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Hyper spectral Remote Sensing of Vegetation Using Red Edge Position Techniques
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Abstract: Two red edge position (REP) techniques, Linear d&magrangian, were applied on
hyperspectral data acquired from the HyMap sensoafforested area in Thetford Forest, UK. Red
edge positions of different vegetation covers wergracted with the two approaches from the
hyperspectral data. Based on the estimated REBsLitiear and Lagrangian interpolation methods
were compared with ground reference image to aealgéferent vegetation types and ages.
Experimental results of both interpolation techmigiundicate that the wavelength and reflectance of
REP for younger plants (higher chlorophyll contestjft towards longer wavelength and of higher
reflectance in comparison with older plants (lowklorophyll content).
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INTRODUCTION nitrogen and lignit®, discriminating land cover (LC)
types*!, crop moisture variatiof§® leaf pigment
Approximately, 70 percent of the Earth’s land concentratiorts”, modeling quantitative biophysical
surface is covered with vegetatibn Furthermore, and vyield characteristics of agricultural crops
vegetation provides a basic foundation for allryi improving detection change in sparse veget&fiof
beings and it is one of the most important comptnen and assessing absolute water content in plant$é3ve
of the ecosysteli?. Knowledge about variations in Currently, a variety of techniques have been used
vegetation species and community distribution paste for the detection of early-stage vegetation strass
alterations in vegetation phenological (growth)legc airborne and satellite imagery. These techniquesiie
and modifications in the plant physiology anda number of different vegetation indices (VI), “red
morphology provide valuable insight into the climat edge” detection, band absorption analysis, spectral
edaphic, geologic, and physiographic charactesigtic  mixture analysis, wavelet transform and neural
an aref. network&Y. Red edge parameters, compared with Vs,
Scientists are concerned with observing natur&inga are relatively insensitive to changes of biophysica
careful observations and measurements, and theactors, such as soil cover percentage and optical
attempting to accept or reject hypotheses concgrninpropertie$??4 canopy structure and leaf optical
these phenomelta As direct data measurement and propertie€* 2% atmospheric effedf§ and irradiance

collection is labor intensive and time consunffagt is  and solar zenith andfé !

also possible to collect information about an objc The red edge is the name given to the abrupt
geographic area from a distant vantage point usingeflectance change in the 680-740 nm region of
specialized instruments (sensors). vegetation spectra that is caused by the combined

Scientists have devoted a significant amount offfects of strong chlorophyll absorption and legérnal
effort to develop sensors and visual and digitahgen  scatterinf§”. Experimental and theoretical studies show
processing algorithms to extract important vegetati that REP shifts according to changes of chlorophyll
biophysical information from remotely sensed dafd  content®? LAI®? biomass and hydric stattt§
Hyperspectral remote sensor data can provide agé®?, plant health level§!, and seasonal pattetits
significant enhancement of spectral measurementvhen a plant is healthy with high chlorophyll cartte
capabilities over conventional remote sensor systemand high LAI, the red edge position shifts towalne t
that can be useful for the identification and sgoemt longer wavelengths; when it suffers from disease or
modeling of terrestrial ecosystem characteri§tfts chlorosis and low LAl it shifts toward the shorter
Hyperspectral data also can provide significantwavelengthd. These observations on REP can
improvements in spectral information content wheneffectively be used to classify and distinguishfedi#nt
compared with broadbands for detecting plant sfress vegetation types and ages in this study.

9 "measuring chlorophyll content of plafits To investigate the use of REP as a mean to dassif
identifying small differences in percent green wafien  vegetation, various techniques of analysis suclioas,

covef'd, extracting biochemical variables such aspoint interpolation (Linear), Gaussian, Lagrangian,
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polynomial fitting and high order curve fitting to support UK academic and industrial research and
techniques have been developed to minimize errors iapplication developments. The spatial resolution of
determining the red edge positibri”. Through these the data is 5 m. The spectral characteristics ef th
techniques, the Gaussian and high order curvenditti HyMap data are shown in Table 1. The HyMap sensor
techniques are more complex in implementation thamprovides an excellent signal to noise ratio (>5§)@ﬂd
the Linear and Lagrangian technig®s The Linear image quality that is setting the industry stan&rd
approach is computationally simple, robust, the tmos
practical and suitable method for extracting thePRE Table 1: The Speg]tfal characteristics of the Hyapsor (Adapted
from hyperspectral data rather than other method&om HyVista 2002%) ____
- . . Spectral configuration

because only four bands and a simple interpolation Bandwidth — Average speciral

i Module  Spectral range ge sp
computation are needéd On the other hand, the P across module sampling interval

