
American Journal of Applied Sciences 3 (4): 1795-1802, 2006 
ISSN 1546-9239 
© 2006 Science Publications 

Corresponding Author: Ahmad Saifizul Bin Abdullah, Department of Mechanical Engineering, Faculty of Engineering, 
University  of  Malaya, 50603  Kuala  Lumpur,  Malaysia,  Tel: 60379674495,  Fax: 60379675317,      

1795 

 
Intelligent Control for Self-erecting Inverted Pendulum Via  

Adaptive Neuro-fuzzy Inference System 
 

1A.A. Saifizul, 1Z. Zainon, 2N.A Abu Osman, 3C.A. Azlan and 4U.F.S Ungku Ibrahim 
1Department of Mechanical Engineering, Faculty of Engineering 

University of Malaya, 50603, Kuala Lumpur, Malaysia 
2Department of BioMedical Engineering, Faculty of Engineering 

University of Malaya, 50603, Kuala Lumpur, Malaysia 
3Department of BioMedical-Imaging, Faculty of Medicine 

University of Malaya, 50603, Kuala Lumpur, Malaysia 
4Center for Foundation Studies in Science, University of Malaya 

50603 Kuala Lumpur, Malaysia 
 

Abstract: A self-erecting single inverted pendulum (SESIP) is one of typical nonlinear systems. The 
control scheme running the SESIP consists of two main control loops. Namely, these control loops are 
swing-up controller and stabilization controller. A swing-up controller of an inverted pendulum system 
must actuate the pendulum from the stable position. While a stabilization controller must stand the 
pendulum in the unstable position. To deal with this system, a lot of control techniques have been used 
on the basis of linearized or nonlinear model. In real-time implementation, a real inverted pendulum 
system has state constraints and limited amplitude of input. These problems make it difficult to design 
a swing-up and a stabilization controller. In this paper, first, the mathematical models of cart and single 
inverted pendulum system are presented. Then, the Position-Velocity controller is designed to swing-
up the pendulum considering physical behavior. For stabilizing the inverted pendulum, a Takagi-
Sugeno fuzzy controller with Adaptive Neuro-Fuzzy Inference System (ANFIS) architecture is used to 
guarantee stability at unstable equilibrium position. Experimental results are given to show the 
effectiveness of these controllers. 
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INTRODUCTION 

 
 The self-erecting single inverted pendulum 
(SESIP) system is a challenging problem in the area of 
control systems. It is very useful to demonstrate 
concepts in linear control such as the stabilization of 
unstable systems. Besides, as a typical unstable non-
linear system, inverted pendulum system is often used 
as a benchmark for verifying the performance and 
effectiveness of a new control method because of the 
simplicities of the structure. 
 The control strategy of SESIP system is composed 
of the swing-up control of the pendulum and the 
stabilizing control of the whole system that consists of 
angular control of the pendulum at upright position and 
position control of the cart at origin of rail. First, swing-
up control is to bring the pendulum from the 
downwards position to the upright position. This is 
achieved when the motor is given voltage in the 
appropriate direction and magnitude to drive the cart 
back and forth along the extremely limited track length 
repeatedly until the pendulum is close to the upright 
position. Thereafter, stabilizing control is to balance the 

