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Abstract: Two red edge position (REP) techniques, Linear and Lagrangian, were applied on 
hyperspectral data acquired from the HyMap sensor for a forested area in Thetford Forest, UK. Red 
edge positions of different vegetation covers were extracted with the two approaches from the 
hyperspectral data. Based on the estimated REPs, the Linear and Lagrangian interpolation methods 
were compared with ground reference image to analyse different vegetation types and ages. 
Experimental results of both interpolation techniques indicate that the wavelength and reflectance of 
REP for younger plants (higher chlorophyll content) shift towards longer wavelength and of higher 
reflectance in comparison with older plants (lower chlorophyll content).  
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INTRODUCTION 

 
 Approximately, 70 percent of the Earth’s land 
surface is covered with vegetation[1]. Furthermore, 
vegetation provides a basic foundation for all living 
beings and it is one of the most important components 
of the ecosystem[1-2]. Knowledge about variations in 
vegetation species and community distribution patterns, 
alterations in vegetation phenological (growth) cycles, 
and modifications in the plant physiology and 
morphology provide valuable insight into the climatic, 
edaphic, geologic, and physiographic characteristics of 
an area[3]. 
 Scientists are concerned with observing nature, making 
careful observations and measurements, and then 
attempting to accept or reject hypotheses concerning 
these phenomena[1]. As direct data measurement and 
collection is labor intensive and time consuming[4], it is 
also possible to collect information about an object or 
geographic area from a distant vantage point using 
specialized instruments (sensors). 
 Scientists have devoted a significant amount of 
effort to develop sensors and visual and digital image 
processing algorithms to extract important vegetation 
biophysical information from remotely sensed data [5-6]. 
Hyperspectral remote sensor data can provide a 
significant enhancement of spectral measurement 
capabilities over conventional remote sensor systems 
that can be useful for the identification and subsequent 
modeling of terrestrial ecosystem characteristics[7-8]. 
Hyperspectral data also can provide significant 
improvements in spectral information content when 
compared with broadbands for detecting plant stress[9-

10], measuring chlorophyll content of plants[11], 
identifying small differences in percent green vegetation 
cover[12], extracting biochemical variables such as 

nitrogen and lignin[13], discriminating land cover (LC) 
types[14], crop moisture variations[15-16], leaf pigment 
concentrations[11], modeling quantitative biophysical 
and yield characteristics of agricultural crops[17], 
improving detection change in sparse vegetation[18-19] 
and assessing absolute water content in plant leaves[20]. 
 Currently, a variety of techniques have been used 
for the detection of early-stage vegetation stress in 
airborne and satellite imagery. These techniques include 
a number of different vegetation indices (VI), “red-
edge” detection, band absorption analysis, spectral 
mixture analysis, wavelet transform and neural 
networks[21]. Red edge parameters, compared with VIs, 
are relatively insensitive to changes of biophysical 
factors, such as soil cover percentage and optical 
properties[22-24], canopy structure and leaf optical 
properties[22, 25], atmospheric effects[26] and irradiance 
and solar zenith angle[22, 25]. 
 The red edge is the name given to the abrupt 
reflectance change in the 680-740 nm region of 
vegetation spectra that is caused by the combined 
effects of strong chlorophyll absorption and leaf internal 
scattering[27]. Experimental and theoretical studies show 
that REP shifts according to changes of chlorophyll 
content[28-29], LAI [30], biomass and hydric status[31], 
age[32], plant health levels[33], and seasonal patterns[34]. 
When a plant is healthy with high chlorophyll content 
and high LAI, the red edge position shifts toward the 
longer wavelengths; when it suffers from disease or 
chlorosis and low LAI, it shifts toward the shorter 
wavelengths[4]. These observations on REP can 
effectively be used to classify and distinguish different 
vegetation types and ages in this study. 
 To investigate the use of REP as a mean to classify 
vegetation, various techniques of analysis such as, four 
point interpolation (Linear), Gaussian, Lagrangian, 
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polynomial fitting and high order curve fitting 
techniques have been developed to minimize errors in 
determining the red edge position[4, 27]. Through these 
techniques, the Gaussian and high order curve fitting 
techniques are more complex in implementation than 
the Linear and Lagrangian techniques[27]. The Linear 
approach is computationally simple, robust, the most 
practical and suitable method for extracting the REP 
from hyperspectral data rather than other methods 
because only four bands and a simple interpolation 
computation are needed[35]. On the other hand, the 
Lagrangian interpolation which is based on derivative 
analysis, estimates REP by using wavebands with no 
equal-space requirement, minimizes interpolation errors 
and soil background effects and computationally, it is 
one of the simpler curve fitting techniques[36]. Based on 
these advantages of the two Linear and Lagrangian 
methods, recently many applications have been 
considered to these methods for estimating REP[4, 27, 37-

