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INTRODUCTION 

 
 This paper considers a system of linear equations, 
AX = b with det(A) ≠ 0 and l ≤ b ≤ u where A = [aij] is 
an n×n matrix, b = [bi] is an n×1 uncertain vector lying 
between vectors l = [lj] and u = [uj]. The problem is to 
solve for the possible range of X = [xj]. Mathematically, 
it can be formulated as the following linear 
programming (LP) problems. 
 
Min (Max) xk, k = 1,2,….,n  (P1) 
Subject to n 
  ∑ aijxj – bi = 0   , i = 1,2,…...,n 
  j=1  
  xj unrestricted, lj ≤ bj ≤ uj , j = 1,2,…..,n 
 
 The above model becomes more complex when n 
is large. Usually, this situation arises in approximately 
solving linear boundary partial differential equations. 
Applying finite approximation schemes normally leads 
to the result of very large and sparse linear equations. 
By representing uncertainties of equation right hand 
sides and boundary conditions as a set of statistical 
confidence intervals, the solution as a set of related 
variable ranges can be solved using the above 
formulation. Directly, the problem can be solved as a 
set of independent 2n LP problems. However, this 
paper will present another approach theoretically 
equivalent but computationally much faster as n grows 
and the proposed method is suitable for use in parallel 
architecture. Additionally, the approach is illustrated for 
further applications on obtaining confidence intervals of 

variable variance/covariance matrix for a given ranges 
of right hand side variance/covariance. 
 Linear programming (LP) has been one of the 
major tools in solving real world resource allocation 
problems. Its origin and early development historically 
were described and presented extensively by Dantzig[1]. 
The problem of determining the confidence interval of 
statistics also has long been studied by statisticians[2]. A 
large and sparse system of linear equations normally 
arises in finite approximations scheme for solving 
boundary value ordinary and partial differential 
equation basically found in engineering analysis and 
computational physics. The resulting system is 
sometimes too large to be handled by the direct 
approach and the iterative indirect methods are 
frequently more appropriate[3,4]. The integration of these 
three aspects has not yet been studied systematically but 
its application is motivated by industrial nature of 
dynamic diffusion or transport phenomena where 
repetitive operations cause a chance effect leading to a 
stationary uncertainty of system input or initial/ 
boundary conditions. 
 For a more complex system where the resulting 
equations size can be very large, parallel computations 
can be more efficient. Some early works on parallel and 
vector solutions for large linear systems were presented 
in Heller[5], Ortega[6] and Stone[7].  Distributed-memory 
based parallel algorithms on basic matrix-vector 
multiplication especially in case of large block-
distributed matrices were initially studied in Dekel et 
al.[8]. This research area has been received much 
attention and several new approaches on different 



Am. J. Applied Sci., 4 (5): 300-306, 2007 
 

 301

applications based on new software and hardware 
advancements have been proposed as found in Ben-
Asher and Haber[9], Catalyurek and Aykanat[10], 
Hendrickson et al.[11], Ogielski and Aiello[12], Romero 
and Zapata[13] and Ujaldon et al.[14]. Extensively, these 
basic parallel operations plays a major role on further 
developments of parallel iterative algorithms for large 
and sparse linear systems as illustrated in Basserman[15] 
and Ortigosa et al.[16]. For a much larger scale system 
such as time varying three dimensional partial 
differential equations as found in the fields of  solid 
mechanics and diffusion processes, domain 
decompositions[17,18] have been a major support for 
developments of parallel and distributed computing. 
Their main idea is to partition the original domain to 
several smaller domains resulting in a set of much less 
dependent smaller systems of linear equations that can 
be handled by each processor in parallel. Then, their 
solutions are adjusted and integrated with a set of 
coupling equations under manageable sizes related to 
common variables among sub-problems. A well 
illustrated example can be found in Saad[4]. Recently, 
with the advancements of parallel hardware, parallel 
and distributed algorithms for the direct Gauss 
elimination approach have been proposed as other 
alternatives expected theoretically that their efficiency 
should be better than the iterative algorithms as 
presented in Balasubramanya et al.[19], Chandra and 
Siva Ram Murthy[20], Gallivan et al.[21] and Tufo and 
Fischer[22]. A special case of applications on both 
parallel matrix-vector multiplication and parallel-
distributing for solutions of large and sparse linear 
system is due to solving the steady state discrete and 
continuous Markov chain model as presented recently 
in Benzi and Tuma[23]. 
 It is well known that solving an LP using the 
classical simplex method is an exponentially 
bounded[24] algorithm but its average performance was 
derived by Borgwardt[25] resulting the complexity of 
O(m) iterations with at most O(m2) operations per 
iterations where m is the number of constraints in the 
model. In this study as shown in problem P1, regardless 
of the bounded variables constraint, m=n. Therefore, 
solving the problem directly is exponentially bounded 
in the worst case and polynomial bounded as O(n4) on 
average. In this work, an alternative algorithm will be 
proposed. Its main computation complexity deals with 
computing A-1 leading to a better bound of O(n3). To 
design basically a parallel scheme for the algorithm, 
most works reviewed in the previous paragraph can be 
adapted and applied. An example in case of domain 
decomposition will be preliminary studied. 

