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Abstract: The authors discuss the combination of an Artificial Neural Network (ANN) with analytical 
models to improve the performance of the prediction model of finishing rolling force in hot strip 
rolling mill process. The suggested model was implemented using Bayesian Evidence based training 
algorithm. It was found that the Bayesian Evidence based approach provided a superior and smoother 
fit to the real rolling mill data. Completely independent set of real rolling data were used to evaluate 
the capacity of the fitted ANN model to predict the unseen regions of data. As a result, test rolls 
obtained by the suggested hybrid model have shown high prediction quality comparatively to the usual 
empirical prediction models. 
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INTRODUCTION 

 
 Recent years have seen attempts by a number of 
authors to utilise various artificial neural network 
(ANN) based models to help better predict the rolling 
force in a hot rolling strip mill[1-3]. The rationale here is 
that ANNs have the potential to provide a mechanism 
for dealing with multi-variate, often noisy and possibly 
non-linear data sets, where an exact analytic model is 
either intractable, or too time consuming to develop. 
The basic procedure is to use a database of 
measurements to train an ANN structure and then 
evaluate the predictive capacity of the built model on 
previously unseen data[4]. 
 Traditional back-propagation based training of 
feed-forward ANNs is accomplished by a process of 
minimization of an error function which quantifies the 
network output performance (whether regression or 
classification) in terms of the difference between the 
network predicted values and true target values[5] 
applied to some set of training data. The basic approach 
of direct gradient descent has been much improved in 
recent years by the development of more sophisticated 
search algorithms such as scaled conjugate gradients 
which provide a significantly faster convergence. 
Assuming that satisfactory network convergence has 
been obtained from the training data, probably the next 
largest issue lies in the ability of the trained network to 
provide satisfactory classification performance on 
previously unseen data. The generalization capacity of a 
network is a measure of the networks capacity to learn 
the underlying structure of the data rather than any 
noise present in the data. For the example of a 
regression model, a network with good generalization 
will tend to produce similar error rates for both the 
training and (independent but drawn from the same 

distribution) testing data, whereas a poorly generalizing 
network would give very low errors on the training set 
and relatively poor performance on the test data. Such a 
network is said to be over-fitted. Generalization can be 
understood by considering the bias and variance of the 
network model[6]. There is a trade-off between bias and 
variance and a function too closely fitted to the training 
data (a large network with many parameters) will have 
a large variance and hence generalize poorly to new 
data. By smoothing the function (a simpler network 
with fewer parameters), the generalization improves, 
but if taken too far will yield a model with insufficient 
complexity to model the data, yielding a high bias and 
hence large error. 
 The key to good classifier performance is to find 
the network with the best generalization performance to 
new data and this requires careful consideration of the 
quantity and quality of the training data (it should be 
statistically well sampled from the generative 
distribution) and the relation to the overall size of the 
network[7]. The problem is likely to be exacerbated for 
large networks (with lots of independent parameters) 
and limited amounts of training data[8]. 
 An often cited empirical requirement for 
classification problems is that the minimum number of 
training patterns NMIN required for good generalization 
performance is given by[5, 6]: 

MINN W /= ε  (1) 
Where W is the total number of independent network 
weights and biases and � is the fraction of classification 
errors permitted on the test data.  
 Practically the use of early stopping or cross-
validation using an independent validation data set are 
used as termination or selection criteria for network 
training[6]; the final network performance being 
evaluated using a third independent test data set. Good 
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generalization performance is an indicator that the 
information capacity of the network (reflected in the 
number of weights) is of the same order of, or smaller 
than the total information content of the training set. 
The rationale here is that if the network is sufficiently 
complex, it can memorize all the features of the data 
(including noise). For the network to generalise it has to 
start to just store the important features of the training 
data. This being stated, there also exists evidence to 
suggest that generalisation performance depends more 
on the size of the weights rather than their number. 
 Recent years have seen the development of 
sophisticated methods of addressing the over-fitting 
problem through regularisation techniques. A simple 
way to implement regularization is using an additive 
weight decay term in the error function[9]. A more 
sophisticated basis for regularization can be found in 
the approach of Bayesian Evidence update techniques 
for network training which frame the optimisation 
problem rather differently. 
 Such an approach is useful as network weight 
regularization falls naturally into the framework; and 
additionally it is possible to estimate confidence bounds 
on the output predictions based on the widths of the 
posterior probability functions for the weight matrix[10]. 
 In the current work the authors seek to use a 
Bayesian implementation of ANN modelling and 
physical prior knowledge to generate an efficient hybrid 
hot rolling force prediction model.  
 