pendulum in the upright position. When the pendulum 
leans in one direction, the control algorithm will try to 
move the cart under it with appropriate speed and 
direction. In this case, the algorithm will take the inputs 
i.e. the pendulum angle and cart position measured by 
encoders, then tell the cart which way and how fast to 
move.  
 Until now, a lot of intelligent approaches about the 
swing-up and stabilizing control of inverted pendulum 
system have been proposed. Mikukcic and Chen[1] 
extracted fuzzy rules for inverted pendulum control by 
fuzzy clustering method. Brock[2] has presented the 
fuzzy PD controller in balancing the pendulum in 
upright position and then the tuning process is done 
using evolutionary algorithms. He has successfully 
proved the robustness of the controller in simulated 
experiment. Kandadai and Tien[3] presented neuro-
fuzzy architecture to automatically generate a fuzzy 
knowledge based by a pseudo-supervised learning 
scheme. It takes more than 12 s and its structure is more 
complex. Kawaji and Maeda[4] constructed a simple 
fuzzy controller that impeded the position control of the 
cart as a virtual target angle into the angular control of 
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the pendulum, but the controller was difficult to 
completely stabilize a pendulum system within a short 
time.  
 Since most of the classical fuzzy approach will 
cause the exponential increase in complexity, Horikawa 
et al.[5], Lin and Lee[6], Partricar and Provence[7] and 
Takagi and Hayashi[8] presented techniques 
incorporating neural network into Fuzzy system. Kyung 
and Lee[9] presented a fuzzy controller, whose rule base 
was derived from three neural networks. Although the 
fuzzy controller can stabilize an inverted pendulum 
system in about 8.0 s, it needs 396 rules. Sakai and 
Takahama[10] applied a nonlinear optimization method 
to train a fuzzy controller for stabilization. However, 
the controller spent more than 200.0 s on stabilizing an 
inverted pendulum system.  
 In this paper, a position-velocity (PV) is used for 
swing-up control while a data-driven Takagi-Sugeno 
Fuzzy model called ANFIS is employed for the 
stabilizing control. A common Takagi-Sugeno fuzzy 
model approach typically uses common sense 
knowledge of human experts which tends to be “trial 
and error” in tuning its membership functions and rules. 
It may be less suitable for control design. Therefore, the 
ANFIS controller which was developed by[11] is used to 
solve the SESIP stabilizing problem. This method is 
proposed to construct the fuzzy model by combining 
information obtained from measured data i.e. training 
data and checking data with heuristic knowledge 
expressed in the form of rules. Initially, the expert 
knowledge is formulated as a collection of if-then rules 
and the associated membership functions. But then, 
these rules and membership functions can be fine-tuned 
by using numerical data. This model tends to be 
adaptive. It is able to adjust itself to accommodate new 
situation, especially changes in the dynamic behavior of 
the SESIP plant in order to achieve the desired 
performance objective.  
 
Modeling of cart system: The cart system can be 
represented as follows: 

( ) ( )
( )sV
sx

sG
m

c=  (1) 

where G(s) is open-loop transfer function, cx  is cart 

position and mV  is motor voltage. Applying Newton’s 
second law of motion to the cart system and by 
assuming cart’s Coulumb friction is neglected, the 
equation of motion can be represented as follows: 

)()()()( tFtxBtFtxM aiceqcc −−= ���  (2) 

where cF  is cart driving force produced by the motor 

and aiF is inertial force due to the motor’s armature in 
rotation and other parameters are given in Table 1. The 
driving froce, cF , generated by the DC motor and 

acting on the cart through the motor pinion can be 
expressed as: 
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where mT is torque generated by the motor.  
Using Kirchhoff’s Voltage law, the following equation 
is obtained: 
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However, since Lm << Rm , the motor inductance is 
disregard and yields: 
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Since the back-emf voltage created by the motor, Eemf , 
is proportional to the motor shaft velocity mw , the 
equation is obtained as: 
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 Moreover, in order to account for the DC motor 
electrical losses, the motor efficiency is introduced to 
calculate the torque generated by the DC motor: 

)()( tIKtT mtmm η=  (7) 
Substituting (6) and (7) into (3) leads to: 
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 By considering the rack and pinion and the gearbox 
mechanisms, the motor angular velocity can be written 
as a function of the cart linear velocity, as expressed by: 
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 Therefore, substituting (9) into (8) and rearranging 
leads to: 
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 As seen at the motor pinion, the armature inertial 
force due to the motor rotation and acting on the cart 
can be expressed as a function of the armature inertial 
torque: 

mp

aigg
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 Applying Newton’s second law of motion to the 
motor shaft: 

)()( tTtJ aimm =θ��  (12) 

where mθ  is motor shaft rotation angle. Moreover, the 
mechanical configuration of the cart’s rack-pinion 
system gives the following relationship: 
 

Table 1: List of symbols and model parameters 
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pM  

M  0>cF  
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cx  
py  
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fα  

uα  

0, >uf αα ��  
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Symbol Description Value/Unit 
Vm Motor nominal input voltage 6 V 
Rm Motor armature resistance 2.6 � 
Lm Motor armature inductance 0.18 mH 
Kt Motor torque constant 0.00767 Nm/A 
� m Motor efficiency 100% 
Km EMF constant 0.00767 Vs/rad 
Jm Rotor moment inertia 3.9x10-7 kgm2 
Kg Planetary gearbox gear ratio 3.71 
�g Planetary gearbox efficiency 100% 
rmp Motor pinion radius 6.35x10-3 m 
rpp Position pinion radius 1.48x10-2 m 
Beq Equivalent viscous damping coefficient at the motor pinion 5.4 Nms/rad 
Bp Viscous damping coefficient at the pendulum pivot 0.0024 Nms/rad 
lp Pendulum length length from pivot to center of gravity 0.3302 m 
Ip Pendulum moment of inertia 7.88x10-3 kg m2 
Mp Pendulum mass 0.230 kg 
M Cart mass 0.94 kg 
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Substituting (11) and (12) into (10) 
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 Finally, substituting (10) and (14) into (2), 
applying the Laplace transform and rearranging, yields 
the desired open loop transfer function for the cart 
system, such that:  
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Single inverted pendulum equation of motion: Angle 
definitions and schematic diagram of SESIP are shown 
in Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: SESIP schematic 
 