Lagrangian interpolation which is based on deriati VIS  045-0.8am  15-16nm 15 nm
analysis, estimates REP by using wavebands with no NIR  089-1.3%m  15-16 nm 15 nm
equal-space requirement, minimizes interpolationrer SWIR1 1.40-1.8pm  15-16 nm 13 nm
and soil background effects and computationallyis it SWIR2  1.95—2.4@m 18 — 20 nm 17 nm
one of the simpler curve fitting techniqti®s Based on

these advantages of the two Linear and Lagrangian sg40% 5000
methods, recently many applications have been D J7
considered to these methods for estimating REP*"

1 Therefore, in this analysis the objective is tiody

the performance of Linear and Lagrangian approaches
for extracting the REP from HyMap data for estimgti
different vegetation covers (types and ages), topaoe \/
the two methods in detecting REP and to assess thes |
ability of hyperspectral remote sensing data tinmege B
different vegetation covers based on the Linear and |/
Lagrangian REP.
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Old Scots Pine

285000

Young Scots Pine

¥ Mlature Corsican Pine
Young Corsican Pine
O1d Corsican Pine
Grassland

Eroadleaved

STUDY AREA AND DATA SETS

254,000

584000 5500

Study area: The study area is located in the Thetford _. .
Forest of Breckland, East Anglia. It is Britainargest 19- 1: Ground reference image of the study area
lowland pine forest area and occupies an area
approximately 22,000 hectares. The forest areaistsns
mainly of planted and managed Corsican and Scats pi
of different age classes, and has a low relativiefre
Corsican pine is the most profitable and suitableifer
for planting in much of lowland Britain particulgrbn

Og?-round reference data: The ground reference data are
generated from the UK Forestry Commission’s GIS
vector data and stock map, which is a scanned irnhige
the digitized and vectorised ground reference dista,
presented in Fig. 1. There are several regionshén t
light soils in the East of the country. It growsiaiy ground_reference data, which mclude_ seven differen
and the combination of its straight trunks and tligh vegetation covers such as old .SCOtS pine (OCPRgou
Scots pine (YSP), mature Corsican pine (MCP), young

branches produces good timber with few knots. ; ) . ]
; : : : : Corsican pine (YCP), old Corsican pine (OCP),
C d tes Thetford F t in Eastlia
orsican pine dominates Thetford Forest in Eastliang broadieaved (BL) and grassland (GL).

which is the largest man-made pine forest in Britai
Timber from this pine is used in building, roofing,
flooring and interior framing.

The native Scots pine is also common in Britain.
Scots pine was planted as early as 1922 but has be
slowly replaced with Corsican pine due to the fate
higher yield, better timber and greater resistatace

MATERIALSAND METHODS

Einear interpolation technique: Guyot and Baret
(1988§°*" have applied a simple linear model to the red

disease. The Forestry Commission (UK) is theinfrared slope. They used four wavelength bands,

government agency responsible for the managemeint aﬁ:entered at 670, 700, 740 and 780nm. Reflectgnce
maintenance of British forests. measurements at 670nm and 780nm are used to estimat

the inflection point reflectance (Equation 1) ankhaar
interpolation procedure is applied between 700nih an

this study was acquired from the HyMap sensor for a74_0nm to e.stima}te the wavelength of the inflection
forested area in Thetford Forest, UK. The HyMapadat point (Equation 23

was acquired on 17 June 2000 as part of the BNSCI—:a _ Rg0 + Rgo (1)
NERC SHAC airborne campaign. This campaign aims /& ~ 2
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Reer —R features such as the red edge and chlorophyll peak
Arer = A0 + (A740 = Az00) X ﬁ . ) reflectancé.
740 1700 The Lagrangian technique uses three points

For calculating red edge position of each pixel,interpolation for estimating REP. A second order
reflectance and wavelength of those bands, whicle ha polynomial uses to fit the first derivative vegeiat
closest wavelength values to the 670, 700, 7407&0d reflectance spectrum and reflectance in three
nm, need to be extracted from the original imagewavebands, in which they are the bands with maximum
Calculation of REP for the selected pixel based orfirst derivative reflectance and two adjoining bantihe

Equations 1 and 2 are presented in the following, i derivative reflectancedRgep) and wavelengthigep) of

which the reflectance at the inflection poiRkdp) is: REP were calculated using equation (3) and (4)
_ Ryt Ry _ 296+2089 respectively, i.e.,
Rep =0 = 5 TH9B or = AAA-A) o, (A=A)0-A)
. RREP_(/I _/1)(/1 - ) A(i-1) (/]_/] )(/]_/1 ) Adi)
and wavelength of red ed{@..) corresponding to i1 T A T A RE I
the estimated reflectance value at the inflectioimtps: A-A)A=-4)
* (A bl )(A y ) ©