 In summary, there has been a tremendous amount 
of works on solving large and sparse linear equations in 
parallel due to its applications and computer hardware 
advancements. These works can be used as basic tools 
to support the purpose of solving problem P1 by the 
upcoming proposed algorithm. In the next section, a set 
of parallel approaches will be proposed and verified 
theoretically and experimentally. 
   

MATERIALS AND METHODS 
 
Let b’i = bi – li. Therefore, 0 ≤ b’i ≤ ui – li (u’i) for all i = 
1, 2,…..,n and  
n 
∑ aijxj – b’i = li , i = 1,2,…...,n 
j=1 
Since det(A) ≠ 0, let A-1 = [a’ij], then 
 n                 n 
xi - ∑ a’ijb’j =  ∑ a’ijli , i = 1,2,…...,n 
 j=1            j=1 
and 
 n                 n 
xk = ∑ a’kjb’j +  ∑ a’kjlj , k = 1,2,…...,n (1) 
 j=1             j=1 
In order to solve the corresponding LP problem, the 
following theorem can be established. 
 
Theorem: The solution vector X for the problem (P1) 
is optimal if and only if (1) is satisfied and: 
for each k such that xk is maximized, for all j, b’j = u’j if 
a’kj > 0, otherwise, b’j = 0; for each k such that xk is 
minimized, for all j, b’j = u’j if a’kj < 0, otherwise, b’j = 
0; 
 
Proof: By considering equation (1), substitute b’j by 
u’j when a’kl > 0 and by 0 otherwise. The result is 
   n                   n 
xk* =∑ a’kju’j    +  ∑ a’kjlj (2) 
 j=1 (a’kj >0)   j=1 
 Comparing to equation (1), xk* ≥ xk since b’j ≤ u’j 
for all j. Similarly, in case of the substitutions when a’kj 
< 0, xk* ≤ xk. Thus, the forward parts of the theorem 
hold. 
 To prove the backward statement, suppose that the 
solution obtained from equation (2) is not optimal and 
there exists another solution for b’j = c’j for all j that 
maximizes xk. The only alternative that can produce xk 
larger than xk* is to assign at least one c’j > u’j. This is 
infeasible since b’j ≤ u’j. Therefore, the reverse 
condition holds in case of the maximization objective 
and again, similarly for the minimization case. 