 The SIP system system is made of a cart on top of 
which pendulum is pivoted. The cart is constrained to 
move only in the horizontal x direction, while the 
pendulum can only rotate in the x–y plane. The SIP 
system has two degrees of freedom and can therefore be 

fully represented using two generalized coordinates: 
Horizontal displacement of the cart, cx ; and Rotational 

displacement of pendulum,α . Assume the (nonlinear) 
Coulomb friction applied to the linear cart is assumed 
to be neglected. Moreover, the force on the linear cart 
due to the pendulum's action has also been neglected in 
the presently developed model. A nonlinear equation of 
motion (OEM) of single inverted pendulum (SIP) 
system can be derived using Lagrange’s equation. 
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with TT VTL −= where TT is total kinetic energy, 

TV is total potential energy, xcQ and θQ are the 
generalized force applied on the generalized coordinate 

cx and α , respectively. Both generalized forces can be 
defined as below: 

ceqcxc xBtFtQ �−= )()(  (18) 

and 
)()( tBtQ pαα �−=  (19) 

 This energy is usually caused by its vertical 
displacement from normality (gravitational potential 
energy) or by a spring-related sort of displacement 
(elastic potential energy). In this case; there is no elastic 
potential energy in the system. The system potential 
energy is only due to gravity. The cart linear motion is 
horizontal and as such, never has vertical displacement. 
Therefore, the total potential energy is fully expressed 
by the pendulum's gravitational potential energy, as 
characterized below:  

))(cos( tglMV ppT α=  (20) 

 The kinetic energy measures the amount of energy 
in a system due to its motion. Here, the total kinetic 
energy can be represented as follows: 
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pcT TTT +=  (21) 

where cT and pT  are the sum of the translational and 

rotational kinetic energies arising from both the cart and 
its mounted inverted pendulum, respectively. First, the 
translational kinetic energy of the motorized cart, ctT , 
is expressed as follows: 

2

2
1

cct xMT �=   (22) 

Second, the rotational kinetic energy due to the cart’s 
DC motor, crT , can be characterized by: 
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Therefore, the cart’s total kinetic energy, can be written 
as shown below: 

2
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where )/( 22
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 The pendulum total kinetic energy, Tp is combined 
of translational kinetic energy, Tpt and rotational kinetic 
energy, Tpr. 
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where 
222

ppp yxr ��� += . From Fig. 2, px� and py� can 

be expressed as: 
)())(cos( ttlxx pcp αα ��� −=  (26) 

and 
)())(sin( ttly pp αα �� −=  (27)  

Substituting (24 ), (25 ), (26), (27) into (21), gives the 
total kinetic energy, TT of the system as: 
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The Lagrangian can be expressed using (20 ) and (28):  
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From equation (16) and (17), the nonlinear equation of 
motion can be obtained as: 
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and  
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 The linearized model of (30) and (31) can be 
obtained by considering the small variations of α  
about the equilibrium point when the pendulum is at 
upright position and neglecting higher order term. The 
linearized model can be expressed in state space 
representation as follows: 
x�  = A x + B u  (32) 
y = C x 
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SESIP control strategy model: The control strategy to 
implement the SESIP consists of two main control 
loops and a decision-making logic component to switch 
between the two. One control loop is a PV controller on 
the cart position in order to swing up the single 
pendulum from the suspended to the inverted posture. 
The other control loop is active when the pendulum is 
around the upright position and consists of maintaining 
the inverted pendulum vertical. It uses a TS fuzzy 
controller with ANFIS architecture. 
 
Swing-up controller design: To control the cart, a 
control strategy based on the proportional-velocity (PV) 
control scheme is used in order to to make the closed-
loop system to satisfy the following performance 
requirements: 
* The percent overshoot (PO) should be less than 

10% i.e. PO<10% 
* The time to first peak should be 150ms i.e. pt = 

0.15 s. 
The PV control law can be expressed as follows:  

)())()(()( txKtxtxKtV cvcdpm �−−=  (33) 

where xd is the reference signal i.e. the desired position 
to track. Then, the closed-loop transfer function can be 
expressed as: 
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 Replacing G(s) in equation (15) into (34) and using 
model parameter values in Table 1 leads to the 
following: 
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 According to performance requirements, PO=10% 
and pt = 0.15s, a natural frequency, nω = 26.0 rad/s 

and damping ratio, ζ = 0.59 can be obtained. The 
characteristic equation of the closed-loop transfer 
function expressed in its standard form is as follows: 

22 2 nnss ωζω ++  (36) 
 Comparing (35) and (36) lead to the following PV 
controller gains: 

pK = 274.62 V/m and vK = 5.53 Vs/m. 

