
American Journal of Applied Sciences 3 (4): 1810-1813, 2006
ISSN 1546-9239
© 2006 Science Publications

Corresponding Author: Abdallah Boukerram, Institut Supérieur d'Informatique, et de Modélisation Appliquées, Université B.
Pascal Clermont II, 63 000 Cedex France, Tel: (33) 06 82 02 74 16

1810

Implementation of Load Balancing Algorithm in a Grid Computing

1Abdallah Boukerram and 2Samira Ait Kaci Azzou

1Institut Supérieur d'Informatique, et de Modélisation Appliquées, Université B. Pascal Clermont II
63 000 Cedex France

2Département Informatique, Université F.Abbas, 19000 Sétif Algérie

Abstract: The emergence of the grid computing constituted by several resources stood out as platform
of development for the industrial applications treating big quantities of data. In these environments of
high- throughput computing, numerous researches were dedicated these last five years to the load
balancing to make profitable the power of calculations in the grid. This paper describes the complete
implementation of an algorithm of load balancing in an environment of grid computing. The
implementation of the algorithm is realized on a cluster of processors in a logic of portability on grids.
The number of iterations proving the convergence of the algorithm, vectors of the loads of calculations
and the matrix of distribution are well clarified.

Key words: Grid computing, load balancing, cluster, node, interconnexion network

INTRODUCTION

 The grid computing federating a big number of
computer resources stand out as solutions of the big
projects of industrial researches and development so as
projects: datagrid[1], e-etoile[2], globus[3], teragrid[4].
 The grid computing offer a material and software
infrastructure supply a reliable access with capacity of
very high stocking and treatment exceeding the
performances of the great computers[5].
 This power of calculation and stocking of data is
conjugated to a report performance / cost very
advantageous.
 To make profitable in best such systems, it is
necessary to obtain an organization of fair loads on all
the nodes of the grid.
 The algorithms of the load balancing are expensive
at time CPU, so that they can take care of all the
complexity and the heterogeneity of grid[6].
 We note a set of weaknesses of the grid computing.
These weaknesses are bound to the cohabitation of
several incompatible standards, because leaning on
operational systems and different protocols[6, 7]:
* Weakness at the level of the security
* Slowness of the access times connected to a single

point of access determined by the User Interface.
* Tolerance in the faults
* Security in the grid
* Weakness of the tools of redistribution of the

power and the load of computing.
 It is in this last point, namely the load balancing
that we were interested in this paper to bring a solution.

General architecture of a grid computing:
Architecture at four levels, is inspired by the

benchmark model GLOBUS, supplying all the basic
services for the construction and the management of
grid computing[7,8].
The different levels are as follow :
Level 1: Material infrastructure
Level2: Intergiciel: scheduler, management of resources
Level 3: Tool of programming
Level 4: Applications
The Intergiciel offer a set of services such as:
* Location and allowance of resources
* Communication between processors
* Information about the resources
* Access to the data and the mechanism of security
* Creation and launch of jobs

Algorithms of load balancing: We distinguish a wide
range of algorithms of load balancing. In the literature,
a distinction is established between the determinist and
stochastic methods in the iterative load balancing[9,10].
The iterative algorithms in which we are interested,
lean on the equation (a), the mathematical
developments are established in[11,12]:

K
t

i

t

i

t

jij

t

i

t

i WWWW −+−+=
+

=

+
� µα

)1()()(

1..n ji,

)()1()((a)

Where:

W
t

i

)(load with the node i at the time t.

α ij : parameter of exchange between the node i and j.

µ)(t

i
: load supported by the node i at the moment t.

 K : represent the load realized by a node at the end of
iteration.
 The methods applying such models for their
implementation use the structures of following data:

Am. J. Appl. Sci.,3 (4): 1810-1813, 2006

 1811

modelling of the network in the form of graph of type G
(X.E) where:
* X: represent nodes of the graph (grid)
* E: all the bows of the network
* |X| = n, is the number of nodes of the grid
* (i,j): physical connection, connecting the node i

with the node j
* d(i) is the degree of the node i
* d(G): degree of the graph.
 Among these works, we can quote those of
Boilat[12].
 From the equation (a), simplifying hypotheses,
bring this equation under vectoriel shape:

WW
t

i

t

i
M)()1(=+

W: Vector of load of all nodes
 M: Matrix of distribution, its dimension is (nxn) with:

()

1..n ji,for

else 1

)1)(),(max/1

=

−=

≠+=

�
≠ ji

ijij

ij

mm
m jiforjdid

 The Cybenko[13], principle leaves that all the nodes
of a network are identical and have the same degree.
The simplifying assumptions bring back the equation
(a) in form: WW

t

i

t

i
M)()1(=+

1..nji,for

else 1

)1)(/1

=

−=

≠+=

�
≠ ji

ijij

ij

mm
m jiforGd

MATERIALS AND METHODS

 The distribution of the load is static. She is made
after the system made the collection of the information
of loads on all the nodes of the grid, to redistribute then
the load.
The centralization of the collection of the piece of
information is justified by a certain number of
advantages namely:
* It allows to avoid the problem of distribution all to

all, what thus reduces considerably the traffic in the
grid.

