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Abstract: The modes of transmission of schistosomiasis are considered. The transmission model is 
developed with an aim of establishing possible endemic equilibria within the community. Analysis of 
the model reveals that if the recovery rate � of human infectives and the death rate of snails δ  are 
increased and if at the same time the contact rate κ of the human hosts with infested water is reduced, 
the disease gets eradicated from the community. Otherwise, the disease becomes endemic within the 
community which is a very much undesirable condition for the human population because of the 
debilitating nature of schistosomiasis. It is found out that this endemic state becomes stable if both the 
recovery rate � of human infectives and the death rate δ  of snails are reduced. It can be made unstable 
by de-worming the human infectives and killing snails by use of molluscicides. Educating the 
community about the modes of transmission of the disease helps in reducing the contact rate with 
infested waters and hence disease prevention. 
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INTRODUCTION 

 
 Schistosomiasis is a very severe disease because it 
is difficult to treat. It has a complicated life cycle which 
makes it more difficult to break. Within days after 
becoming infected, some people have a rush or itchy 
skin and within a month or two they may get fever, 
chills, cough and muscle aches. Most people have no 
symptoms at all in this early phase after infection. 
Usually the eggs of the parasite go to the liver or pass 
into the intestine or urinary bladder. The parasites are 
found within the blood vessels of the human being. 
Once these parasites lay eggs, the hook on them 
penetrates through the blood vessels and eggs are 
passed out through the urine or feaces with blood; a 
situation called haematuria. In the case of children, 
these worms make them lose their appetite. And as they 
mature, the children develop with very thin legs[1]. They 
do not want to play and are mentally retarded. Rarely, 
eggs are found in the brain or spinal cord and cause 
seizures, paralysis or spinal cord inflammation and thus 
affecting the physical and mental development of 
children[2]. This is particularly true of Schistosoma 
mansoni infection. This debilitating nature of 
schistosomiasis is a markedly deterrent factor in food 
and other production sectors[1]. As for the older people 
they become weak and always complain of stomach 
problems. After many years of repeated infection the 
parasite can damage the liver, intestines, lungs or 
urinary bladder. This greatly diminishes the strength 
and production of adults. They fail to go to work which 
retards community growth. 
 

This is commonly observed in rice, sugarcane growing 
farms and fishing villages. The situation which affects 
the local people in their health and socio-economic 
activities and government internal revenue is 
agriculturally and economically retarded. 
 Schistosomiasis is caused by parasitic flat worms 
of the genus Schistosoma. Male and female mate within 
the human host and lay eggs in the blood vessels which 
line the bladder and intestine. These eggs induce an 
immune reaction which causes the swelling of the 
spleen hepatosplenic and liver liver fibrosis. A portion 
of the eggs leave the body with the feaces or urine and 
find their way into the fresh water supply where they 
hatch into a free swimming ciliated larva called a 
miracidium of about 0.2mm long. 
 If the miracidium reaches a fresh water snail of a 
suitable species, it penetrates and transforms into a 
sporocyst. The sporocyst begins an asexual phase of 
reproduction within the body of the snail producing 
thousands of daughter sporocysts. Because of this, the 
disease is sometimes called snail fever since the snails 
serve as hosts for the transmission of the disease. The 
infected snails then release a second form of free 
swimming larva called a cercaria, of about 1mm long 
with a characteristic forked tail, into the water. The 
miracidia cannot infect a human being but the cercaria 
can. The cercaria eventually penetrate the skin of a 
human, loses its tail and enters the blood vessels as a 
Schistosomulum. It grows to adult size, matures 
sexually and migrates to the liver where they cause 
liver fluke, or migrate to the intestines or the stomach 
where they cause schistosomiasis. 
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After the mating of the male and female schistosomes 
and migration to a blood vessel, egg-laying starts and 
the life cycle of the parasite is closed. Each pair of 
Schistosomulae produces hundreds to thousands of eggs 
per day. The eggs are spined and sieve through the 
tissues to the excretory tract[3]. Most of the pathology 
associated with infection is due to immune responses to 
eggs that become trapped in the host tissues. 
 Although research has been done on 
schistosomiasis in Uganda, most of the work has been 
mainly demographical and theoretical statistics. In this 
study, we are trying to demonstrate how a simple 
human - snail model can explain the epidemiological 
phenomena of schistosomiasis. The analytic model can 
give the consequences of the basic assumptions of the 
disease model and can help interpret the output of the 
more complex and realistic model.  
 

