
American Journal of Applied Sciences 4 (5): 300-306, 2007
ISSN 1546-9239
© 2007 Science Publications

Corresponding Author: Peerayuth Charnsethikul, Operations Research and Management Science Units, Industrial
Engineering Department, Kasetsart University, Bangkok 10903, Thailand

300

Parallel Approaches for Intervals Analysis of Variable Statistics in

Large and Sparse Linear Equations with RHS Ranges

Peerayuth Charnsethikul
Operations Research and Management Science Units, Industrial Engineering Department

Kasetsart University, Bangkok 10903, Thailand

Abstract: This study proposes an algorithm capable of working in parallel for solving large and
sparse linear equations under given right hand side (RHS) ranges. A comparative study to the direct
linear programming method is reported theoretically, computationally and discussed. Moreover, the
approach can be adapted for the system under domain decompositions structure leading to a better
efficiency experimentally.

Key words: RHS ranges, large and sparse linear equations, parallel approaches, domain
decompositions

INTRODUCTION

 This paper considers a system of linear equations,
AX = b with det(A) ≠ 0 and l ≤ b ≤ u where A = [aij] is
an n×n matrix, b = [bi] is an n×1 uncertain vector lying
between vectors l = [lj] and u = [uj]. The problem is to
solve for the possible range of X = [xj]. Mathematically,
it can be formulated as the following linear
programming (LP) problems.

Min (Max) xk, k = 1,2,….,n (P1)
Subject to n
 ∑ aijxj – bi = 0 , i = 1,2,…...,n
 j=1
 xj unrestricted, lj ≤ bj ≤ uj , j = 1,2,…..,n

 The above model becomes more complex when n
is large. Usually, this situation arises in approximately
solving linear boundary partial differential equations.
Applying finite approximation schemes normally leads
to the result of very large and sparse linear equations.
By representing uncertainties of equation right hand
sides and boundary conditions as a set of statistical
confidence intervals, the solution as a set of related
variable ranges can be solved using the above
formulation. Directly, the problem can be solved as a
set of independent 2n LP problems. However, this
paper will present another approach theoretically
equivalent but computationally much faster as n grows
and the proposed method is suitable for use in parallel
architecture. Additionally, the approach is illustrated for
further applications on obtaining confidence intervals of

variable variance/covariance matrix for a given ranges
of right hand side variance/covariance.
 Linear programming (LP) has been one of the
major tools in solving real world resource allocation
problems. Its origin and early development historically
were described and presented extensively by Dantzig[1].
The problem of determining the confidence interval of
statistics also has long been studied by statisticians[2]. A
large and sparse system of linear equations normally
arises in finite approximations scheme for solving
boundary value ordinary and partial differential
equation basically found in engineering analysis and
computational physics. The resulting system is
sometimes too large to be handled by the direct
approach and the iterative indirect methods are
frequently more appropriate[3,4]. The integration of these
three aspects has not yet been studied systematically but
its application is motivated by industrial nature of
dynamic diffusion or transport phenomena where
repetitive operations cause a chance effect leading to a
stationary uncertainty of system input or initial/
boundary conditions.
 For a more complex system where the resulting
equations size can be very large, parallel computations
can be more efficient. Some early works on parallel and
vector solutions for large linear systems were presented
in Heller[5], Ortega[6] and Stone[7]. Distributed-memory
based parallel algorithms on basic matrix-vector
multiplication especially in case of large block-
distributed matrices were initially studied in Dekel et
al.[8]. This research area has been received much
attention and several new approaches on different

