
investigations. The proposed models have shown the 
evidence of chaotic vibrations, which are mainly due to 
the nonlinearity of the dry friction and the intermittent 
contact between the cutting tool and the workpiece.  
 The movement stability of the technological 
system under the effect of external disturbances is 
determined by the system behavior near the equilibrium 
position. If the system, under the effect of arbitrarily 
small initial disturbance, is removed from the 
equilibrium position then the system is declared 
unstable. 
 For the systems used in of metal cutting machines, 
there are stationary and oscillatory (vibrating) positions 
of equilibrium. The cutting parameters (speed, feed and 
depth of cut) are constant in the stationary type of 
equilibrium. If the cutting parameters are periodically 
changed, then the positions of equilibrium well vibrate 
in the system. 
 During parts processing using metal cutting 
machines, it is necessary to active a stationary position 
of equilibrium; which is obtained mostly by eliminating 
the self-vibrating motion. The self-vibrating motion can 
be eliminated either by the suitable selection of cutting 
parameters, or by the means of additional damping 
systems related with employing special amortizators of 
energy (dampers). The use of dampers complicates the 
technological system and, however this is not always 
economical justified. 
 Both analytical and graphic methods for 
determination of the stable motion of the technological 
system are used for selecting the rational cutting 
parameters. 
 Finding the analytical solution of the differential 
equation, if it is possible, gives in most cases a great 
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advantage. The analytical solution is obtained in an 
algebraic form and does not require the introduction of 
numerical values of the process parameters or the initial 
conditions. Once, the solution is obtained, it is possible 
to set any numerical values and investigate the totality 
of the solutions that described by the differential 
equation. 
 However, it should be kept in mind that only a few 
of equations that describe the real system are simple 
enough and permit accurate solution. In general there is 
no regular methods of integration that can give accurate 
solution for arbitrarily nonlinear differential equations. 
 Therefore, using the different types of 
approximating methods can provide a unique (single) 
suitable technique for solving the frequently 
encountered classes of nonlinear equations. Such 
methods are: small-parameter method[6], average 
method[7,8], energetic method[9] and the harmonic-
balance method. 
 The graphic methods of analysis are one of the 
important methods used for investigating different 
phenomenon’s related with nonlinear vibration. With 
the help of graphic methods, the solutions of 
differential equations are sought in the form of integral 
curves on the phase-plane. 
 The isoclines, Lenarion and Delta methods can be 
refereed to the graphic methods used for solving the 
nonlinear differential equations. The isoclines method 
is the most broad. This method gives the opportunity to 
investigate the field of the integral curves with the help 
of graphics without solving the differential equation. 
This method is especially valuable when the accurate 
mode solution for the differential equation is not 
known. The principle demerit of isoclines method is the 
relatively long time required. 
 Lenarion method is particularly convenient for 
investigating the self-vibrating and also in other cases 
when the regenerating elastic force is linear with 
respect to the movement. This method does not require 
the approximation of the nonlinear characteristic and 
this is the principle merit of this method. The 
experimental characteristic may be used for 
constructing (tracing) the integral curves. 
 The employment of isoclines and Lenarion 
methods for obtaining the graphic solution of the 
differential equation needs to fill all the phase-plane 
with segments of a straight line that define the direction 
of the integral curves. Practically if it is necessary to 
find only one integral curve, then some of these 
segments are used directly. In these cases the Delta-
method is the most direct straight method for finding 
the required solution because with the help of this 
method we can get only the data which is related 
directly with the interested integral curve. 
 
Stability analysis: When the turning operation is 
carried out with the help of an adaptive system, the 
followings are arise: the necessity in analyzing the  
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Fig. 1: The limiting vibrating system: the mechanical 

adaptive system in X-direction. The 
parameters of the oscillating contour of this 
system have the following values: j= 6400 
N/m, m= 18.91 N, ∆= 0.035, h= 123.3 
N.sec/m 

 
oscillating motion of the technological system, the 
necessity of finding the stable cutting regions and 
determining the cutting parameters which ensure the 
non- oscillating turning. 
 To analyze the oscillating motions of the 
technological system, it is necessary to define the 
designed (rated) mathematical model of the system and 
determine its parameters such as rigidity (j), natural 
frequency (f), reduced mass (M), logarithmic decrement 
(∆) and the proportional coefficient between the 
resistance force and the speed (h)[10]. 
 