Hot strip rolling mill description: A simplified 
schematic diagram of a steel rolling mill for the 
production of coil plate is presented in Fig. 1. It shows 
the transformation stages of slabs from entry at the 
reheat furnace to their exit at the coiler at the end of the 
mill. 
 The feed stock for the rolling mill are slabs 
produced by the continuous casting process in a steel 
plant (1). These are normally supplied at ambient 
temperature. The purpose of the reheat furnace (2) is to 
raise the temperature of the whole slab to the around 
1250 °C (.re-crystallization temperature). 
 On exit from the reheat furnace, there is a build-up 
of scale on the surface of the slab, due to oxidation, 
which is detrimental to surface quality. This is removed 
within the de-scaling box (3), which consists of jets of 
high pressure water (140 bars).  
 After the de-scaling stage, the roughing mill (4) 
produces a breakdown bar (the product between the 
roughing mill and the finishing mill) by rolling the slab 
through a series of forward and reverse passes, typically 
reducing the slab thickness from 200 to 30 mm. The 
finishing mill (5) is designed to reduce the gauge 
(thickness) of the breakdown bar to that of the finished 
coil, while maintaining the desired width. The finishing 
mill control system is critical as constant mass flow  
Table 1: Main characteristics of mittal steel hot plate mill, El-

Hadjar, Algeria 

Finisher mill Type 6 stand 4-High mill equipped 
 with hydraulic screwdowns 
Nominal Power 2 x 3000 HP, D.C. 
Rolling Thickness Range 1.5 to 15 mm 
Strip Width Range 600 to 1350 mm 
AGC Hydraulic 
Gauge meter X Ray 
Rolling speed 49 to 407 rpm 
Rolling temperature 860 to 880 °C 
Maximum rolling Force  30000 KN 
Maximum exit speed  15 m/sec 

 
must be maintained in all stands to ensure continuous 
production[11]. 
 On exit from the finishing mill, the rolled strip is 
still at elevated temperatures, typically ( > 800°C ), 
which is above the phase transformation of the coil. 
Critical quality parameters, such as the mechanical 
properties and other metallurgical properties, of the 
finished coil are significantly affected by the cooling 
process applied in the run-out table (6). On exit from 
the mill / run-out table cooling system, the hot strip 
typically has a velocity of up to 15 m/s and can be 
hundreds of metres in length. The down coiler (7) 
allows the strip to be converted into a coil of 
dimensions that can be easily transported. The main 
characteristics of the considered hot strip rolling mill 
are given in Table 1[12]. 
 
Hot strip rolling force empirical model: For a given 
strip Temperature, a steel grade and a rolling speed, the 
actual separating rolling force can be calculated by the 
model of Alexander-Ford [13-15]: 

1,15  ( )  = −a m e a pF b k R h h Q  (2) 

where b is the plate width, R is the work roll radius, km 
is the mean constrained flow stress in the roll bite for 
plane strain conditions (strain resistance), expression 
under square root is the contact length, he is the 
incoming thickness, ha is the exit thickness and Qp is a 
geometric factor which is strongly affected by the 
geometry of roll bite and interface conditions between 
the rolls and rolled strip. 
 The term km can be calculated in function of a set 
of hot rolling parameters, like plate temperature T, 
viscous friction coefficient µ and rolling speed v.  
 In practice, there is no accurate physical model 
which describes efficiently the relationship between 
these hot rolling parameters. They are generally 
determined by empirical regressions. In fact, many 
authors proposed different equations for the calculation 
of the geometrical factor Qp, based on their own 
experimental rolling data. 
 An analog situation stands for the hot flow strength 
km , where there are many formulas that permit its 
evaluation from values of temperature, strain and strain 
rate[16]. 
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A commonly used approximation of the term km is 
given by Misaka formula[17,18]: 
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where: 
km: Steel Hot Strength [kgf/mm²], 
C: Carbon content [%], 
T: Absolute Temperature [°K], 
kr: True Strain, 
t: Time [s]. 
 To improve the hot rolling force model accuracy, 
we suggest to combine forward neural networks and 
empirical knowledges which gives an hybrid prediction 
model.  
 
Hybrid ANN prediction model Topology : As shown 
in Fig. 2, the chosen network structure for the 
regression modelling was a multilayer perceptron 
(MLP). The reason for this choice was that MLPs have 
been shown to be universal approximators[19]. The MLP 
network implementation and training was undertaken in 
MATLABTM.  
 The data was presented to a series of MLP 
networks with a variable number of hidden nodes 
arranged in a single hidden layer.  
 Each network had 6 input nodes corresponding to 
the variables used in equation 2 and a single output 
node corresponding to the value of the predicted rolling 
force Fa..  
 The empirical model given in equation (3) is 
associated to the structure of the ANN force prediction 
model to evaluate the value of the strain resistance km in 
terms of strip temperature and other metallurgical 
parameters which gives an hybrid hot rolling force 
prediction model.  
The output rolling force Fa, from the second (hidden) 
layer was given by: 

1 1

tanh
= =

� �
= + +� �

� �� �
 
M d

a kj ji i j k
j i

F w w x b b  (4) 