44]. Therefore, in this analysis the objective is to study 
the performance of Linear and Lagrangian approaches 
for extracting the REP from HyMap data for estimating 
different vegetation covers (types and ages), to compare 
the two methods in detecting REP and to assess the 
ability of hyperspectral remote sensing data to estimate 
different vegetation covers based on the Linear and 
Lagrangian REP. 
 

STUDY AREA AND DATA SETS 
 
Study area: The study area is located in the Thetford 
Forest of Breckland, East Anglia. It is Britain’s largest 
lowland pine forest area and occupies an area of 
approximately 22,000 hectares. The forest area consists 
mainly of planted and managed Corsican and Scots pine 
of different age classes, and has a low relative relief. 
Corsican pine is the most profitable and suitable conifer 
for planting in much of lowland Britain particularly on 
light soils in the East of the country. It grows quickly 
and the combination of its straight trunks and light 
branches produces good timber with few knots. 
Corsican pine dominates Thetford Forest in East Anglia, 
which is the largest man-made pine forest in Britain. 
Timber from this pine is used in building, roofing, 
flooring and interior framing. 
 The native Scots pine is also common in Britain. 
Scots pine was planted as early as 1922 but has been 
slowly replaced with Corsican pine due to the latter’s 
higher yield, better timber and greater resistance to 
disease. The Forestry Commission (UK) is the 
government agency responsible for the management and 
maintenance of British forests.  
 
Hyperspectral data: The hyperspectral data used in 
this study was acquired from the HyMap sensor for a 
forested area in Thetford Forest, UK. The HyMap data 
was acquired on 17 June 2000 as part of the BNSC-
NERC SHAC airborne campaign. This campaign aims 

to support UK academic and industrial research and 
application developments[45]. The spatial resolution of 
the data is 5 m. The spectral characteristics of the 
HyMap data are shown in Table 1. The HyMap sensor 
provides an excellent signal to noise ratio (>500:1) and 
image quality that is setting the industry standard[46]. 
 
Table 1: The spectral characteristics of the HyMap sensor (Adapted 
from HyVista, 2002[46]) 

Spectral configuration 

Module Spectral range 
Bandwidth 

across module 
Average spectral 
sampling interval 

VIS 0.45 – 0.89 µm 15 – 16 nm 15 nm 

NIR 0.89 – 1.35 µm 15 – 16 nm 15 nm 

SWIR1 1.40 – 1.80 µm 15 – 16 nm 13 nm 

SWIR2 1.95 – 2.48 µm 18 – 20 nm 17 nm 

 

 
Fig. 1: Ground reference image of the study area 
 
Ground reference data: The ground reference data are 
generated from the UK Forestry Commission’s GIS 
vector data and stock map, which is a scanned image of 
the digitized and vectorised ground reference data, is 
presented in Fig. 1. There are several regions in the 
ground reference data, which include seven different 
vegetation covers such as old Scots pine (OCP), young 
Scots pine (YSP), mature Corsican pine (MCP), young 
Corsican pine (YCP), old Corsican pine (OCP), 
broadleaved (BL) and grassland (GL). 
 