 
 
Fig. 1: A flow diagram of the life cycle of 

schistosoma parasites 
 
 To demonstrate how such simple analytic models 
can serve as useful insights to the more complex 
simulation models, a 2-dimensional dynamic system 
model of the human host and the snail host is 
considered. Our main concern now is to develop a 
mathematical model on the transmission of 
schistosomiasis. Before we do this, we need to consider 
the disease life cycle so that we are able to clearly 
identify the variables and the parameters of the system 
(Fig. 1). 
 
Larval stage dynamics in the snail: In the case of 
schistosomiasis, the schistosomes do not reproduce 
directly within the human host. So when we consider 
the epidemiology of human schistosomes, we find that 
an individual's contribution to transmission is related 
quantitatively to parasite burden.  
Table 1: The expected life expectancies of the human, snail hosts 

and other various larval stages of the parasites 
Host and Parasite Life Expectancy 
Human 40-60 years 
Mature worms  3-5 years 
Susceptible snail  4-12 weeks 
Infected snail  3-6 weeks 
Cercarial stage  8-20 hours 
Miracidial stage  4-16 hours 

A model of schistosome dynamics must therefore 
consider the intensity of infection in the human 
population. In contrast, schistosomes undergo extensive 
multiplication within the snail host. An infective snail's 
contribution is independent of the number of miracidia 
penetrating it[4]. 
 Table 1 gives the life expectances of the hosts and 
the various developmental states in the life cycle of 
Schistosoma mansoni[5]. Human host populations 
change relatively slowly and for most purposes can be 
assumed to be constant. 
 On the other hand the turnover for cercariae and 
miracidia populations is so rapid that larval stage 
densities can always be assumed to be at equilibrium 
for given densities of shedding snails and adult 
schistosomes respectively. 
 On the production of cercariae by infected snails, it 
was found out that light stimulates the shedding of 
cercariae. Heat is also stimulus but less effective[6]. In 
view of this, small pools, dams in which B.(P.) nastus 
productus occurs are likely to contain S. haematobium 
cercariae from mid morning until late evening[7]. 
 The use of such places for bathing and domestic 
water supplies during this period involve greater risk of 
infection than in the early morning. Pesigan et al.[8] 
demonstrated that the mean daily output of cercariae 
from snails into which one miracidium had penetrated 
was nearly twice as high as the output from snails into 
which 2-5 miracidia had penetrated and suggested that 
this was due to crowding of sporocysts, leading to 
smaller development of cercariae. He further obtained 
evidence which supports the view that the development 
of sporocysts restricts the penetration of additional 
miracidia, although the number of parasites and the 
extent of their development required to produce this 
effect had not yet been ascertained. 
 
Dynamics for the infected human and snail 
populations 
Introduction: In this model, we consider the rates of 
change of the human infectives and snail infectives. 
Our objective is to find out conditions under which the 
interaction between the human hosts and water infested 
with cercariae will cause the disease to become 
established within the community. In case an endemic 
equilibrium exists within the community, then we 
should establish whether it is stable or unstable. Further 
analysis of the model helps us to find conditions under 
which we can reduce the equilibrium level leading to a 
possible eradication or prevention of the disease. 
Variables in the model: The variables in the model are 
the following: 
X the number of infected human hosts 
Y the number of infected snail hosts 
N the human population size 
M the snail population size 
N-X  the susceptible human hosts 
M-Y  the susceptible snail hosts 
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x  the proportion of infected human hosts 
y the proportion of infected snail hosts 
1-x the proportion of susceptible human hosts 
1-y the proportion of susceptible snail hosts 
 
Parameters in the model 
�(Y) the force of infection to the susceptible human 

hosts and it depends on the number of infected 
snails, Y. 

�(X) the force of infection to the susceptible snail 
hosts and it depends on the number of infected 
human hosts, X 

� the recovery rate of the infected human hosts 
� the death rate of the snail hosts 
 
Assumptions of the model: In formulating the model, 
the following assumptions are made[1,4,5]: 
 The human population N and the snail population 
M are assumed to be constant with X and Y, the 
infected human and snail populations respectively, as 
the variables. 
 The force of infection )(Yα of the human 
population is assumed to be an increasing concave 
linear function with first and second order continuous 
derivatives. Although the force of infection )(Yα  

depends on the infected snails Y , some people do not 
get into contact with the infested waters. This means 
that the force of infection is high from the start but it 
reduces with time as the number of the remaining 
susceptibles have almost no interest in entering the 
infested waters. 
 The force of infection )(Xγ  of the susceptible 
snail hosts is assumed to be a linear function with first 
and second order derivatives. In this case, the more the 
people that are infected, the more they infest the 
environment and the more the snails get infected. 
 Snail latency is incorporated within the infective 
snail population meaning that those snails which are 
infected but are not yet infectious are counted to be in 
the group of infectious snails. 
 The model assumes that a host that recovers from 
the disease is immediately susceptible to reinfection 
(there is no immune category of hosts). 
 