Determination the limiting oscillating system: In 
connection with the adaptive system based on the 
compensation of the elastic deformations, the designed 
model has 9 degrees of freedom: 3 for the lathe spindle 
in X,Y and Z directions; 3 for the tool post; and 3 for 
the proposed adaptive system itself. As known in the 
theory of vibration, the established degrees of freedom 
are related to the limiting frequencies of the system. 
This means that the other degrees of freedom can be 
neglected. 
 In connection with the considered system, it was 
established that the limiting frequency equaled to 93 Hz 
this corresponds to the natural frequency of the cutting 
tool (proposed adaptive system) in the direction of the 
axial component of the cutting force. Therefore, the 
mathematical model may be represented by a system 
with one degree of freedom in X-direction (Fig. 1). 
 To determine the stable cutting conditions, the 
characteristics of the axial component of the cutting 
force were established. These linear characteristics 
were defined experimentally with the help of an 
arrangement mounted on the base of rigid Sigma 2600 
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engine lathe. The axial cutting forces arising during 
processing were fixed by YDM-600 dynamometer. 
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Fig. 2: Phase portrait created by turning with the 

developed system at υ=0.375 and 1.625 m/sec, 
S=0.07 mm/rev, and t= 1.5 mm 
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Fig. 3: Phase portrait created by turning with the 

developed system at υ= 0.72 m/sec, S=0.07 
mm/rev, and t= 1.5 mm 

 
Cutting conditions, workpiece and tool materials: 
Turning trials were carried on short rigid shaft made 
from steel 1045 with the following conditions: depth of 
cut (t) changed in the limits of 0.5…1.5 mm, feed rate 
(S) - 0.07 to 0.21 mm/rev and cutting speed (υ) changed 
from 1 to 3 m/sec. 
 The proposed adaptive system used in this study 
was provided with triangular cemented carbide insert 
with main approach angle equaled to 93º, side relief 
angle equaled to 5º and main rake angle equaled to 5º. 
 As a result of the conducted experiments, the 
nonlinear relationship of the axial force Fx to the speed 
was obtained at the fixed values of feed rate and depth 
of cut. These characteristics were correspond to the 
characteristic of first order since they have a dropping 
region (Fig. 2). 

 In order to keep the analysis clear, we will consider 
the stability of the one-degree-of-freedom model for the 
cutting process (Fig. 1). The use of the Lenarion 
method, which is the most broadly used for analyzing 
the self-vibrating motion of the technological systems, 
we will present for a turning operation of steel 1045 
with the help mechanical adaptive system. Number 1 in 
Fig. 2 and 3 present the characteristic of cutting force. 
 Number 2 in the figures refers to the resistant force 
in the system and number 3 indicates to the distribution 
characteristic   obtained  by   addling characteristic 1 
and 2. 
 Constructing the integral curve for different cutting 
parameters was achieved for the distribution 
characteristic obtained in the direction of action of the 
axial component of cutting force Fx. 
 When selecting the work point on the dropping 
(falling, incident) section of the distribution 
characteristic (Fig. 1-3), the integral curve untwists 
from the unstable singular point o1 and aims for the 
stable limiting (cluster) 4. Here, a stationary self-
vibrating motion, which corresponds to light excitation, 
is establish in the system. Thus, at the existence of self-
vibrating, the cutting parameters will be changed with a 
frequency equaled to 93 Hz in this case. 
 If the work point is selected on the raised section 
near to the incident section, then too regimes are 
established in the technological system, stable and self-
vibrating. 
 When selected the work point on the raised section 
with clearly expressed positive resistance, the integral 
curve 5 will be twist to the steady singular point O3. 
This indicates to the lade of the self-vibrating motion. 
The technological system in this case has steady 
stationary position of equilibrium and the cutting 
parameters used will be not changed.  
 By analyzing the movement of the technological 
system on the phase plane for all the ranges for the 
cutting parameters, it is possible to define the steady 
regions and their corresponding cutting parameters. 
 Thus, the light and stringent excitation of self-
vibrating motion may be occurring in the technological 
system. The stationary vibrating motion corresponding 
to light excitation occurs at the dropping sections when 
a negative resistance is prevail in the system. 
 The stringent excitation of self-vibrating or the 
steady stationary position of equilibrium may occur at 
the raised sections of distribution characteristic.  
 As previously mentioned, the integral curves on the 
phase-plane gives descriptive presentation about the 
character of the system movement at particular values 
of the system parameters, for evaluating the total of 
phenomenon’s that is related to variation in this or other 
system-parameter, it is advisable to use the analytic 
method. The Later needs to construct the so-called 
bifurcation diagram. During the last two decades, many 
work about bifurcation theory appeared[11-15]. However, 
little is known about bifurcations of cutting 
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manufacturing systems. The use of this method will be 
considered in forthcoming papers. 

 
CONCLUSION 

 
 Conclusions drawn from turning steel with the help 
of mechanical adaptive system are as follows: 
1. As a result for the investigation in the dynamic 

characteristics of the components of the turning 
technological adaptive system, a mathematical 
model of complex “machine tool + mechanical 
adaptive system” was obtained and presented as a 
system with one degree of freedom in the direction 
of X-axis. 

2. The behavior of the adaptive system was 
investigated successfully using a graphic method 
during turning of steel. 

3. Zones of stable non-vibrational processing were 
determined. 
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