MATERIALS AND METHODS 
 
 
Linear interpolation technique: Guyot and Baret 
(1988)[37] have applied a simple linear model to the red 
infrared slope. They used four wavelength bands, 
centered at 670, 700, 740 and 780nm. Reflectance 
measurements at 670nm and 780nm are used to estimate 
the inflection point reflectance (Equation 1) and a linear 
interpolation procedure is applied between 700nm and 
740nm to estimate the wavelength of the inflection 
point (Equation 2)[7] 
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 For calculating red edge position of each pixel, 
reflectance and wavelength of those bands, which have 
closest wavelength values to the 670, 700, 740 and 780 
nm, need to be extracted from the original image.  
Calculation of REP for the selected pixel based on 
Equations 1 and 2 are presented in the following, in 
which the reflectance at the inflection point (RREP) is: 
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REP for the selected pixel which was calculated by 
using the Linear method is represented on its zoomed 
plot of spectral profile as shown in Fig. 2. 
 

 
Fig. 2: REP for the selected pixel, which was 

calculated by using the Linear method 
 
Lagrangian interpolation technique: Another 
technique for calculating REP in this study is the 
Lagrangian technique, which is based on spectrum 
derivative analysis, proposed by Dawson and Curran 
(1998)[27]. The advantage of derivative spectroscopy is 
that it is relatively insensitive to variations in 
illumination intensity, which may be caused by changes 
in sun angle, cloud cover, topography and atmospheric 
attenuation[43]. When such factors are removed, any 
differences observed are more likely to be due to leaf 
chemical composition, leaf structure or water content[47]. 
Secondly, derivative spectroscopy can enhance smaller 
peaks that are obscured by larger peaks due to noise[48] 
and can be used to facilitate the location of key spectral 

features such as the red edge and chlorophyll peak 
reflectance[49]. 
        The Lagrangian technique uses three points 
interpolation for estimating REP. A second order 
polynomial uses to fit the first derivative vegetation 
reflectance spectrum and reflectance in three 
wavebands, in which they are the bands with maximum 
first derivative reflectance and two adjoining bands. The 
derivative reflectance (DRREP) and wavelength (λREP) of 
REP were calculated using equation (3) and (4) 
respectively, i.e., 
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and where Dλ(i-1), Dλ(i) and Dλ(i+1) are the first derivative 
reflectance values around the red edge position of the 
maximum slope at wavelengths λi-1, λi and λi+1 
respectively. In this study, for each pixel, wavelength 
and derivative reflectance of the maximum first 
derivative (band 20) and the two adjoining bands 19 and 
21 are extracted from first derivative of original 
hyperspectral image. Then, the Lagrangian’s equations 
applied to estimate red edge position of the selected 
pixel, are shown as the following: 
 

=
−−

=
))(( 21192019

)19(

λλλλ
λD

A 8688.0
)1.7388.707)(9.7228.707(

5.397 =
−−

, 

 

 

=
−−

=
))(( 21201920

)20(

λλλλ
λD

B    

1153.2
)1.7389.722)(8.7079.722(

5.485 −=
−−

 and 

=
−−

=
))(( 20211921

)21(

λλλλ
λD

C  

 

8055.0
)9.7221.738)(8.7071.738(

371 =
−−

. 

 

Based on Equation 4, the wavelength value of REP 
(λREP) is calculated as: 
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 The calculated REP based on the Lagrangian 
interpolation technique is shown in Fig. 3, in which the 
horizontal and vertical axes represent wavelength (nm) 
and first derivative reflectance respectively. The Matlab 
software is used to create and plot the interpolation 
curve. 
 