Am. J. Applied Sci., 4 (5): 300-306, 2007

 301

applications based on new software and hardware
advancements have been proposed as found in Ben-
Asher and Haber[9], Catalyurek and Aykanat[10],
Hendrickson et al.[11], Ogielski and Aiello[12], Romero
and Zapata[13] and Ujaldon et al.[14]. Extensively, these
basic parallel operations plays a major role on further
developments of parallel iterative algorithms for large
and sparse linear systems as illustrated in Basserman[15]
and Ortigosa et al.[16]. For a much larger scale system
such as time varying three dimensional partial
differential equations as found in the fields of solid
mechanics and diffusion processes, domain
decompositions[17,18] have been a major support for
developments of parallel and distributed computing.
Their main idea is to partition the original domain to
several smaller domains resulting in a set of much less
dependent smaller systems of linear equations that can
be handled by each processor in parallel. Then, their
solutions are adjusted and integrated with a set of
coupling equations under manageable sizes related to
common variables among sub-problems. A well
illustrated example can be found in Saad[4]. Recently,
with the advancements of parallel hardware, parallel
and distributed algorithms for the direct Gauss
elimination approach have been proposed as other
alternatives expected theoretically that their efficiency
should be better than the iterative algorithms as
presented in Balasubramanya et al.[19], Chandra and
Siva Ram Murthy[20], Gallivan et al.[21] and Tufo and
Fischer[22]. A special case of applications on both
parallel matrix-vector multiplication and parallel-
distributing for solutions of large and sparse linear
system is due to solving the steady state discrete and
continuous Markov chain model as presented recently
in Benzi and Tuma[23].
 It is well known that solving an LP using the
classical simplex method is an exponentially
bounded[24] algorithm but its average performance was
derived by Borgwardt[25] resulting the complexity of
O(m) iterations with at most O(m2) operations per
iterations where m is the number of constraints in the
model. In this study as shown in problem P1, regardless
of the bounded variables constraint, m=n. Therefore,
solving the problem directly is exponentially bounded
in the worst case and polynomial bounded as O(n4) on
average. In this work, an alternative algorithm will be
proposed. Its main computation complexity deals with
computing A-1 leading to a better bound of O(n3). To
design basically a parallel scheme for the algorithm,
most works reviewed in the previous paragraph can be
adapted and applied. An example in case of domain
decomposition will be preliminary studied.

 In summary, there has been a tremendous amount
of works on solving large and sparse linear equations in
parallel due to its applications and computer hardware
advancements. These works can be used as basic tools
to support the purpose of solving problem P1 by the
upcoming proposed algorithm. In the next section, a set
of parallel approaches will be proposed and verified
theoretically and experimentally.

MATERIALS AND METHODS

Let b’i = bi – li. Therefore, 0 ≤ b’i ≤ ui – li (u’i) for all i =
1, 2,…..,n and
n
∑ aijxj – b’i = li , i = 1,2,…...,n
j=1
Since det(A) ≠ 0, let A-1 = [a’ij], then
 n n
xi - ∑ a’ijb’j = ∑ a’ijli , i = 1,2,…...,n
 j=1 j=1
and
 n n
xk = ∑ a’kjb’j + ∑ a’kjlj , k = 1,2,…...,n (1)
 j=1 j=1
In order to solve the corresponding LP problem, the
following theorem can be established.

Theorem: The solution vector X for the problem (P1)
is optimal if and only if (1) is satisfied and:
for each k such that xk is maximized, for all j, b’j = u’j if
a’kj > 0, otherwise, b’j = 0; for each k such that xk is
minimized, for all j, b’j = u’j if a’kj < 0, otherwise, b’j =
0;

Proof: By considering equation (1), substitute b’j by
u’j when a’kl > 0 and by 0 otherwise. The result is
 n n
xk* =∑ a’kju’j + ∑ a’kjlj (2)
 j=1 (a’kj >0) j=1
 Comparing to equation (1), xk* ≥ xk since b’j ≤ u’j
for all j. Similarly, in case of the substitutions when a’kj
< 0, xk* ≤ xk. Thus, the forward parts of the theorem
hold.
 To prove the backward statement, suppose that the
solution obtained from equation (2) is not optimal and
there exists another solution for b’j = c’j for all j that
maximizes xk. The only alternative that can produce xk
larger than xk* is to assign at least one c’j > u’j. This is
infeasible since b’j ≤ u’j. Therefore, the reverse
condition holds in case of the maximization objective
and again, similarly for the minimization case.