Am. J. Applied Sci., 4 (5): 300-306, 2007 
 

 302

 Additionally, it is obvious to conclude that the 
above procedure is a polynomial time algorithm with 
the complexity of O(n3) because the computation of A-1 
is the method bottleneck. In summary, a general method 
for solving problem P1 is to compute A-1 and use 
substitute b’j in equation (1) according to the theorem. 
However, when A is very large and sparse, in case of 
bandwidth matrix normally found in finite 
approximation for solving boundary value ordinary and 
partial differential equation, A-1 is fully dense. For an 
example, a partial differential equation in two 
dimensions with confidence interval of boundary value 
is approximated by subdividing 1000 discrete points in 
each domain leading to the system of linear equations 
with bandwidth matrix A and one million 
variables/equations (n = 1000×1000 = 1,000,000). 
Solving for all possible variable ranges requires a high 
performance computing hardware facility with an 
appropriate parallel algorithm. One obvious direct 
approach is to distribute 2n independent LP problems of 
P1 among parallel processors in order to minimize the 
maximum allocated processing time. Nevertheless, a 
more efficient method adopted from the theorem can be 
modified to work in parallel by solving independently 
for each row elements of A-1 as follows. 
 
Procedure P1: 
Identify k (k=1,2,..,n) 
Solve ATz = ek = [0,0,..,1 (kth position),…,0]T and 
compute 
  n     n 
uk  =      ∑ zju’j    +  ∑ zjlj 
       j=1 (zj >0) j=1 
         n       n 
lk  =  ∑ zju’j    +  ∑ zjlj 
         j=1 (zj <0)  j=1 
End. 
 The above algorithm is designed to break the 
whole operations into n independent and almost 
identical jobs. Each job is concerned with solving for 
a’kj , j = 1,2,..,n representing by the vector z and can be 
distributed to each available computer and the result of 
uk and lk can be integrated at the end.  Therefore, the 
decision problem is how to allocate n jobs among all 
available m parallel processors in order to minimize the 
total makespan. The difference from the original 
scheduling research is that in this case, the exact 
processing time of each job is not known in advance but 
each job has the same instructions and the effect 
resulting different processing time is the different right 
hand side and the number of nonzero zj for all j in each 
iteration k.  

 Comparing with the direct approach of distributing 
2n LP problems, firstly, the complexity of P1 is 
polynomial bounded (O(n3) for the sequential 
processing and O(n3/p) for the parallel computations 
with p processors) while the complexity of LP is 
exponentially bounded in the worst case and O(n4) in 
the average case. 
Applications in statistics: The proposed procedure can 
be applied to solve the following linear statistical 
model. Consider the matrix system of linear equation, 
AX = b with random vector b representing by expected 
values vector E[b] and variances/co-variances matrix 
K[bbT]. In general, obtaining the exact values of E[b] 
and K[bbT] may not be possible especially in the case 
that b is measured from some experiments or randomly 
generated to intimate the real situation. If a steady state 
does exist, both statistical parameters can be 
statistically estimated as confidence intervals (Chapters 
7 and 10 of Lindgren[2]). Therefore, the decision 
problem is to determine the confidence interval of 
statistical parameters of X (E[X], K[XXT]) for a given 
confidence interval E[b], K[bbT].  
 The problem of determining the confidence 
interval of E[X] can be solved directly using the 
method described in the previous section. However, the 
problem concerning K[XXT] is not obviously linked. 
Next, consider the following algebraic analysis. 
 First, multiply equations ith and kth of an n by n 
linear system and apply the expectation leading to the 
equation as follows. 
 n   n 
∑  ∑ E[aijaklxjxl] = E[bi,bk]  i, k= 1,2,…...,n 
j=1 l=1 
 By the symmetry property of covariance elements, 
the equation can be adapted as follows. 
n              n   n 
∑ E[aijakjxj

2]+2{∑  ∑ E[aijaklxjxl]} = E[bi,bk] i,=1,2,…,n 
j=1                   j=1 l=j+1   k=i,i+1,..,n 
 Then, expand the expected value of each term in 
the equation and obtain the following equation with 
variance/co-variance as variables. 
n   n   n 
∑ aijakjVar[xj]+2{∑  ∑ aijakl K[xj, xl]} = K[bi,bk]  
j=1                     j=1 l=j+1  
 i,=1,2,…...,n    k=i,i+1,..,n      (3) 
 Therefore, the above resulting equations system is 
linear and for a given range or confidence interval of 
K[bi,bk] for all i and k, the proposed method in the 
previous section can be used to solve for the range of 
Var[xj] and K[xj, xl] for all j and l as well. However, in 
case of large and sparse linear system, n can be very 
large with the total number of equations/variables of 
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n(n+1)/2. The system of corresponding linear system is 
so large that a single processor computing system is 
insufficient for handling this matter. Hence, a parallel 
algorithm is proposed as follows. 
 First, the linear system concerning variances and 
co-variances of X can be written alternatively as the 
following matrix equation. 
AK[XXT]AT = K[bbT]  
 Determining K[XXT] can be performed by solving 
the above linear system. A simple and direct approach 
is to find A-1 and substitute the following relation. 
 