Equations and analysis of the model: According to 
the definitions and assumptions made in subsection 3.4, 
we derive the following equations for this model: 
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 System (1) gives the rates of change of the human 
and snail infectives respectively. Since X  and Y  are 
proportions of infected human and snail populations 

respectively, then yMYy
M
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 From assumption 2, )(Yα  is an increasing 
concave function given by 
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+
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aMy
yM

β
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 Although this force of infection depends on the 
proportion of infected snails y  the relationship is not 
linear. From the study of the disease, even a single 
infected snail is able to release numerous numbers of 
cercariae that are able to infest the water environment[4]. 
Also, from assumption 3, the force of infection )(Xγ  
on the susceptible snails, increases as the proportion of 
infected human beings increases such that 

kNxNx =)(γ  (4) 

where k  is a constant. 
 We now find the x-isocline and the y-isocline by 
setting 

0=
dt
dx  and 0=

dt
dy  (5)  

 Then we get the following functions: 
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 We now derive the x-isocline and the y-isocline in 
the x-y phase plane from equations (6). Using equations 
(3) and (4) respectively and substituting for )( yMα  

and )(xNγ  in (6), we get 
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 These are concave functions which can be 
represented by 
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and 
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respectively. The two isoclines intersect within the unit 
square as indicated in Fig. 2. 
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Fig. 2: The x and y-isoclines intersect at the point 

* *( , )P x y  within the unit square 
 

 An endemic equilibrium point * *( , )P x y  exists 
inside the unit square [0,1] [1,0]R ×  as shown in Fig. 2. 
The points Q and T are unstable. Any trajectories that 
start near T or Q move towards P. This means that 
points Q and T are not easily realised and are therefore 
unstable and are not worth discussing. 
 
Stability of the points (0,0)  and * *( , )P x y  
Introduction: We need to investigate whether the 
points (0,0)  and * *( , )P x y  are stable or unstable. If 

the point * *( , )P x y  is stable then an endemic 
equilibrium exists within the community and the 
disease becomes chronic within the community. Such a 
situation is very much undesirable because of the 
debilitating nature of schistosomiasis. So if such a case 
arises, we need to find conditions under which * *( , )P x y  
becomes unstable. Let us first consider any point of 
intersection ( , )P x y  within the phase plane. 
Considering the differential equations (2) as functions 
of x  and y  as follows: 

( , ) ( )(1 )
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α β
γ δ
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and the variation matrix is given by 
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Stability of the point (0,0): Using equations (12}) and 
(13) in section 4.1, we find that at (0,0) 

0, 0x y
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 Substituting in equation (14), the Jacobian matrix 
is then found to be  
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 From the equation for ( )yMα  and ( )xNγ  in (7) 
and (8) respectively, we find that 
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 Substituting for '(0)α  and '(0)γ  in the Jacobian 
matrix (15), we get 

'(0)
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a

A
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J
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Trace ( ) 0AJ β δ= − + <  

Det ( ) ak
AJ MNββδ= −  

Hence the point (0,0) is stable if 

2 ak
MNβ

δ
>  (19) 

If 2 ak
MNβ

δ
< , then the equilibrium point (0,0) 

becomes unstable. 
 
Stability of the point P(x*,y*) : We now investigate 

whether the endemic equilibrium P(x*,y*)  in Fig. 3 
is stable. In this case we again use the variation matrix 
in equation (14) to determine the characteristic 
function. We then apply the theory of stability[9] to 
establish whether P(x*,y*)  is stable or unstable. 
At P(x*,y*) , 
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*, * ( *)x x y y
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y
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We now consider these variations at P(x*,y*)  and get 
the variation matrix given by 
 

( * ) (1 *) '( * )
( *, *)

(1 *) '( * ) ( * )

f f
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since, 

( *)(1 *) * 0My x xα β− − =  (23)  

by equation (3), we substitute for ( *)Myα  in equation 
(23) to get 

*
(1 *) * 0

*
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x x
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β
β

− − =
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Solvig for x* we find that 

2

*
*

( ) *
aMy

x
a Myβ β

=
+ +

 (25) 

Similary, using equation (4), we find that 
*(1 *) * 0kNx y yδ− − =  (26) 

Solving for y* , we get 
*

*
*

kNx
y

kNxδ
=

+
 (27) 

Substituting for y* in (25), we get  
2

2*
( )

akMN
x

a kNM
β δ

β β
−=

+ +
 (28) 

and 0 * 1x< <  if the numerator 2 0akNM β δ− > . 
Using equation (28) to get the value for x*, and 
substituting this value in (27), we get 

2

2 2

( )
*

(( ) )
akNM kN

y
a a kNM

β δ
β δ β δ β δ

−=
+ + + −

 (29) 

 
Both x* and y* (according to equations (28) and (29) 
are positive if 2 ak

MNβ
δ

< . 