Am. J. Applied Sci., 4 (5): 300-306, 2007

 302

 Additionally, it is obvious to conclude that the
above procedure is a polynomial time algorithm with
the complexity of O(n3) because the computation of A-1
is the method bottleneck. In summary, a general method
for solving problem P1 is to compute A-1 and use
substitute b’j in equation (1) according to the theorem.
However, when A is very large and sparse, in case of
bandwidth matrix normally found in finite
approximation for solving boundary value ordinary and
partial differential equation, A-1 is fully dense. For an
example, a partial differential equation in two
dimensions with confidence interval of boundary value
is approximated by subdividing 1000 discrete points in
each domain leading to the system of linear equations
with bandwidth matrix A and one million
variables/equations (n = 1000×1000 = 1,000,000).
Solving for all possible variable ranges requires a high
performance computing hardware facility with an
appropriate parallel algorithm. One obvious direct
approach is to distribute 2n independent LP problems of
P1 among parallel processors in order to minimize the
maximum allocated processing time. Nevertheless, a
more efficient method adopted from the theorem can be
modified to work in parallel by solving independently
for each row elements of A-1 as follows.

Procedure P1:
Identify k (k=1,2,..,n)
Solve ATz = ek = [0,0,..,1 (kth position),…,0]T and
compute
 n n
uk = ∑ zju’j + ∑ zjlj
 j=1 (zj >0) j=1
 n n
lk = ∑ zju’j + ∑ zjlj
 j=1 (zj <0) j=1
End.
 The above algorithm is designed to break the
whole operations into n independent and almost
identical jobs. Each job is concerned with solving for
a’kj , j = 1,2,..,n representing by the vector z and can be
distributed to each available computer and the result of
uk and lk can be integrated at the end. Therefore, the
decision problem is how to allocate n jobs among all
available m parallel processors in order to minimize the
total makespan. The difference from the original
scheduling research is that in this case, the exact
processing time of each job is not known in advance but
each job has the same instructions and the effect
resulting different processing time is the different right
hand side and the number of nonzero zj for all j in each
iteration k.

 Comparing with the direct approach of distributing
2n LP problems, firstly, the complexity of P1 is
polynomial bounded (O(n3) for the sequential
processing and O(n3/p) for the parallel computations
with p processors) while the complexity of LP is
exponentially bounded in the worst case and O(n4) in
the average case.
Applications in statistics: The proposed procedure can
be applied to solve the following linear statistical
model. Consider the matrix system of linear equation,
AX = b with random vector b representing by expected
values vector E[b] and variances/co-variances matrix
K[bbT]. In general, obtaining the exact values of E[b]
and K[bbT] may not be possible especially in the case
that b is measured from some experiments or randomly
generated to intimate the real situation. If a steady state
does exist, both statistical parameters can be
statistically estimated as confidence intervals (Chapters
7 and 10 of Lindgren[2]). Therefore, the decision
problem is to determine the confidence interval of
statistical parameters of X (E[X], K[XXT]) for a given
confidence interval E[b], K[bbT].
 The problem of determining the confidence
interval of E[X] can be solved directly using the
method described in the previous section. However, the
problem concerning K[XXT] is not obviously linked.
Next, consider the following algebraic analysis.
 First, multiply equations ith and kth of an n by n
linear system and apply the expectation leading to the
equation as follows.
 n n
∑ ∑ E[aijaklxjxl] = E[bi,bk] i, k= 1,2,…...,n
j=1 l=1
 By the symmetry property of covariance elements,
the equation can be adapted as follows.
n n n
∑ E[aijakjxj

2]+2{∑ ∑ E[aijaklxjxl]} = E[bi,bk] i,=1,2,…,n
j=1 j=1 l=j+1 k=i,i+1,..,n
 Then, expand the expected value of each term in
the equation and obtain the following equation with
variance/co-variance as variables.
n n n
∑ aijakjVar[xj]+2{∑ ∑ aijakl K[xj, xl]} = K[bi,bk]
j=1 j=1 l=j+1
 i,=1,2,…...,n k=i,i+1,..,n (3)
 Therefore, the above resulting equations system is
linear and for a given range or confidence interval of
K[bi,bk] for all i and k, the proposed method in the
previous section can be used to solve for the range of
Var[xj] and K[xj, xl] for all j and l as well. However, in
case of large and sparse linear system, n can be very
large with the total number of equations/variables of