K[XXT] = [A-1]K[bbT][A-1]T         (4) 
  
For A as a dense matrix, the above matrix solution can 
be operated within O(n3) consisting of one n by n 
matrix inversion and two n by n matrix multiplications. 
Algebraically, each element in K[XXT] can be obtained 
by the following equation. 
     n  n 
K[xi,xk] = ∑ ∑ a’ij a’kl K[bj, bl]   
    j=1 l=1 
 i= 1,2,…,n  k= i,i+1,…,n (5) 
 Suppose that a given confidence range K[bj, bl] is 
[lij, uij] and A is large and sparse, a parallel computing 
scheme can be created and designed using the 
relationship (5). The total number of independent 
computational jobs is N = n(n+1)/2 where each job has 
the general description derived in a similar manner as 
the proposed procedure for the expected value case as 
follows.  
 
Procedure P2:  
Step 0: Identify the desired i and k (i =1,2,..,n,  k=i,i+1,i+2,..,n) 
Step 1: Let y = [yj] and z = [zl] and solve ATy = ei and ATz = ek. 
Step 2: Let Max = 0 and Min = 0 
 For j = 1:n 
  For l = 1,:n 
   If yjzl > 0 Max = Max + yjzl ujl 

    Min = Min + yjzl ljl 
    Otherwise, Max = Max + yjzlljl 
      Min = Min + yjzlujl 
  End 
 End 
 
Step 3: K[xi,xk] is within the range of [Min, Max] 
 
 Suppose that there are m available computers 
where m < N, a number of jobs can be assigned to each 
machine and the processing time in step 1 can be 
reduced when either i or k is fixed and another index is 
varied. For an example, when a computer is assigned a 
set of jobs with i = 1 and vary k from 1 to p < n, 
computing in step 1 is performed merely in the full 
form in case of i=1 and k=1. For another k > 1, the 

processing time in this step can be reduced in half since 
only solving Az = ek is needed.  
An application in domain decompositions: In this 
section, both methods developed in the previous 
sections are applied to the case where A is formulated 
by the principle of domain decomposition. In general, 
the structure of the corresponding equations system is 
as follows. 
 
Bi Xi + Fi Y = ci  i=1,2,…,s   (6) 
 s 
 ∑ Ei Xi + CY = d   (7) 
 i=1  
pi ≤ ci ≤ qi , r ≤ d ≤ t (8) 
  
where s is the number of sub-domain, Bi represents 
coefficients square matrix of sub-domain i with Xi , ci , 
pi  and qi as the associated variable, RHS, lower and 
upper bound vectors, respectively and Ei and Fi 
represent coefficients matrices of interaction between 
sub-domain i and the common domain. The matrix C 
represents the coefficients square matrix of the common 
domain with Y, d, r and t as the associated variable, 
RHS, lower and upper bound vectors, respectively. To 
solve for the ranges of mean vectors Xi, for all i and Y, 
the following model can be derived based on the similar 
principle of (1) in a matrix notation. 
 s 
Xi = Σ A’ijci  +  A’i0d     , i =1,2,…,s  (9) 
      j=1 
 s 
Y = Σ A’0jci  +  A’00d     , i =1,2,…,s (10) 
      j=1 
where, 
A’ij = Bi