R... - R it1 ~ Ai-a/\ i A
/]REP = /]700 + (/]740 - /]700) X |:REP7OO:|

Rra0 = Reoo

= A(/]i + /]i+1) + B(/‘i—l +/‘i+1) + C(/]i—i +/‘i) (4)

_ A
Meep = 7078+ (7381-7078) x| 2292277061 _ 7559812 REP 2(A+B+C)
1677-706

D,
(nm). where A= Ai-1) '
(Ai—l - /]i )(Ai—l - /]i+1)

REP for the selected pixel which was calculated by

using the Linear method is represented on its zdome Dﬂ(i)
plot of spectral profile as shown in Fig. 2. B = and
(/]i - /]i—l)(/]i - /]i+1)
S|pen:trq| Proﬁlle D
C= A(i+1) (5)

2000 (/1“1 _Ai—l)(AHl _/]i)

and whereD, .1y, D,j andD,.1) are the first derivative
reflectance values around the red edge positiothef
maximum slope at wavelengths.;, 4 and A,
respectively. In this study, for each pixel, wawgjth
and derivative reflectance of the maximum first
derivative (band 20) and the two adjoining bandsd®
21 are extracted from first derivative of original
hyperspectral image. Then, the Lagrangian’s equatio
' : e applied to estimate red edge position of the setect

0.70 Q.75
. Wovelengthilon ™= . ixel, are shown as the following:
Fig. 2: REP for the selected pixel, which wasp 9

calculated by using the Linear method A= D) _ 395 0868,
(/]19 _/‘20)(/]19 _/‘21) 003_729) (70-8—73$

|

1800
Eppp= 11825

1000
Appp=072208
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Lagrangian interpolation technique:  Another

technique for calculating REP in this study is the
. . . . D

Lagrangian technique, which is based on spectrung =

A o) -
derivative analysis, proposed by Dawson and Curran (A, —A;5)(A,0 —A,1)

(&998}27]-,1—“6 ?d_var;tag_e of derivative spectroscopy is 4855 _ o115 and
that it is relatively insensitive to variations in . . == <
illumination intensity, which may be caused by aes (7220-70m)(7229-738])

in sun angle, cloud cover, topography and atmospher C= D; 2y -

attenuatioi®. When such factors are removed, any =~ (A, - A,)(A,, = A,)
differences observed are more likely to be dueetf |

chemical composition, leaf structure or water cotite. 371 = 0.805%
Secondly, derivative spectroscopy can enhance small (7381-7078)(7381-7229)

peaks that are obscured by larger peaks due tefibis Based on Equation 4, the wavelength value of REP
and can be used to facilitate the location of kegcsral (1) is calculated as:
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A — A(/‘ZO + /121) + B(/‘lg + /121) + C(/]J_g + /]20) 600 Lagrangian inlerpola‘llon lechniqu‘ew determine ll‘we red edge position
REP —
2(A+B+C) ij

=[0.868§7229+7381) - 211537078+ 7381 + U - — - — - — 1

0.8055707.8+ 7228)] /[ 2(0.8688- 2.1153+ 0.8055] =

Aeep = 721.9583 (nm)

and derivative reflectance value of REMRLep) is
calculated as:

(A- /120)(/1 B /]21)

400 -

300

200

First derivative reflectance value

DReep = 209 i
(g = A20)(Aig = 451) 0 o
(A=A5)(A-Ay) °F ‘ \ ‘
(AZO _ /]19)(/120 _/]21) A(20) 650 700 waeﬁfnZﬁ - 750 800
Fig. 3: The Lagrangian interpolation technique to
(A - /119)(/1 B /120) estimate REP of the selected pixel
— — 221
(AZ:L /]19)(/]21 AZO) Linear REP of 139 samples from 7 different vegetation types and ages
* MCP
DR, = (7219583-7229)(7219583-738]) x3975 - o Mer
(7078-7229)(7078-738]) + Yop
o
N (7219583-7078)(7219583-7381) 4855 . ool S
(7229-7078)(7229-7381) 3 & 6L
| (1219583-7078)(721.9583-7229) | ., |
(7381-707.8)(738.1-7229) T 100
= 485.891., 0y
The calculated REP based on the Lagrangiai 1ooo;
interpolation technique is shown in Fig. 3, in white
horizontal and vertical axes represent wavelength) ( B T
and first derivative reflectance respectively. Thatlab Wavelength (nm)
software is used to create and plot the interpmiati Fig. 4: Classifying vegetation species based ottesca
curve. plot of REP values for the Linear method
RESULTSAND ANALYSIS The results based on this simple statistical asigly