* The time of the collection of the piece of
information is reduced, because the wait of the
answer is dependent only on a node at the same
moment.

* Any new node integrating the grid is easily
considered in this strategy.

a. Developed method: We adopted the basic algorithm
of load balancing to the grid computing:
* Integration of table of routing in the structures of

data[14].
* Introduction of simplifying hypotheses relieving

the algorithm.

 Contrary to the classic algorithm the proposed
algorithm part of the principle where we do not know
beforehand the number of nodes of the grid.

Hypotheses: That is to say the equation noted (a):

K
t

i

t

i

t

jij

t

i

t

i WWWW −+−+=
+

=

+
� µα

)1()()(

1..n ji,

)()1()(

We consider that the load is static it is to say constant in
every iteration of balancing of load let be :

WW
t

i

t

i

)()1(=+

Further more 0=µ t

i
 one create by no means residual

load.
This what reduces the equation (a) as:

n1.,ji,for

)1()()()1(

=

+−= �
+

WWW
t

jij

t

iij

t

i αα

what is the shape: WW
t

i

t

i
M)()1(=+

Wi
(t) is the vector of dimension n containing the load of

all the node of calculation at the moment t.
 M is the matrix of distribution is calculated, while
taking as a starting point the genetic algorithms: a node
takes a half and diffuses the other on the whole of its
neighbours.

j toconnectednot is i if 0

ji if 2/1

i of neighbours ofnumber V

, ji if 2/ where

m
m

ij

ij

ij

=

==
=

≠== V
ijijm αα

b. Developed algorithm
Initialization
* Matrix of distribution: node 1=1 all the others are 0.
* Vector of load 10 000 units for node 1 all the

others are 0.
* Access to a central node where from is launched

the load balancing algorithm initially.

Calculation of loads: Calculation of the matrix of
diffusion, the vector of load for each node and the total
of number of iterations.

Criterion of stop: Stop of the process of balancing as
soon as there is equality of load enters all the nodes
more or less five percent.

Introduction of optimal thresholds: Preservation of
two values (balise min=minimal load, balise
max=maximum load). These two values represent,
thresholds of release of the algorithm of load balancing.
If w(t) > balise max or w(t) < balise min then activation
of the load balancing algorithm.
 A supplementary algorithm comes to add:
algorithm of marking to cross all the nodes of the
grid.

Am. J. Appl. Sci.,3 (4): 1810-1813, 2006

 1812

Course of the nodes of the grid
Entry: node (scheduler)
* Read table of routing associated to mark every

node accessible not marked
* Mark the accessible nodes not already
* Take each marked node and remake the stages of

reading and marking;
* Stop, when there is no more not marked node.
 The nodes of the grid all were traversed.

c. Environment of the development: The
implementation is made on a cluster of 12 processors of
Pentium type IV put rhythm by clocks of 2 Ghz, under
Java[15]. This topology (Fig.1) in star is identical to
those used in the local networks. She has the advantage
of:
* Mapping of quite the applications client / server.
* Offer an easy parallelism.
* Simplicity of realization with network equipments

(hub, concentrator or multiplexer).

Fig. 1: Grid of 12 nodes

 This cluster with this topology can be see as a node
of a grid computing or symbolizing he, even a
grid[16,17].
 The processor 1, plays the role of the scheduler, it
is him who launches the program of initial load
balancing. More all the jobs called to be executed on
the cluster pass by scheduler: it is the only access point
to the network. The global state of load or the collection
of the load of the various nodes of the system is also
made by this one.

d. Security and fault tolerance: If ever a breakdown
arises on a node, other one than scheduler, it will be
without consequence on the algorithm of load
balancing. At the risk of not losing the job which was
attributed to him, this problem can be settled by
guarding a copy on the father's node[18].
 The security is a crucial point, in the world of
grid[18]. Every user on the grid is subject to an
authentication further to a certificate delivered by
appropriate authorities, followed by an authorization
suiting to the virtual organization to which it is up and
defining the resources in which he has access.
The control is made in the entry of the user
interface.
 The environment of distribution of the load is
global, what allows us to have an effective and
synchronous control. It remains while to choose
the algorithm of distribution. Our choice is
motivated, by all the aforementioned criteria.