 
Stabilizing controller design: Based on (32), the 
Takagi-Sugeno (TS) fuzzy controller develop here has 
four inputs i.e. cc xx �,, α and α�  and a single output 

i.e. mV . These four input variables considerably affect 

the control action, mV  which is applied to the cart 
motor. The control problem here is to design a 
controller that maps the state vector x into an 
appropriate control action, mV , such that the pendulum 
is kept balanced while the cart is tracking back to its 
origin of track. In addition, the choice of membership 
functions (MFs) and rule base of the TS fuzzy 
controller will affect the performance of the system. 
The TS fuzzy controller with ANFIS architecture can 
formalize a systematic approach to generate the fuzzy 
rule and MFs.  
 
Training data set: The training data set that contains 
the desired input/output data pairs of the actual plant is 
obtained through the real-time experiments. Figure 2 
and 3 show block diagram of real-time implementation 
for collecting input-output data pairs of the inverted 
pendulum which is in the following format: 

 [ �
iableoutput

m

iablesinput

cc Vxx
varvar

,,,
��� ���� ��
�� αα ] 

Also from the experiment, we manage to get 100 sets of 
checking data of similar format as above. 
 
 
 
 
 
Fig. 2: Block diagram of real-time implementation 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Actual plant subsystem 
 

 
Fig. 4: Initial membership functions for fuzzy 

controller 
 

 
Fig. 5: ANFIS model structure  
 
Initial TS fuzzy inference system: The initial linear 
relationship between input and output are described in  
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Fig. 6: Final membership functions for ANFIS 

controller 
 

 
Fig. 7: Simulation results for swing-up control 
 
16 fuzzy-if-then rules which are represented in the 
format as: 
Rule i : IF (xc, is Aj) and (α is Bj) and ( cx�  is Cj) and 

( α� is Dj) , 

THEN ( mV = pi xc +qi α  + ri cx� + si α�  + ti ) (37) 
where i =1,2,…,16; j = 1,2. 
The input MFs for initial fuzzy inference system (FIS) 
in (37) is shown in Fig. 4. 
 
Trained TS fuzzy inference system: Figure 5 shows 
ANFIS model structure using ANFIS GUI editor from 
MathWork Inc. During the training process, the hybrid 
method with the combination of backpropagation and 
least square method is implemented to estimate MFs 
parameters.  
 Finally, a trained FIS structure is created from the 
initial FIS using ANFIS GUI editor and training and 
checking data sets. The MFs of trained FIS are shown 
in Fig. 6. The output parameters and rule base of trained 
data cannot be shown here due to limited space. 

Simulation 
Swing-up control simulation: From Fig. 7, the cart is 
moving alternately between 180 mm and -180 mm to 
increase the energy of the system as quickly as possible 
by moving the cart to its maximum allowed distance of 
track (i.e. 0.2 m). In this swing-up mode, PV controller 
destabilizes the pendulum when initially at rest and 
hanging down. The amplitude of the pendulum angle 
become larger until it is close to the upright position, so 
that the stabilizing controller will catch the pendulum 
and balance it later. As can be seen in the simulation 
results, the PV controller takes 2.5 s for 4 swings. Thus, 
the PV controller could be effectively employed in 
SESIP control system as a swing-up controller to get 
maximum swing in the shortest possible time. 
 
Stabilizing control simulation: Figures 8 and 9 show 
control results of the inverted pendulum system by 
Simulink simulation.  
 In Fig. 9, the initial angle of the pendulum is 10 
degree and the other initial values are all zeros. Since 
the initial value of the pendulum is positive to the left, 
the cart is first driven from the original position to the 
left side (which is defined as negative) such that the 
pendulum rotates clockwise towards upright position. 
After the pendulum reaches the upright position, it still 
rotates to the negative (to the right) direction because of 
its inertia energy of movement. Then the negative 
driven force moves the cart back towards the origin, 
causing the pendulum to stand up eventually. It takes 
2.75 s to be stabilized. In Fig. 10, the cart is applied an 
input of square-wave signal with 20 mm of amplitude. 
The signal frequency is set to 0.1 Hz. The pendulum 
system is managed to be stabilized in upright position, 
even though the disturbance is applied to the cart 
position alternately. In this case, the robustness of the 
SESIP system is successfully realized by the proposed 
ANFIS controller. 
 