-1FiG-1EjBj
-1, i,j = 1,2,…,s, i ≠ j 

A’ii = Bi
-1 - Bi

-1FiG-1EiBi
-1, i =1,2,..s 

               s 
 G = C – Σ EiBi

-1Fi 
        i=1 
 A’i0 = -Bi

-1FiG-1, i =1,2,..s 
 A’0j = -G-1EjBj

-1, j =1,2,..s 
 A’00 = G-1 
 For confidence intervals of variable co-variance 
sub-matrix according to each domain interaction i and j, 
procedure P2 can be adapted in the following matrix 
form. 
        s  s 
Kij =Σ  Σ   A’ikA’jlBkl , i,j = 0,1,2,..,s  (11) 
     k=0 l=0 
 where Kij represents sub-matrix of co-variances 
between Xi and Xj when i,j = 1,2,..,s and between Xi(j) 
and Y when j(i) = 0 and Bkl represents sub-matrix of co-
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variances between ci and cj when i,j = 1,2,..,s and 
between ci(j) and d when j(i) = 0. To verify the 
correctness of equations (6) – (11), consider AX = b 
formed by equations (6) and (7) as follows 

 
Suppose that A-1 is in the following form. 

 
 By using the definition of A’ij, it can be proven that 
the matrix property of AA-1 holds. Thus, A-1 is valid 
and can be used in both equations (9) and (10) as 
claimed. Also, as seen in the block structure described 
in equations (9), (10) and (11), firstly, the matrix G-1 
must be computed and then, parallel and distributed 
computing can be independently allocated to each 
processor for determining Xi, Y and Kij for all i and j. 
                        
Computational experience: In this study, the heat 
transfer equation (∂2Ø/∂x2 + ∂2Ø/∂y2 = f(x, y)) 
approximated by 5 Points finite difference approach is 
used with randomly generated ranges of f(x, y) 
represented by l(x, y) and u(x, y), x = 0, ∆, 2∆, …., N1∆ 
and y =  0, ∆, 2∆, …., N2∆. ∆ is varied under the 
constraint that N1∆ = N2∆ = 1. Excluding boundary 
elements, the total number of variables (n) for the 
corresponding set of linear equations is (N1- 1)(N2 – 1) 
in case of the expected value. The proposed method 
was coded in Matlab[26] utilizing its special commands 
for sparse linear equations solver. For each problem 
size n, a sample of variables range containing 10 
observations is obtained and its average is computed 
and summarized in the following table. 
 
The Proposed Method 
No. of Variables (n) Average Time/Variable (sec.) 
100,000   64 
200,000   452 
300,000   1,178 
400,000   2,163 
500,000   2,940 
600,000   5,134 
700,000   6,987 
800,000   9,341 
900,000   11,596 
1,000,000   14,246 

  Simultaneously, the same set of problems is 
solved using the direct LP command, “Linprog[.]”, of 
software Matlab[26]. The required computation times are 
reported in the following table. 
 
The direct LP method 
No. of Variables (n) Average Time/Variable (sec.) 
100,000    3,244 
200,000  18,140 
  
 The results from both tables indicate that the 
proposed method is more efficient as the problem size 
grows. All computations are performed on a 
microcomputer system with CPU speed of 2.4 Ghz and 
1 Gbytes RAM. Moreover, the proposed method is 
extended to determine a sample of covariance elements 
under various n and their average computing times are 
analyzed using 10 observations for each problem sizes 
and can be shown as follows.  
 
The Proposed Method 
No. of Variables No. of Covariance Average  
(n)  Elements  Time/Element (sec.) 
5,000  12,501,250 961 
6,000  18,003,000 1,366 
7,000  24,503,500 1,836 
8,000  32,004,000 3,127 
  
 Since all test cases in the above table require full 
dense variance/co-variance matrices, computations of 
each variable variance/co-variance range consume up to 
O(n2) limiting the much smaller upper bound of n as 
compared to the case of expected value with O(n). The 
size of n > 8000 is prohibited due to available memory. 
Nevertheless, in practice, it is most likely to find that 
the resulting variance/co-variance matrix can be 
approximated as a sparse matrix. In this circumstance, a 
set of such large and sparse K[bbT] is randomly 
generated as banded matrices with k as the number of 
nonzero elements in each row. Then, ten samples of 
each n ranging from 10,000 to 500,000 are tested 
utilizing MATLAB powerful commands on sparse 
matrix operations[26] based on Procedure P2. The 
experimental results are as shown below. 
 