Am. J. Applied Sci., 4 (5): 300-306, 2007

 303

n(n+1)/2. The system of corresponding linear system is
so large that a single processor computing system is
insufficient for handling this matter. Hence, a parallel
algorithm is proposed as follows.
 First, the linear system concerning variances and
co-variances of X can be written alternatively as the
following matrix equation.
AK[XXT]AT = K[bbT]
 Determining K[XXT] can be performed by solving
the above linear system. A simple and direct approach
is to find A-1 and substitute the following relation.

K[XXT] = [A-1]K[bbT][A-1]T (4)

For A as a dense matrix, the above matrix solution can
be operated within O(n3) consisting of one n by n
matrix inversion and two n by n matrix multiplications.
Algebraically, each element in K[XXT] can be obtained
by the following equation.
 n n
K[xi,xk] = ∑ ∑ a’ij a’kl K[bj, bl]
 j=1 l=1
 i= 1,2,…,n k= i,i+1,…,n (5)
 Suppose that a given confidence range K[bj, bl] is
[lij, uij] and A is large and sparse, a parallel computing
scheme can be created and designed using the
relationship (5). The total number of independent
computational jobs is N = n(n+1)/2 where each job has
the general description derived in a similar manner as
the proposed procedure for the expected value case as
follows.

Procedure P2:
Step 0: Identify the desired i and k (i =1,2,..,n, k=i,i+1,i+2,..,n)
Step 1: Let y = [yj] and z = [zl] and solve ATy = ei and ATz = ek.
Step 2: Let Max = 0 and Min = 0
 For j = 1:n
 For l = 1,:n
 If yjzl > 0 Max = Max + yjzl ujl

 Min = Min + yjzl ljl
 Otherwise, Max = Max + yjzlljl
 Min = Min + yjzlujl
 End
 End

Step 3: K[xi,xk] is within the range of [Min, Max]

 Suppose that there are m available computers
where m < N, a number of jobs can be assigned to each
machine and the processing time in step 1 can be
reduced when either i or k is fixed and another index is
varied. For an example, when a computer is assigned a
set of jobs with i = 1 and vary k from 1 to p < n,
computing in step 1 is performed merely in the full
form in case of i=1 and k=1. For another k > 1, the

processing time in this step can be reduced in half since
only solving Az = ek is needed.
An application in domain decompositions: In this
section, both methods developed in the previous
sections are applied to the case where A is formulated
by the principle of domain decomposition. In general,
the structure of the corresponding equations system is
as follows.

Bi Xi + Fi Y = ci i=1,2,…,s (6)
 s
 ∑ Ei Xi + CY = d (7)
 i=1
pi ≤ ci ≤ qi , r ≤ d ≤ t (8)

where s is the number of sub-domain, Bi represents
coefficients square matrix of sub-domain i with Xi , ci ,
pi and qi as the associated variable, RHS, lower and
upper bound vectors, respectively and Ei and Fi
represent coefficients matrices of interaction between
sub-domain i and the common domain. The matrix C
represents the coefficients square matrix of the common
domain with Y, d, r and t as the associated variable,
RHS, lower and upper bound vectors, respectively. To
solve for the ranges of mean vectors Xi, for all i and Y,
the following model can be derived based on the similar
principle of (1) in a matrix notation.
 s
Xi = Σ A’ijci + A’i0d , i =1,2,…,s (9)
 j=1
 s
Y = Σ A’0jci + A’00d , i =1,2,…,s (10)
 j=1
where,
A’ij = Bi