confirm the results of the scatter plot for distirghing

Performance of the Linear interpolation method: For  between the coniferous and broadleaved species in
classifying different vegetation covers, 139 testejs  which REP of the broadleaved species shifts towards
are extracted from the 7 different vegetation cevafr  longer wavelength and also has higher reflectaadeev
the original hyperspectral data. The REPs of thesthan REPs of the coniferous species. The statistica
pixels are calculated based on the Linear method analysis in Fig. 5 shows that distinguishing betwee
shown in Fig. 4. grassland and broadleaved can also be done easily a

The results based on the scatter plot of the REPREP of the broadleaved has longer wavelength and
show that the two coniferous and broadleaved specighigher reflectance than REP of the grassland. Bist t
can easily be distinguished from each other as shiow classification parameters cannot easily be used to
Fig. 4. REPs of the broadleaved shift towards timgér  distinguish between grassland and coniferous.
wavelength and higher reflectance than REPs of the For classifying the coniferous species based on
coniferous species. Based on REPs of the GL spéties their age, in this study they are classified inoee
the scatter plot, this species cannot be distitguis groups of ages as young, mature and old. For &yassgi
from the two other species easily. Also, basedten t ages of plants, the theoretical study shows thaenw
scatter plot, REPs of different ages of the conifier plants have higher chlorophyll content and LAl
species are much dispersed with different location(young), the REP shifts toward the longer wavelksgt
therefore it is difficult to classify them. The sstical when plants have low chlorophyll content and LAI
analysis (mean) was used to check if it offersdpett (old), the REP shifts toward the shorter waveleg§th
results than the scatter plot for classifying tkgetation ~ The results based on the statistical analysis e@/rsin
covers. Fig. 5 is corresponding to the theoretical resutts
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which REP of the older coniferous has shorterthe longer wavelength than REP of the both matack a
wavelength than REP of the mature coniferous. It ild coniferous.

expected that, REP of the young coniferous shifts

toward the |Onger Wavelength than REP Of the both LinisérDEEPofaveragebeweensamp\esforeach'fdiﬁeremvegetationhfpesandages

mature and old coniferous. But based on the grounc % MCP

reference information, this is expected, because th 4mm ° A

young Corsican and Scots pines in this forest werg X yep

young and they should not have chlorophyll as magh 100/ i o o osP

a mature pine should have. 3 |i Yo Q- -
= 1500f | i

Performance of the Lagrangian interpolation 5 i ’/

technique: The same pixel coordinates of those 139 test= “®f X/ M e

pixels that are used for the Linear method are dsed 200 l \*

the Lagrangian method too. So that, these pixel L

coordinates are applied on the first derivativedrgpe- - Lo P

ctral image for extracting the required information X

based on the Lagrangian's equations. The calculater qmb—— . . P

REPs of the 139 test pixels are shown in Fig. 6. S Sﬁfwdﬁfmm?B e T TS

The results based on the scatter plot of the REPBig. 5: Classifying different vegetation based osam

show that the two coniferous and broadleaved specie REP values for the Linear method
can easily be distinguished from each other. As the

pOlygonS in the Flg 6 shows. REPs of the broadidav Lagrangian REPs for 138 samples from 7 different vegetation types and ages
' ! 1100 T T T T T T

shift towards the longer wavelength and higher
derivative reflectance than REPs of the coniferous 08
species. Also, the broadleaved and grassland speare -
be distinguished from their REPs which REPs of the £
broadleaved shifts toward the longer wavelength aniz =7
higher derivative reflectance than REPs of thef
grassland. But, the grassland species cannot k3
distinguished from the coniferous species easilgoA
based on the scatter plot, REPs of different adgekeo
coniferous species are much dispersed with difteren
location and difficult to be classified. The statal
analysis (mean) was used to check if it offers dvett 300
results than the scatter plot for classifying tegetation - ‘ , , : ,
covers. T4 716 718 70 722 724 726 7H

. . . . Wavelength (nm)
The results based on this simple statistical agly ~. .. e : :
. . Fig. 6: Classifying vegetation species based ottesca
(Fig. 7), confirm the results of the scatter plédr g ying veg b