RESULTS 
 
 Real-time experiment configuration consists of 
computer with MATLAB, Simulink and Quanser 
Toolbox used as a controller, Q8 data acquisition board 
and Quanser IP02 Linear Motion Servo Module. Some 
hardware limitations should be concerned in the cart-
pendulum system. The Digital-to-Analog voltage for 
data acquisition board is limited between -10 V and 10 
V. The safety watchdog is turned on where the 
allowable cart displacement is 0.35 m from the centre of  
the track. When the pendulum or cart touches the limit 
switch, the control process is aborted. Figures 11 to 13 
show   the   SESIP   control  system experimental 
results. 
 It is important to note that the PV controller takes 
approximately 3.5 seconds to reach the upright position. 
The point at which the ANFIS controller catches the 
pendulum in the upright position is clearly shown in the 
above plots.  
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Fig. 8: Simulink diagram of balance control 
 

 
Fig. 9: Simulation results for stabilization control 

 

 
Fig. 10: Simulation results for stabilization control 

when system is applied square-wave position 
input 

 
 Figure 11 shows that the control output, Vm for 
control of SESIP system is not constant all the way. 
Initially maximum Vm that is 10 V (in our experiment, 
the voltage saturation is limited to be 10 V) supplied to 
the cart motor in its attempt to start the pendulum from 
rest. Then the voltage decreases a bit when the 
pendulum   is   falling  naturally   by  the    gravitational  

 
Fig. 11: Voltage output for cart motor 
 

 
Fig. 12: Experimental result of pendulum angle,θ 
 

 
Fig. 13: Experimental result of cart position, xc 
 
potential energy. To regain energy to swing up the 
pendulum, the maximum voltage is supplied to the cart 
again. This phenomenon continues until the pendulum 
reaches within 15 degree from the upright position. The 
trend of voltage command explained above is fed by 
PV controller of swing-up mode. Once the stabilizing 
controller is activated and catches the pendulum, the 
output voltage starts to decrease greatly in magnitude 
because less energy is needed to control the small 
deviation of pendulum in balance mode. In this case, 
the voltage supplied is in the range of ± 1 V which is 
controlled by ANFIS controller. The corresponding plot 
of the pendulum angle is shown in Fig. 12. Each swing 
increases the pendulum angle slightly until the 
pendulum is closed to the upright position, which is 
defined to be 180 degree from its initial hanging down 
position. At that stage, the pendulum angle remains 
fairly constant. Note that the controller takes about 4 
swings  to  bring  the pendulum close enough to upright  
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position within 3.5 s. After that, it remains stabilized 
throughout the experimental period for no matter how 
long it is. It is indicated that the switch is triggered 
effectively so that the ANFIS controller could catch the 
pendulum and balance it completely. Figure 13 depicts 
the cart linear position for the entire control process. 
Initially, the cart linear displacement alternates between 
180 mm and -180 mm.  
 As can be seen, a few cart large movements are 
done, until about 3 s, the pendulum amplitude of 
oscillation becomes large enough to be beyond 150 
degree from the downward position. Then, it takes the 
smaller cart position set point amplitude about another 
0.5 s to slowly bring the pendulum close to the upright 
position. Once the pendulum is almost balanced, the 
cart will return to its origin of track within 1.5 s, which 
is at 5 s of the experimental time. Slight errors appear at 
the maximum displacement of the cart because this is 
the time when the cart abruptly changes its direction. 
 Consequently, as can be seen from Fig. 12 and 14, 
the control force optimized by PV controller is able to 
move the cart back and forth with a minimum number 
of times and finally bring the pendulum up as quickly 
(and smoothly) as possible. The stabilization control of 
the pendulum is also successfully realized in real time 
by the proposed ANFIS controller. 
 

CONCLUSION 
 
 The objective of this project was to design a 
stabilizing   controller   for SESIP problem and this has 
been successfully achieved. The simulation and 
experimental results show that the hybrid controllers 
take about 3.5 s and 4 swings to bring the pendulum 
close to upright position while the stabilizing controller 
with only 16 fuzzy rules is able to balance the 
pendulum for the rest of the experiment period. It is 
worth to note that the cart is able to return to the origin 
of the rail after the pendulum is stabilized. This 
controller is proved to be effective and feasible in both 
of the angular control of pendulum at upright position 
and position control of cart to its origin of rail. 
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