-1FiG-1EjBj
-1, i,j = 1,2,…,s, i ≠ j

A’ii = Bi
-1 - Bi

-1FiG-1EiBi
-1, i =1,2,..s

 s
 G = C – Σ EiBi

-1Fi
 i=1
 A’i0 = -Bi

-1FiG-1, i =1,2,..s
 A’0j = -G-1EjBj

-1, j =1,2,..s
 A’00 = G-1
 For confidence intervals of variable co-variance
sub-matrix according to each domain interaction i and j,
procedure P2 can be adapted in the following matrix
form.
 s s
Kij =Σ Σ A’ikA’jlBkl , i,j = 0,1,2,..,s (11)
 k=0 l=0
 where Kij represents sub-matrix of co-variances
between Xi and Xj when i,j = 1,2,..,s and between Xi(j)
and Y when j(i) = 0 and Bkl represents sub-matrix of co-

Am. J. Applied Sci., 4 (5): 300-306, 2007

 304

variances between ci and cj when i,j = 1,2,..,s and
between ci(j) and d when j(i) = 0. To verify the
correctness of equations (6) – (11), consider AX = b
formed by equations (6) and (7) as follows

Suppose that A-1 is in the following form.

 By using the definition of A’ij, it can be proven that
the matrix property of AA-1 holds. Thus, A-1 is valid
and can be used in both equations (9) and (10) as
claimed. Also, as seen in the block structure described
in equations (9), (10) and (11), firstly, the matrix G-1
must be computed and then, parallel and distributed
computing can be independently allocated to each
processor for determining Xi, Y and Kij for all i and j.

Computational experience: In this study, the heat
transfer equation (∂2Ø/∂x2 + ∂2Ø/∂y2 = f(x, y))
approximated by 5 Points finite difference approach is
used with randomly generated ranges of f(x, y)
represented by l(x, y) and u(x, y), x = 0, ∆, 2∆, …., N1∆
and y = 0, ∆, 2∆, …., N2∆. ∆ is varied under the
constraint that N1∆ = N2∆ = 1. Excluding boundary
elements, the total number of variables (n) for the
corresponding set of linear equations is (N1- 1)(N2 – 1)
in case of the expected value. The proposed method
was coded in Matlab[26] utilizing its special commands
for sparse linear equations solver. For each problem
size n, a sample of variables range containing 10
observations is obtained and its average is computed
and summarized in the following table.

The Proposed Method
No. of Variables (n) Average Time/Variable (sec.)
100,000 64
200,000 452
300,000 1,178
400,000 2,163
500,000 2,940
600,000 5,134
700,000 6,987
800,000 9,341
900,000 11,596
1,000,000 14,246

 Simultaneously, the same set of problems is
solved using the direct LP command, “Linprog[.]”, of
software Matlab[26]. The required computation times are
reported in the following table.

The direct LP method
No. of Variables (n) Average Time/Variable (sec.)
100,000 3,244
200,000 18,140

 The results from both tables indicate that the
proposed method is more efficient as the problem size
grows. All computations are performed on a
microcomputer system with CPU speed of 2.4 Ghz and
1 Gbytes RAM. Moreover, the proposed method is
extended to determine a sample of covariance elements
under various n and their average computing times are
analyzed using 10 observations for each problem sizes
and can be shown as follows.

The Proposed Method
No. of Variables No. of Covariance Average
(n) Elements Time/Element (sec.)
5,000 12,501,250 961
6,000 18,003,000 1,366
7,000 24,503,500 1,836
8,000 32,004,000 3,127

 Since all test cases in the above table require full
dense variance/co-variance matrices, computations of
each variable variance/co-variance range consume up to
O(n2) limiting the much smaller upper bound of n as
compared to the case of expected value with O(n). The
size of n > 8000 is prohibited due to available memory.
Nevertheless, in practice, it is most likely to find that
the resulting variance/co-variance matrix can be
approximated as a sparse matrix. In this circumstance, a
set of such large and sparse K[bbT] is randomly
generated as banded matrices with k as the number of
nonzero elements in each row. Then, ten samples of
each n ranging from 10,000 to 500,000 are tested
utilizing MATLAB powerful commands on sparse
matrix operations[26] based on Procedure P2. The
experimental results are as shown below.