2 o . lot of REP values for the Lagrangian method
distinguishing between the coniferous and broadidav P grang
SPECies- The REP Of the broadleaved SpeCieS Shiﬁ‘\:agrang\anREF’anraveragehetweenSamp\eanfeach?diﬁererﬂvegetaﬁnnhrpesandages
towards longer wavelength and also has highel gy ,
]

MCP
ocp
Y¥CP
Y3P
0sP
BL
datal

% 0O = + 0 =

Deriv ative
m
=
{m=)

MCP
ocpP
YR
YEP
0sP
BL

GL

derivative reflectance value than REPs of the eonifs
species. Also, the statistical analysis results are
corresponding to the scatter plot for distinguighin
between the grassland and broadleaved in whichd&®EP
the broadleaved has longer wavelength and highe
derivative reflectance than REP of the grasslamd. |
addition, the statistical analysis results thatghessland
may be distinguished from the coniferous by
considering the derivative reflectance value ofirthe
REP, but it can not be distinguished based on the

780

700

600

%O = +a =

550
soof |

Deriv ative reflectance value

40P\
40

wavelength of REP easily. 0
The results based on the statistical analysis show =m0 , , ‘ , ‘ 3
in Fig. 7 is corresponding to the theoretical resimh FE G I R

YWyawelength (nrm)

which  REP of the older coniferous has shortergig 7. Classifying different vegetation based osam
wavelength than REP of the mature coniferous. It is REP values for the Lagrangian method

expected that REP of the young coniferous shiftsatd
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Table 2: A summary of the advantages and attribotéhe two interpolation techniques for determinihe REP

. Required spectral Suitability for canopy . Minimizing soil background
Methods Implementation type spectra Red edge detection effects
Linear Easy Reflectance Yes Good Low
Lagrangian Moderate Derivative Yes Good High
Comparison of the Linear and Lagrangian CONCLUSION

interpolation techniques. For having a better

comparison between the two methods to estimate REP, 139 test pixels from the HyMap were selected to
the mean values of the REPs for the two methods argxtract REP using the two Linear and Lagrangian
represented together in Fig. 8. It shows that,ethier approaches for the goal of classifying vegetation
similarity between the both methods for estimating  gpecies. The statistical analysis is applied tecutate
REPs of different vegetation covers, which wavettng he mean value of the REP for both methods. The
of the young, old and mature coniferous and br@dle g tigtical results show that, both the Linear and
ed species are distributed  from thg shorter to dong Lagrangian approaches generated similar results in
wavelength in both methods respectively. Basedhen t extracting REP for the coniferous and the broadidav

statistical analysis results, both the Lagrangiam a : Th | f imil Its i .
Linear methods generate similar results for esfimyat species. They also offer similar results in estingat

REP of the coniferous and broadleaved species ardEP Of different ages of coniferous species. Beteh

different results for estimating REP of the grasdla are some differences between the two approaches in
As the REP of the grassland in the Lagrangiarfstimating REP of the grassland in which the

method goes towards shorter wavelength and lowekagrangian technique generate more accurate results

reflectance than the Linear method, it can be emterd  than the Linear method because of its less seitgitiv

that the Lagrangian approach offers more accuratthe soil background reflectance effects.

results than the Linear method in estimating geask| Comparison of the ground reference map and the

because the derivative approaches (LagrangiaREP of the test data suggested some degree ofssucce

technique) minimizes the soil background reflecéanc in discriminating the broadleaved and coniferoesst

effects”” %l In classifying different ages of conifer- Based on the statistical results of both the Lirgsad

ous species, both methods offer the same results ihgrangian methods, the broadleaved trees can be

extracting REP for different ages of coniferouscsp@  igsinguished from the coniferous tress by consiger

A summary of the attributes of the two methods is,, _. : . .
presented in Table 2. The differences between o their REP, in which REP of the broadlgaved treeft sh
toward the longer wavelength and of higher reflecéa

methods based on the computation are that the Line .
method can be done easils as it only requires fou an REP of the coniferous trees. Another succkssfu

bands. Implementation of the Lagrangian techniqudé€Sult which had been obtained by comparison wiéh t
needs more computation time and if the first deivea ground reference image is that different ages ef th
spectra are available, we can simply take threaldan coniferous trees can be distinguished easily by
containing the maximum first derivative reflectance considering the wavelength of their REP. The REP of
value to determine REP. However, if the first detive  the younger trees shift towards longer wavelengith a
spectra are not available (for example, multisgéctr REP of the older trees shift towards the shorter
remote sensing data with very small number of bandswavelength. The above results demonstrate the falten
this method cannot be used. application of hyperspectral remote sensing and red
edge position analysis for detecting different vatien