No. of Variables (n)   k Average Time/Element (sec.) 
10,000 7     137   
10,000 11     191 
10,000 21     374 
25,000 7     442 
25,000 11     579 
25,000 21  1,211    
50,000 7  1,588  
50,000 11  1,965 
50,000 21  3,004 
100,000 7  3,017 
100,000 11  3,981 
100,000 21  5,177 
500,000 5    8,287 
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 The result in the above table indicates some 
possibilities to conduct parallel computations in case of 
large and sparse variance/co-variance matrices. For a 
much larger scale problem, matrix partitioning and 
interpolations should be further developed. It should be 
noted that all computations have been conducted based 
on the assumption that solving the corresponding linear 
systems can be performed on a single processor and the 
proposed approach is designed to partition the whole 
problem to several independent linear systems capable 
of distributing one by one among parallel processor. 
However, when the matrix A becomes too large to be 
handled by a single processor, a set of clusters among 
processors has to be designed. Each cluster consists of a 
set of designed processors capable of solving each 
related system. To support this concept in case of 
Matlab, parallel programming is required and their 
basic study on matrix operations was experimented 
in[27]. 
 Next, a preliminary study on the use of the direct 
approach P1 compared to using equations (9)-(10) 
when the problem is in the form of equations (6)-(8) is 
conducted as follows. First, the heat equation with L-
shape boundary is decomposed to 200 domains with 
2500 points (variables) in each domain and 5,000 
common domain points with generated data of right 
hand side lower and upper limits. Then, the resulting 
equations in the non-decomposition mode consists of a 
sparse 500,000 variables system while the domain 
decomposition system is involved with sparse 
2,500×2,500 Bi, 2,500×5,000 Fi, 5,000×2,500 Ei (i =1, 
2,.., 200) and 5,000×5,000 C. The experiment has been 
conducted using 4 identical processors as specified 
previously, working in parallel with the additional main 
server (2.4 GHz and 2 Gbytes RAM) working as jobs 
manager. For the direct approach, the average time out 
of ten samples for computing a variable interval is 
2,917 sec. which is slightly less than the previous 
experiment case of 500,000 variables (2940 sec.). With 
five parallel processors, the expected computing time 
per element can be reduced by one-fifth resulting 
almost ten minutes (2917/5). To solve the problem 
using equations (9) for a specific i, G-1 is computed in 
the main server firstly. Then, computing A’ij, j = 
0,1,2,..,s (=200 in this case) is distributed equally to 
each processor (=50) and A’0j is computed in parallel 
by the main server. After that, the sub-vector interval 
for Xi is computed using equation (9) and algorithm P1 
using the main server. At the end, 2,500 intervals are 
obtained.  In this study, i =1 is conducted as an example 
resulting the total computation time of 57 hrs. 21 min. 
and 6 sec. Therefore, the average time for computing a 

variable interval is reduced to merely one and a half 
minute per element. This basic study initially illustrates 
a further direction for continuous improvement on 
implementing algorithm P1 using parallel processing. 
For algorithm P2, similar scheme can be conducted by 
using equations (11). It should be noted that the parallel 
strategy used in this case has not been fully developed 
and can be improved. For examples, computing G-1 and 
equation (9) with i=1 have not been parallelized yet. 
Further explorations should be investigated. 
 

CONCLUSION 
 
 In this study, parallel approaches for determining 
confidence intervals of variables in the large and sparse 
linear equation system with RHS ranges is proposed 
and preliminary tested its application possibilities. The 
basic concept has been verified and validated 
mathematically. Comparisons with the direct linear 
programming approach are conducted in case of the 
mean confidence interval. The test results illustrate that 
the approach greatly improves outcome efficiency. 
Moreover, the proposed approach can be adapted to 
work in parallel using domain decomposition. An 
example is preliminary studied and the initial result 
indicates a further improvement. 
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