No. of Variables (n) k Average Time/Element (sec.)
10,000 7 137
10,000 11 191
10,000 21 374
25,000 7 442
25,000 11 579
25,000 21 1,211
50,000 7 1,588
50,000 11 1,965
50,000 21 3,004
100,000 7 3,017
100,000 11 3,981
100,000 21 5,177
500,000 5 8,287

Am. J. Applied Sci., 4 (5): 300-306, 2007

 305

 The result in the above table indicates some
possibilities to conduct parallel computations in case of
large and sparse variance/co-variance matrices. For a
much larger scale problem, matrix partitioning and
interpolations should be further developed. It should be
noted that all computations have been conducted based
on the assumption that solving the corresponding linear
systems can be performed on a single processor and the
proposed approach is designed to partition the whole
problem to several independent linear systems capable
of distributing one by one among parallel processor.
However, when the matrix A becomes too large to be
handled by a single processor, a set of clusters among
processors has to be designed. Each cluster consists of a
set of designed processors capable of solving each
related system. To support this concept in case of
Matlab, parallel programming is required and their
basic study on matrix operations was experimented
in[27].
 Next, a preliminary study on the use of the direct
approach P1 compared to using equations (9)-(10)
when the problem is in the form of equations (6)-(8) is
conducted as follows. First, the heat equation with L-
shape boundary is decomposed to 200 domains with
2500 points (variables) in each domain and 5,000
common domain points with generated data of right
hand side lower and upper limits. Then, the resulting
equations in the non-decomposition mode consists of a
sparse 500,000 variables system while the domain
decomposition system is involved with sparse
2,500×2,500 Bi, 2,500×5,000 Fi, 5,000×2,500 Ei (i =1,
2,.., 200) and 5,000×5,000 C. The experiment has been
conducted using 4 identical processors as specified
previously, working in parallel with the additional main
server (2.4 GHz and 2 Gbytes RAM) working as jobs
manager. For the direct approach, the average time out
of ten samples for computing a variable interval is
2,917 sec. which is slightly less than the previous
experiment case of 500,000 variables (2940 sec.). With
five parallel processors, the expected computing time
per element can be reduced by one-fifth resulting
almost ten minutes (2917/5). To solve the problem
using equations (9) for a specific i, G-1 is computed in
the main server firstly. Then, computing A’ij, j =
0,1,2,..,s (=200 in this case) is distributed equally to
each processor (=50) and A’0j is computed in parallel
by the main server. After that, the sub-vector interval
for Xi is computed using equation (9) and algorithm P1
using the main server. At the end, 2,500 intervals are
obtained. In this study, i =1 is conducted as an example
resulting the total computation time of 57 hrs. 21 min.
and 6 sec. Therefore, the average time for computing a

variable interval is reduced to merely one and a half
minute per element. This basic study initially illustrates
a further direction for continuous improvement on
implementing algorithm P1 using parallel processing.
For algorithm P2, similar scheme can be conducted by
using equations (11). It should be noted that the parallel
strategy used in this case has not been fully developed
and can be improved. For examples, computing G-1 and
equation (9) with i=1 have not been parallelized yet.
Further explorations should be investigated.

CONCLUSION

 In this study, parallel approaches for determining
confidence intervals of variables in the large and sparse
linear equation system with RHS ranges is proposed
and preliminary tested its application possibilities. The
basic concept has been verified and validated
mathematically. Comparisons with the direct linear
programming approach are conducted in case of the
mean confidence interval. The test results illustrate that
the approach greatly improves outcome efficiency.
Moreover, the proposed approach can be adapted to
work in parallel using domain decomposition. An
example is preliminary studied and the initial result
indicates a further improvement.

REFERENCES

1. Dantzig, G.B., 1963. Linear Programming and

Extensions. Princeton University Press.
2. Lindgren, B.W., 1976. Statistical Theory. 3rd Edn.,

Macmillan Publishing Co., Inc.
3. Aykanat, C., F. Ozguner, F. Ercal and P.

Sadayappan, 1988. Iterative algorithms for solution
of large sparse systems of linear equations on
hypercubes. IEEE Trans. Comput., 37: 1554-1567.