Lirear and Lagrangisn REP for average between samples of each 7 different vegetation types and aoes
1800

—— types and ages in a forested area.
Linear: blue )\ C, * ¥ MCP yp 9
1600 | Lagrangiar: black + A o ocP
. e ACKNOWLEDGMENT
1400 — TN f'\ o osP
[ o = #  BL
21 [\\0 J & 6L We would like to thank Universiti Putra Malaysia
£ 1o e o 0cF (UPM) for the financial support in completing this
b} + YCP
2 © yep research.
o o 0sp
*
&

-
e @ @ o REFERENCES
400
a 1.
718 719

- Jensen, J.R, 2000. Remote sensing of the

7” 7%,33@97%; W:f‘? EET environment: an earth resource perspective. Peentic
Fig. 8: Comparison of the mean REP values of the Hall series in geographic information science, USA,
Linear and Lagrangian methods Chap.1 and 10, pp: 1-28 and 333-377.

186¢



10.

11.

12.

13.

14.

15.

Am. J. Appl. i3 (6): 1864-1871, 2006

Williams, J. A. 1992. Vegetation Classificatioising
Landsat TM and SPOT-HRYV Imagery in Mountainous
Terrain, Kananaskis Country, S. W. Alberta. Alberta

Recreation and Parks, Kananaskis Country Operationgz

Branch, Environmental
Alberta.

Jones, K. B., K. H. Ritters, J. D. Wickham, B.
Tankersley, R. V. O’Neill, D. J. Chaloud, E. R.i8m
and A. C. Neale, 1998. An Ecological assessmetfteof
United States: Mid-Atlantic RegighVashington: EPA.,

pp: 103.
Pu, R., P. Gong, G. Biging, and M. R. LarrigQ03.
Extraction of Red Edge Optical Parameters from

Management, Canmore,

Hyperion Data for Estimation of Forest Leaf Area 20.

Index. IEEE Transactions on geoscience and remote
sensing., 41 (4): 916-921.

Frohn, R. C. 1998. Remote Sensing for Landscape
Ecology, Boca Raton, FL: Lewis Publishers., pp: 99.

Huete, A. and C. Justice, 1999. MODIS Vegetatio 21.

Index (MOD 13) Algorithm Theoretical Basis
Document, Greenbelt: NASA Goddard Space Flight
Center.,http://modarch.gsfc.nasa.gav/MODIS/LAND/
#vegetation-indicegp: 129.

Kumar, L., K. S. Schmidt, S. Dury and A. K
Skidmore, 2001. Imaging Spectrometry
Vegetation Science. In F. van de Meer. and S.M. de
Jong (Eds). Imaging Spectrometry (Kluwer Academic
Press: Dordrecht)., pp: 111-155.

Thenkaball, P. S., E. A. Enclona, M. S. Ashiamj B.
Van Der Meer, 2004. Accuracy Assessments of
Hyperspectral Waveband Performance for Vegetation
Analysis  Applications. Remote  Sensing
Environment., 91: 354-376.

Carter, G. A. 1994. Ratios of leaf reflectandes
narrow wavebands as indicators of plant stress.
International Journal of Remote Sensing., 15: G&7-7
Carter, G. A. 1998. Reflectance Bands andcésdfor
Remote Estimation of Photosynthesis and Stomatal
Conductance in Pine Canopies. Remote Sensing of
Environment., 63: 61-72.

Blackburn, G. A. and C. M. Steele, 1999. Talgahe
Remote Sensing of Matorral Vegetation Physiology:
Relationships between Spectral Reflectance, Pigment

and Biophysical Characteristics of Semiarid Busthlan 27.

Canopies. Remote Sens. of Environ., 70; 278-292.
McGwire, K., T .Minor, and L. Fenstermaker,999
Hyperspectral Mixture Modeling for Quantifying
Sparse Vegetation Cover in Arid environments.
Remote Sensing of Environment., 72 (3): 360-374.
Curran, P. J. 1994. Imaging spectrometry. essyin
Physical Geography., 18 (2): 247-266.

Janetos, A. C. and C. O. Justice, 2000. Landrcand

global productivity: A measurement strategy for the 29-

NASA programme. International Journal of Remote
Sensing., 21(6): 1491-1512.
Penuelas, J., I. Filella, C. Biel, L. Serramnd R.

Save, 1993. The reflectance at the 950-970 regiana 3Q.

indicator of plant water status. International dailirof
Remote Sensing., 14 (10): 1887-1905.

187(

16.

18.

19.

and 22.

23.

of 24.

25.

26.