RESULTS
Matrix of distribution:

nodes 1 2 3 4 5 6 7 8 9 10 11 12
1 0.50 0.25 0.15 0.10 0 0 0 0 0 0 0 0
2 0.25 0.50 0 0 0.13 0.08 0.04 0 0 0 0 0
3 0.25 0 0.50 0 0 0 0 0.15 0.10 0 0 0
4 0.25 0 0 0.50 0 0 0 0 0 0.15 0.10 0.04
5 0 0.50 0 0 0.50 0 0 0 0 0 0 0
6 0 0.50 0 0 0 0.50 0 0 0 0 0 0
7 0 0.50 0 0 0 0 0.50 0 0 0 0 0
8 0 0 0.50 0 0 0 0 0.50 0 0 0 0
9 0 0 0.50 0 0 0 0 0 0.50 0 0 0

10 0 0 0 0.50 0 0 0 0 0 0.50 0 0
11 0 0 0 0.50 0 0 0 0 0 0 0.50 0
12 0 0 0 0.50 0 0 0 0 0 0 0 0.50

Vector of load: Initialization:

Noeuds 1-16 1 2 3 4 5 6 7 8 9 10 11 12
Iteration 1 5000 2500 1500 1000 0 0 0 0 0 0 0 0
Iteration 2 3000 1500 800 1000 1200 1250 1250 0 0 0 0 0
Iteration 3 3000 1500 400 1000 1200 1250 1250 200 200 0 0 0
Iteration 4 3000 1500 400 1000 1200 1250 1250 200 200 200 200 100

…………
Iteration 11 625 630 750 631 630 750 452 747 753 456 900 444

....................

Iteration 22 840 830 831 835 840 831 850 814 840 923 1042. 363

Iteration 23 841 829 832 834 836 827 843 821 830 833 842 833

Stop

1

2

5 76

3

9 8

4

1 11

Am. J. Appl. Sci.,3 (4): 1810-1813, 2006

 1813

Interpretation of the results
* We notice that the algorithm converges in a

number limited by iterations, that is 23 iterations
* The convergence is more accelerated in the first 11

iterations than in the last ones.
* It is noticed that the nodes closest to to the node of

scheduler are the first to reach balanced load.
* The ten percent residue added to the criterion of

stop indeed assures the convergence of the
algorithm for 90 % returns.

 This algorithm would win more in reliability, by
taking care of the weights of communication, so that
knots served lastly can benefit from a lowering in
charge of work.

CONCLUSION

 The load balancing algorithm developed leans on a
structure of data of network type WAN, what
guarantees its portability on any grid computing. The
distribution of loads indeed assures the convergence of
the algorithm in acceptable time. For an optimal equity
of loads, we have to integrate into the works future,
both variables which are the networks of
interconnection and the bandwidth.

REFERENCES

1. Projet datagrid.
 http://www.datagrid-international.com
2. Projet e-toile. URL :
 http://www.urec.cnrs.fr/etoile/.
3. Projet globus. http://www.globus.org.
4. Projet teragrid. http://www.teragrid.org/.
5. Csajkowski, K. and I. Foster, 2002. A ressource

management architecture of metacomputing
system. Lecture notes in Computer Science.

6. Badidi, E., 2000: Architecture and service for load
balancing on the distributed system. Ph.D. Thesis
of Computer Science, Montréal.

7. The globus alliance is developing fundamental
technologies needed to build computationals
grids.Http://www.globus.org/

8. Foster, I. and C. Kesselman. Globus: A
metacomputing Infrastructure Toolkit.
http://www.globus.org/

9. F5 Networks 2000: local Hygh-availability,
intelligent load balancing,.
http://www.f5.com/bigip/index.html

10. Jiming, L., L. Xialing and W. Yuanshi, 2005:
Agent based load balancing on homogenious mini-
grids. IEEE Trans. Parallel and Distributed System,
16: 6.

11. Vernier, F., 2004: Algorithmique itérative pour
l'équilibrage de charge dans les réseaux
dynamiques. Ph. D. Thesis of Computer Science,
F.Comté.

12. Boilat, J.E., 1990. Load balancing and poisson
equation in a graph. Pratice & Experience, 2: 289-
313.

13. Cybenko, 1989. Dynamic load balancing for
distributed memory multiprocessors. J. Parallel and
Distributed Comput., pp: 279-301.

14. Pujolle, G., 2000 Les Réseaux Edition Eyrolles
15. Kielman, T., P. Hatcher, L. Bougé and H. Bal,

2003: Enabling java for high performance
computing: Exploiting distributed shared memory
and remote.

16. Nemeth, Z. and V. Sunderam, 2003: Characterizing
grids: attributions, definitions and formalisms. J.
Grid Comput., 1: 9-23.

17. Aumage A. and G. Mercier, 2003. A cluster of
clusters enabled MPI implementation. In 3rd
IEEE/ACM international Symposium on cluster
Computing and the Grid. ACM, pp: 110-117.

18. Humphrey, M., M.R. Thompson and K.R. Jackson,
2005. Security for grids. Proc. IEEE, 93: 644-652.