5. Heller, D., 1978. A survey of parallel algorithms in
numerical linear algebra. SIAM Rev., 20: 740-777.

6. Ortega, J., 1988. Introduction to Parallel and
Vector Solution of Linear System. Plenum Press.

4. Saad, Y., 1996. Iterative Methods for Sparse Linear
Systems. PWS Publishing Co.

7. Stone, H.S., 1973. An efficient parallel algorithm
for the solution of a tridiagonal linear system of
equations. J. ACM, 20: 27-38.

8. Dekel, E., D. Nassimi and S. Sahni, 1981. Parallel
matrix and graph algorithms. SIAM J. Comput.,
10: 657-675.

9. Ben-Asher, Y. and G. Haber, 2004. Efficient
parallel solutions of linear algebraic circuits. J.
Parallel Distrib. Comput., 64: 163-172.

Am. J. Applied Sci., 4 (5): 300-306, 2007

 306

10. Catalyurek, U.V. and C. Aykanat, 1999.
Hypergraph-partitioning-based decomposition for
parallel sparse-matrix vector multiplication. IEEE
Trans. Parallel Distributed System, 10: 673-693.

11. Hendrickson, B., R. Leland and S. Plimpton, 1995.
An efficient parallel algorithm for matrix-vector
multiplication. Internat. J. High Speed Comput., 7:
73-88.

12. Ogielski, A.T. and W. Aiello, 1993. Sparse matrix
computation on parallel processor arrays, SIAM J.
Scient. Comput., 14: 519-530.

13. Romero, L.F. and E.L. Zapata, 1995. Data
distribution for sparse matrix vector multiplication.
J. Parallel Comput., 21: 583-605.

14. Ujaldon, M.U., E.L. Zapata, S.D. Sharma and J.
Saltz, 1996. Parallelization techniques for sparse
matrix applications. J. Parallel Distributed
Comput., 38: 256-266.

15. Basserman, A., 1997. Parallel sparse matrix
computations in iterative solvers on distributed
memory machines. J. Parallel Distrib. Comput., 45:
46-52.

16. Ortigosa, E.M., L.F. Romero and J.I. Ramos,
Parallel scheduling of the PCG method for banded
matrices rising from FDM/FEM. J. Parallel Distrib.
Comput., 63: 1243-1256.

17. Farhat, C. and P.S. Chen, 1994. Tailoring domain
decomposition methods for efficient parallel coarse
grid solution and for systems with many right hand
sides. Contem. Math., 180: 401-406.

18. Smith, B., P. Bjorstad and W. Gropp, 1996.
Domain Decomposition, Cambridge Univ. Press
Cambridge, MA.

19. Balasubramanya, K.N.B., Murthy, C. and Siva
Ram Murthy, 1996. Gaussian elimination based
algorithm for solving linear equations on mesh
connected processors. IEE Proc. Comp. Digit.
Tech., 143: 407-412.

20. Chandra, R., C. Siva Ram Murthy, 2003. A faster
algorithm for solving linear algebraic equations on
the star graph. J. Parallel Distrib. Comput., 63:
465-480.

21. Gallivan, K., R.J. Plemmons and A.H. Sameh,
1990. Parallel algorithms for dense linear algebra
computations. SIAM Rev., 32: 54-135.

22. Tufo, H.M. and P.F. Fischer, 2001. Fast parallel
direct solvers for coarse grid problems. J. Parallel
Distributed Comput., 61: 151-177.

23. Benzi, M. and M. Tuma, 2002. A parallel solver
for large-scale Markov chain. Appl. Numer. Math.,
41: 135-153.

24. Klee, V. and G. Minty, 1972. How good is the
Simplex-Algorithm?, Inequalities III, O. Shisha
(Ed.), Academic Press, New York, pp: 159-175.

25. Borgwardt, K.H., 1986. The Simplex Method: A
Probabilistic Analysis. Springer-Verlag.

26. The Math Works, Inc. MATLAB manual and
instruction sets, 2000.

27. Milosavljevic, I.Z. and M.A. Jabri, 2001.
Experimental evaluation of automatic array
alignment in parallelized Matlab, J. Parallel
Distributed Comput., 61: 784-809.