Penuelas, J., I. Filella, , P. Lloret, , F.ridm, and M.
Vilajeliu, 1995. Reflectance assessment of mitea$f

on apple trees. International Journal of Remote
Sensing., 16: 2727-2733.
Thenkabail, P. S. 2003. Biophysical and yield

information for precision farming from near-reah
and historical Landsat TM images. Internationalrdal

of Remote Sensing., 24 (14): 839-877.

Elvidge, C. D., Z. Chen, and D. P. Groenev&fif3.
Detection of trace quantities of green vegetatioh990
AVIRIS data. Remote Sens. of Environ.; 221-279.

Lyon, J. G., D. Yuan, R. S. Lunetta, and CEDRidge,
1998. A change detection experiment using vegetatio
indices. Photogrammetric Engineering and Remote
Sensing., 64 (2): 143-150.

Bauer, M. E., C. S. T. Daughtry adC. Vanderbilt,
1981. Spectralagronimic relationships of corn,
soybean, and wheat canopies. Report SR-P1-04187.
West Lafayette, IN: Laboratory for Applications of
Remote Sensing, Purdue University., pp: 17.

Ustin, S. L., M. O. Smith, S. Jacquemoud, M.
Verstraete, and Y. Govaerts, 1999. Geobotany:
Vegetation Mapping for Earth Sciences. In A. N.
Rencz (Ed.), Remote sensing for the earth sciences:
Manual of remote sensing (pp: 189-247). New York:
John Wiley and Sons.

Guyot, G., F. Baret, and S. Jacquemoud, 1992.
Imaging Spectroscopy for Vegetation Studies.
Imaging Spectroscopy: Fundamentals and Prospective
Application., pp: 145-165.

Horler, D. N. H., M. Dockray and J. Barber,839
The red edge of plant leaf reflectance. Internation
Journal of Remote Sensing., 4(2): 273-288.

Leprieur, C.E. 1989. Preliminary evaluation of
AVIRIS airborne measurements for vegetation. Proc
9th EARSeL Symp Espoo, Finland, June 27-July., 1:
1-6.

Curran, P.J., W.R. Windham and H.L. Gholz, 5199
Exploring the relationship between reflectance red
edge and chlorophyll concentration in slash pine
leaves. Tree Physigll5: 203-206.

Baret, F., I. Champion, G. Guyot and A. Paglair
1987. Monitoring wheat canopies with a high spéctra
resolution radiometer. Remote Sensing Environment.,
22:367-378.

Dawson, T. P. and P. J. Curran, 1998. A new
Technique for Interpolating the Reflectance RedeEdg
Position. International Journal of Remote Sensing.,
19: 2133-2139.

28. Belanger, M. J., J. R. Miller and M. G. Boy#895.

Comparative relationships between some red edge
parameters and seasonal leaf  chlorophyll
concentrations. Can. J. Remote Sens., 21 (1): 16-21
Munden, R., P. J. Curran, and J. A. Catt, 19%%
relationship between red edge and chlorophyll
concentration in Broadbalk winter wheat experiment
at Rothamsted. Int. J. Remote Sed5 (3): 705-709.
Danson, F. M. and S. E. Plummer, 1995. Re@-edg
response to forest leaf area index. International
Journal of Remote Sensing., 16: 183-188.



31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Am. J. Appl. i3 (6): 1864-1871, 2006

Filella, I. and J. Penuelas, 1994. The recd guiggition
and shape as indicators of plant chlorophyll conten
biomass and hydric status. International Journal of
Remote Sensing, 15 (7): 1459-1470.

Niemann, K. O. 1995. Remote sensing of fostmtd
age using airborne spectrometer data. Photogramm.
Eng. Remote Sens61 (9): 1119-1127.

Vane, G. and A. F. H. Goetz, 1988. Terrestrial45.

imaging spectroscopy. Remote Sens. Envjraa: 1-
29.

Miller, J. R., J. Wu, M. G. Boyer, M. Belangand E.  46.
W. Hare, 1991. Season patterns in leaf reflectaade
edge characteristics. Int. J. Remote Sed2 (7):
1509-1523. 47.

Clevers, J. G. P. W., S. M. de Jong, , G.gerga, F.
van der Meer, W. H. Bakker, A. K. Skidmore and K.
H. Scholte, 2002. Derivation of the red edge index
using the MERIS standard band setting. Internationa
Journal of Remote Sensing., 23: 3169-3184.