Where wji was the weight matrix of the first layer, wkj 
the weight matrix of the second layer, bj the bias vector 
of the first layer, bk the bias vector of the second layer, 
d the number of input nodes and M was the number of 
hidden nodes. 
 The non-linear capability of the network was 
implemented using the tanh transfer function between 
the first and second layers. The Bayesian Evidence 
based training is investigated.  
 When implementing Bayesian Evidence 
training[10], the error function was given by: 

N W
2 2

BE n n i
n 1 i 1

E (t y ) w
2 2= =

β α= − +   (5) 

 
Fig. 1: Hot rolling line layout  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Hybrid ANN prediction model topology 
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Fig. 3: Hot rolling input/output samples 
 
Where EBE was the (Bayesian Evidence) error function 
and � the parameter describing the inverse variance of 
the noise model for the target data (predicted hot rolling 
force). 
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 If interest lies only in minimizing the error for a 
particular  weight  vector,   then   the   effective   value 
of the regularization   parameter  depends only on the 
ratio �/�.  
 Besides accommodating regularization in a 
consistent framework, the Bayesian approach has the 
additional advantage of providing a mechanism to 
generate confidence bounds on the output prediction 
values. 
 Assuming that the posterior distribution of the 
weight matrix is Gaussian in nature, it is possible to 
find the variance corresponding to the mean output 
y(x,wMP), i.e. the standard prediction output for the most 
probable weight distribution. This variance is given 
by[6]: 

2 11 −= + Tg A gσ
β

 (6) 

Where A was the Hessian matrix defining the second 
derivatives of the error function and g was the gradient 
of the error function. 
 The standard deviation, � of the predictive 
distribution can be interpreted as an error bar on the 
mean value yMP .which has two contributions. The first 
arises from the intrinsic noise in the target data, the 
second from the posterior distribution of the network 
weights. The ease of implementation of these powerful 
network training paradigms was a major consideration 
in employing the NETLAB toolbox to realize the 
network training[10]. 
 For the Bayesian Evidence training an initial value 
of �=0.01 was employed along with an initial inverse 
noise variance parameter � = 100. 
 During the Evidence update procedure of the 
network training, these hyper-parameters were re-
evaluated iteratively. 
  
Data acquisition and pre-processing: Measurements 
of several finishing rolling mill variables were recorded 
for each coil rolled over a five days period of 
production using IbaAnalyser© , ( an embedded real-
time logging software). For our study, the manufacture 
of a single grade of steel coils (with constant width and 
exit thickness varying from 1.2 mm to 4.00 mm) was 
considered.  
 The patterns were grouped into training, validation 
and   test   sets. The  output  values  of  Fa ranged from 
0 to 1. 
 In order to fully utilise the maximum dynamic 
range of the tanh transfer function of the ANN 
networks, The input values were normalised to lie in the 
range -1 to + 1 before presentation to the networks. 
Note that all results presented in this paper are plotted 
as the original (un-normalised) data. 
 A sample of the most significant input/output 
variables used in our study for one rolling coil is shown 
in the curves of Fig. 3. 

 
Fig. 4: Predicted and measured hot Rolling forces 
 

RESULTS 
 
 Bayesian Evidence training algorithms was 
implemented in MATLAB using the NETLAB toolbox. 
The performance of the network was evaluated by 
calculating the mean square error of the true target 
values from the network predictions.  
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Where yn are the network outputs, tn the target values, N 
the number of samples and �t, the variance of the target 
data. 
 For each of the 1 to 15 hidden node network 
structures, the error was calculated for the training, 
validation and test data sets. For Bayesian Evidence 
training, the best selected network in term of 
generalization of prediction was for 8 hidden nodes. 
The performance of the selected hybrid ANN model is 
tested using measured rolling forces at the last stand of 
the finishing mill from 422 coils. From Fig. 4, it is 
shown that the hybrid ANN model is able to predict the 
rolling force in more accurate way than the analytical 
model given by equation 2.  
 

CONCLUSION 
 
 The efficiency of a hot strip mill can be increased 
if the amount of rejected material is reduced. A strip is 
considered as rejected material if it does not meet the 
requirements of the customer and thus has to be sold as 
lower quality or has to be re-melted. This last option 
implies a tremendous amount of extra materials 
handling and energy costs. 
 One way to improve the efficiency of the hot 
rolling mill is the use of a better finishing set-up model 
for hot rolling force prediction.  
 Bayesian training method was implemented to 
construct a series of hybrid ANN structures to model 
hot rolling force prediction from real input/output data 
and empirical expressions. It has been demonstrated 
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that the suggested approach produced a superior fit to 
the data. 
 This was experimentally verified with a completely 
independent set of data. It was noted that the Bayesian 
training algorithm tended to produce smoother overall 
fitting functions to the training data. A smoothly 
varying model output was an important characteristic to 
raise confidence in hot rolling force prediction model.  
Future work will aim to extend the number of input 
parameters modelled to allow for different carbon 
content of steel.  
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