 Our main interest is to investigate the stability of 
the point ( *, *) (0,0).x y >  The point ( *, *)P x y  is 
stable if tr (V) (trace of V) is negative det (V) (the 
determinant of the Jacobian matrix V in (22) is positive. 
From the Jacobian matrix V in (22), 

( ) [ ( * ) ( *) 0]tr V x M Nxβ δ α γ= − + + + <  (30) 

which is negative and hence the point ( *, *)P x y  is an 
attractor as shown in Fig. 3.  
 
 In the figure, the arrows facing vertically upwards 
indicate that the corresponding variable x  or y  is 
increasing in the sub-region of the phase plane while 
those facing vertically downwards indicate that the 
corresponding variable x  or y  is decreasing in the 
sub-region of the phase plane. The arrows pointing at  
 

 
Fig. 3: Typical trajectories showing that the point P is 

a stable endemic equilibrium 
 
the point P  indicate that all trajectories move towards 
P  meaning that P is an attractor. 
Further more the determinant of matrix V is given by  
 
 
det( ) [ ( * ) ( *)]
(1 *)(1 *) '( *) '( *)

V x M Nx

x y Nx My NM

β δ α γ
γ α

= − + + + −
− −

 (31) 

 
 We need to find out whether det( ) 0V >  for the 
equilibrium point ( *, *)P x y  to be stable. Rearranging 
equations (23) and (26) by substituting in expressions 
for x* and y* in (28) and (29) respectively, we get 
expressions for ( *)Myα  and ( *)Nxγ  as follows: 

2

2 2 2
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[ (( ) ) ] ( )

My
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2

2
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β δγ
β β

−=
+ +

 (33) 

If det(V) > 0, then 
 
[ ( *)][ ( *)]
(1 *)(1 *) '( *) '( *)

My Nx

x y Nx My NM

β α δ γ
γ α

+ + >
− −

 (34) 

 
 Using equations (28) and (29), we get all other 
terms in inequality (34) in terms of model paramaters. 
Substituting them in inequality (34), we find that 
 

2 ak
MNβ

δ
<  (35) 

 
is a condition for P(x*,y*) to be a stable equilibrium 
point. It is noted from the Jacobian matrix that the trace 
of the Jacobian matrix V is negative and its determinant 
is positive if inequality (35) is satisfied. Comparing 
inequalities (19) and (35), it is noted that if the point 
(0,0) is unstable, then the disease attains a stable 
endemic state P(x*,y*) within the community as shown 
in Fig. 3. 
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DISCUSSION AND CONCLUSION 
 
 We realise from equations (32) and (33) that the 
force of infection, ( *)Myα  on the human population and 
the force of infection, ( *)Nxγ  on the snails are both 
positive if 2 ak

MNβ
δ

<
 , which is the same condition given  

 
by inequality (35). If inequality (35) is satisfied, the 
disease attains a stable endemic state P(x*,y*) within 
the community and the disease becomes chronic. 
Although people are able to survive with the disease, 
such a situation is very much undesirable because of the 
debilitating nature of schistosomiasis. With reference to 
(28}) and(29), we note that in order to reduce the 
proportion of infective human population at P(x*,y*), 
we need to increase the recovery rate β  and also to 

increase the death rate of infective snails δ  and reduce 
the contact rate κ .  
 
 

 
Fig. 4: Trajectories showing that the point O(0,0) is a 

stable 
 
 

 Then the point P(x*,y*) becomes closer to the 

origin and the disease may eventually be eradicated as 

shown in Fig. 4. Schistosomiasis is a focal disease 

which is mainly rural. It is commonly endemic in 

fishing villages, irrigation schemes, rice growing areas 

and also in sugarcane growing regions. To increase β , 

the public health sector needs to spot such areas, then 

carry out control measures e.g mass drug administration  

(MDA) to infected persons in such areas. The death rate 

δ can also be increased by killing the snails using 

molluscicides. Snail eradication cannot easily be 

achieved, but some techniques are known to reduce 

snail multiplication. The contact rate κ  can also be 

reduced by educating the masses about the causes of 

schistosomiasis and the modes of transmission. Since 

water is necessary for life, it cannot be avoided. The 

only way to avoid direct water contact is to put on 

protective clothing like gum boots, swimming costumes 

and gloves before entering the water. 
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