RESULTS AND ANALYSIS 
 
Performance of the Linear interpolation method: For 
classifying different vegetation covers, 139 test pixels 
are extracted from the 7 different vegetation covers of 
the original hyperspectral data. The REPs of these 
pixels are calculated based on the Linear method as 
shown in Fig. 4. 
 The results based on the scatter plot of the REPs 
show that the two coniferous and broadleaved species 
can easily be distinguished from each other as shown in 
Fig. 4. REPs of the broadleaved shift towards the longer 
wavelength and higher reflectance than REPs of the 
coniferous species. Based on REPs of the GL species in 
the scatter plot, this species cannot be distinguished 
from the two other species easily. Also, based on the 
scatter plot, REPs of different ages of the coniferous 
species are much dispersed with different location, 
therefore it is difficult to classify them. The statistical 
analysis (mean) was used to check if it offers better 
results than the scatter plot for classifying the vegetation 
covers. 
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Lagrangian interpolation technique to determine the red edge position

REP

 
Fig. 3: The Lagrangian interpolation technique to 

estimate REP of the selected pixel 
 

 
Fig. 4: Classifying vegetation species based on scatter 

plot of REP values for the Linear method 
 
 The results based on this simple statistical analysis 
confirm the results of the scatter plot for distinguishing 
between the coniferous and broadleaved species in 
which REP of the broadleaved species shifts towards 
longer wavelength and also has higher reflectance value 
than REPs of the coniferous species. The statistical 
analysis in Fig. 5 shows that distinguishing between 
grassland and broadleaved can also be done easily as 
REP of the broadleaved has longer wavelength and 
higher reflectance than REP of the grassland. But this 
classification parameters cannot easily be used to 
distinguish between grassland and coniferous.  
 For classifying the coniferous species based on 
their age, in this study they are classified into three 
groups of ages as young, mature and old. For classifying 
ages of plants, the theoretical study shows that, when 
plants have higher chlorophyll content and LAI 
(young), the REP shifts toward the longer wavelengths; 
when plants have low chlorophyll content and LAI 
(old), the REP shifts toward the shorter wavelengths[4]. 
The results based on the statistical analysis as shown in 
Fig. 5 is corresponding to the theoretical results in 
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which REP of the older coniferous has shorter 
wavelength than REP of the mature coniferous. It is 
expected that, REP of the young coniferous shifts 
toward the longer wavelength than REP of the both 
mature and old coniferous. But based on the ground 
reference information, this is expected, because the 
young Corsican and Scots pines in this forest were very 
young and they should not have chlorophyll as much as 
a mature pine should have. 
 
Performance of the Lagrangian interpolation 
technique: The same pixel coordinates of those 139 test 
pixels that are used for the Linear method are used for 
the Lagrangian method too. So that, these pixel 
coordinates are applied on the first derivative hyperspe-
ctral image for extracting the required information 
based on the Lagrangian’s equations. The calculated 
REPs of the 139 test pixels are shown in Fig. 6.     
 The results based on the scatter plot of the REPs 
show that the two coniferous and broadleaved species 
can easily be distinguished from each other. As the 
polygons in the Fig. 6 shows, REPs of the broadleaved 
shift towards the longer wavelength and higher 
derivative reflectance than REPs of the coniferous 
species. Also, the broadleaved and grassland species can 
be distinguished from their REPs which REPs of the 
broadleaved shifts toward the longer wavelength and 
higher derivative reflectance than REPs of the 
grassland. But, the grassland species cannot be  
distinguished from the coniferous species easily. Also, 
based on the scatter plot, REPs of different ages of the 
coniferous species are much dispersed with different 
location and difficult to be classified. The statistical 
analysis (mean) was used to check if it offers better 
results than the scatter plot for classifying the vegetation 
covers. 
 The results based on this simple statistical analysis 
(Fig. 7), confirm the results of the scatter plot, for 
distinguishing between the coniferous and broadleaved 
species. The REP of the broadleaved species shifts 
towards longer wavelength and also has higher 
derivative reflectance value than REPs of the coniferous 
species. Also, the statistical analysis results are 
corresponding to the scatter plot for distinguishing 
between the grassland and broadleaved in which REP of 
the broadleaved has longer wavelength and higher 
derivative reflectance than REP of the grassland. In 
addition, the statistical analysis results that the grassland 
may be distinguished from the coniferous by 
considering the derivative reflectance value of their 
REP, but it can not be distinguished based on the 
wavelength of REP easily. 
 The results based on the statistical analysis shown 
in Fig. 7 is corresponding to the theoretical results in 
which REP of the older coniferous has shorter 
wavelength than REP of the mature coniferous. It is 
expected that REP of the young coniferous shifts toward 

the longer wavelength than REP of the both mature and 
old coniferous. 
 