Dash, J. an®. J. Curran, 2003. MTCI: the MERIS 48.

terrestrial chlorophyll index. Proc. MERIS User
Workshop, Frascati, ItalfESA SP-549, May 2004).
Guyot, G. and F. Baret, 1988. Utilisation deHaute
Resolution Spectrale Pour Suivre I'etat des Cosvert
Vegetaux. Proceedings™4nternational Colloquium

“Spectral Signatures of Objects in Remote Sensing”50.

Aussois, 18-22 January 1988, Paris: ESA, ESA
Publication SP-287., pp: 279-286.

Clevers, J. G. P. W. and R. Jongschaap, 2001.
Imaging spectrometry for agricultural applicatiohs.

F. D. van der Meer and S. M. De Jong (Editors),

Imaging spectrometry: basic principles and
prospective  applications.  Kluwer  Academic,
Dordrecht, The Netherlands., pp: 157-199. 52.

Clevers, J. G. P. W., S. M. de Jong, , G.fgerga, , F.
van der Meer, , W. H. Bakker, A. K. Skidmore and E.
A. Addink, 2001. MERIS and the red-edge position.
JAG., 3 (4): 313-320.

Zarco-Tejada, P. J., J. C. Pushnik, S. Dobkpvesid
S.L. Ustin, 2003. Steady-state chlorophyth
fluorescence detection from canopy derivative

reflectance andlouble-peak red-edge effects. Remote 54.

Sensing of Environment, 84: 283-294.
le Maire, G., C. Francois and E. Dufrene, 20@4vards
universal broad leaf chlorophyll indices using

PROSPECT simulated database and hyperspectrab.

reflectance measurements. Remote of
Environment., 89: 1-28.

Broge, N. H. and E. Leblanc, 2000. Comparing
prediction power and stability of broadband and
hyperspectral vegetation indices for estimation of
green leaf area index and canopy chlorophyll dgnsit

Remote Sens. of Environ., 76: 156-172.

Sensing

1871

43.

44,

49.

51.

53.

Tsai, F. and W. Philpot, 1998. Derivative gl of
Hyperspectral Data. Remote Sensing of Environment.,
66: 41-51.

Li, L. Ustin, S. L. and M. Lay, 2005. Applitat of
AVIRIS data in detection of oil-induced vegetation
stress and cover change at Jornada, New Mexico.
Remote Sensing of Environmerfi4: 1-16.

Denniss, A. and A. Bunn, 2001. SHAC UK's fiBAR

and hyperspectral airborne campaign. Geoinformatics
June., pp: 12-15.
HyVista, 2002.
http//:www.hyvista.com/main.html,
June 2002}.

Kumar, L. and A. Skidmore, 1998. Use of Deiixa
Spectroscopy to Identify Regions of Differences
between Some Australian Eucalypt Species.
Proceedings "9 Australasian Remote Sensing and
Photogrammetry Conference, Sydney, New South
Wales, CDROM.

Demetriades-Shah, T. H., M. D. Steven, andh J.
Clark, 1990. High Derivatives Spectra in Remote
Sensing. Remote Sens. of Envir@8; 55-64.

Lacar, F. M., M. M. Lewis and I. T. Griersd01.
Use of Hyperspectral Reflectance for Discrimination
between Grape Varieties. IEEE., pp: 2878-2880.
Smith, K. L., M. D. Steven, and J. J. Col802. Use

of hyperspectral derivative ratios in the red-edge
region to identify plant stress responses to gaksle
Remote Sens. of Environ., 92: 207-217.

Imanishi, J., K. Sugimoto and Y. Morimoto, 200
Detecting drought status and LAl of twQuercus
species canopies using derivative spectra. Congputer
and Electronics in Agriculture., 43: 109-129.

Broge, N. H. and J. V. Mortensen, 2002. Dagvi
green crop area index and canopy chlorophyll dgnsit
of winter wheat from spectral reflectance data.
Remote Sensing of Environment., 81: 45-57.

Datt, B., M. Paterson, 2000. Vegetation-spitcéral
mixture analysis. Proceedings of the IEEE
International Geoscience and Remote Sensing., pp:
1936-1938.

Curran, P. J., J. L. Dungan and H. L. GhoE9QL
Exploring the relationship between reflectance red
edge and chlorophyll content in slash pine. Tree
Physiology., 7: 33-48.

Mauser, W., and H. Bach, 1995. Imaging
spectroscopy in  hydrology and agriculture—
determination of model parameters. In: J. Hill, and
Megier (Eds.), Imaging spectrometry—a tool for
environmental observations (pp: 261-283). Dordrecht
The Netherlands: Kluwer Academic Publishing.

HyMap Hyperspectral
{Accessed:

Scanner,
10