 
Fig. 5: Classifying different vegetation based on mean 

REP values for the Linear method 
 

 
Fig. 6: Classifying vegetation species based on scatter 

plot of REP values for the Lagrangian method 
 

 
Fig. 7: Classifying different vegetation based on mean 

REP values for the Lagrangian method 
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 Table 2: A summary of the advantages and attributes of the two interpolation techniques for determining the REP 

Methods Implementation 
Required spectral 

type 
Suitability for canopy 

spectra 
Red edge detection 

Minimizing soil background 
effects 

Linear 
Lagrangian 

Easy 
Moderate 

Reflectance 
Derivative 

Yes 
Yes 

Good 
Good 

Low 
High 

 
Comparison of the Linear and Lagrangian 
interpolation techniques: For having a better 
comparison between the two methods to estimate REP, 
the mean values of the REPs for the two methods are 
represented together in Fig. 8. It shows that, there is 
similarity between the both methods for estimating the 
REPs of different vegetation covers, which wavelength 
of the young, old and mature coniferous and broadleav-
ed species are distributed from the shorter to longer 
wavelength in both methods respectively. Based on the 
statistical analysis results, both the Lagrangian and 
Linear methods generate similar results for estimating 
REP of the coniferous and broadleaved species and 
different results for estimating REP of the grassland. 
 As the REP of the grassland in the Lagrangian 
method goes towards shorter wavelength and lower 
reflectance than the Linear method, it can be concluded 
that the Lagrangian approach offers more accurate 
results than the Linear method in estimating grassland, 
because the derivative approaches (Lagrangian 
technique) minimizes the soil background reflectance 
effects[27, 50-55]. In classifying different ages of conifer-
ous species, both methods offer the same results in 
extracting REP for different ages of coniferous species. 
 A summary of the attributes of the two methods is 
presented in Table 2. The differences between these two 
methods based on the computation are that the Linear 
method can be done easily as it only requires four 
bands. Implementation of the Lagrangian technique 
needs more computation time and if the first derivative 
spectra are available, we can simply take three bands 
containing the maximum first derivative reflectance 
value to determine REP. However, if the first derivative 
spectra are not available (for example, multispectral 
remote sensing data with very small number of bands), 
this method cannot be used. 
 

 
Fig. 8: Comparison of the mean REP values of the 

Linear and Lagrangian methods 

CONCLUSION 
 
 139 test pixels from the HyMap were selected to 
extract REP using the two Linear and Lagrangian 
approaches for the goal of classifying vegetation 
species. The statistical analysis is applied to calculate 
the mean value of the REP for both methods. The 
statistical results show that, both the Linear and 
Lagrangian approaches generated similar results in 
extracting REP for the coniferous and the broadleaved 
species. They also offer similar results in estimating 
REP of different ages of coniferous species. But there 
are some differences between the two approaches in 
estimating REP of the grassland in which the 
Lagrangian technique generate more accurate results 
than the Linear method because of its less sensitivity to 
the soil background reflectance effects. 
 Comparison of the ground reference map and the 
REP of the test data suggested some degree of success 
in discriminating the broadleaved and coniferous trees. 
Based on the statistical results of both the Linear and 
Lagrangian methods, the broadleaved trees can be 
distinguished from the coniferous tress by considering 
their REP, in which REP of the broadleaved trees shift 
toward the longer wavelength and of higher reflectance 
than REP of the coniferous trees. Another successful 
result which had been obtained by comparison with the 
ground reference image is that different ages of the 
coniferous trees can be distinguished easily by 
considering the wavelength of their REP. The REP of 
the younger trees shift towards longer wavelength and 
REP of the older trees shift towards the shorter 
wavelength. The above results demonstrate the potential 
application of hyperspectral remote sensing and red 
edge position analysis for detecting different vegetation 
types and ages in a forested area. 
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