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Abstract: In this study, a nonlinear sliding observer is proposed to explicitly reconstruct fault signals. 
The novelty lies in the application of the equivalent output injection concept. Previous work in the area 
of fault detection has used disruption of the sliding motion to detect faults. The aim of the present 
study was to design a robust observer that slides in the presence of faults based on the response of the 
estimated outputs of the system. A numerical example of the application to an inverted pendulum 
mounted on a cart is provided to demonstrate the approach.  
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INTRODUCTION 

 
 Fundamental purpose of a Fault Detection and 
Diagnosis (FDD) scheme is to generate an alarm when 
a fault occurs in the system being monitored and also to 
identify the nature/location of the fault. In the model-
based monitoring approach, the alarm is triggered when 
the actual process behavior deviates from its expected 
behavior as described by its model. The first step of the 
FDI procedure is to design a set of signals – so-called 
residuals - that reflect this discrepancy. State 
observers[1-8], detection filters[9,10], Analytic 
Redundancy Relations (ARR)[4,7,11] and parameter 
identification techniques[12-14] are used to generate these 
residuals. In absence of faults, residuals are designed to 
be small; once a fault occurs, a subset of residuals are 
intended to react by becoming greater than some 
predefined threshold. In the presence of measurement 
noise and/or perturbation, the effect of the fault on the 
residual may be masked. A statistical decision 
method[15] is then applied to trigger an alarm as quickly 
as possible with minimum errors of false alarms or 
missed detections. The obtained alarm vector - the so-
called fault signature allows to determine which 
component (or set of components) is faulty. This 
isolation will enable efficient management of 
maintenance. In some cases, it is necessary to keep up 
the system working even in the presence of faults. The 
control must then be adapted in order to continue to 
fulfill the system mission or to lead the system to a 
secure behavioral mode. In that way, one speaks about 
Fault Tolerant Control[16,17]. This tolerant control may 
be passive or active. In the first case, faults are 
considered as disturbances and the problem amounts to 
a classical problem of robust control. In the second case 
the control is designed such that it automatically adapts 

to the fault when it occurs. Consequently, the latter 
scheme makes direct use of the failure detection and 
diagnosis (FDD) module results. More precisely, it 
requires accurate knowledge of the nature and features 
of the fault. This study deals with this particular point 
and more precisely aims at using sliding mode 
observers to carry out fault identification.  
 The concept of a sliding mode emerged from the 
Soviet Union in the late sixties[18] where the effects of 
introducing discontinuous control action into dynamical 
systems were explored. The purpose of the switching 
control law was to drive the nonlinear plant’s state 
trajectory onto a pre-specified (user-chosen) surface in 
the state space and to maintain it on this surface for all 
subsequent time. The resulting reduced-order motion – 
referred to as the sliding motion- was shown to be 
insensitive to any uncertainty or external disturbance 
signals which were implicit in the input channels. Thus, 
based on control theory and because observability is the 
dual problem of controllability, this inherent robustness 
property has subsequently been employed in other 
situations including the problem of state estimation via 
a discontinuous observer[19-21]. Walcott and Zak[22] use a 
Lyapunov-based approach to formulate an observer 
which, under appropriate assumptions, exhibits 
asymptotic state error decay in the presence of bounded 
nonlinearities/uncertainties in the input channel. 
Edwards and Spurgeon[23] propose an observer strategy, 
similar in style to that of Walcott et Zak, which 
circumvents the use of symbolic manipulation and 
offers an explicit design algorithm. Sliding modes have 
been previously used for fault detection. Sreedhar et 
al.[25] consider a model-based sliding observer approach 
although in their design procedure it is assumed that the 
states of the system are available. A different approach 
is adopted by Hermans et Zarrop[26] who attempt to 
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design an observer in such a way that in the presence of 
fault the sliding motion is destroyed. Under appropriate 
geometric conditions and by transforming a nonlinear 
system into two different uncertain subsystems, Jiang et 
al.[26] designed a sliding mode observer that allows to 
estimate the faults.  
 The present study considers the situation when the 
system states are not all available and provides some 
new developments in the use of sliding mode observer 
theory for decoupling the effects of fault signals from 
the response of the system estimated outputs. The 
observer is designed to maintain a sliding motion even 
in the presence of faults which are detected by 
analyzing the so-called equivalent output injection. The 
novelty lies in the manipulation of the latter signal to 
explicitly reconstruct actuator and sensor fault signals.  
 The proposed method is illustrated on a numerical 
example: a nonlinear inverted pendulum problem. In 
addition to the nonlinear dynamics, this example has 
Coulomb friction in the cart bearings with the result 
that the cart and the pendulum have a limit cycle 
oscillation, providing further uncertainty and a 
challenge to the robust fault estimation problem. The 
nonlinearities and friction are not considered in the 
design of the sliding mode observer. 
Throughout this study the notation  will be used to 

represent the Euclidian norm for vectors and (the 
induced) spectral norm for matrices.  
 
Design of a discountinuous observer: This section 
introduces the preliminaries and background ideas 
necessary for the work presented later in the study 
Canonical Form: Consider the dynamical system  

)u,x,t(D)t(Bu)t(Ax)t(x ξ++=�  (1)  

)()( tCxty =  (2)  
where A∈ℜnxn, B∈ℜ nxm, C∈ℜ pxn, D∈ℜ nxq with q≤ p < 
n. 
 The triple (A, B, C) represents the linear part of the 
uncertain system given in (1)-(2).  
Nonlinear function ξ :ℜ+×ℜ n×ℜ m→ℜ q represents the 
uncertainties of the model. This function is unknown 
but bounded so that  

)y�(t,uru)x,�(t, 1 +≤  (3) 

where r �1 and α : ℜ+× ℜ p→ℜ+ are known 
Assume that the matrices B, C and D are of full rank 
and that (A,C) is observable. 
 
Assumption 1: Suppose that the triple (A,D,C) with 
p>q satisfies the following two conditions 
* rank(CD)=q 
* any invariant zero of (A,D,C) ∈ C- where C- is the 
open left-half complex plane. 
 
Remark 1: The rank restriction is imposed in order to 
guarantee the existence of a unique equivalent control 
of the reduced-order sliding motion for the 

discontinuous observer that will be defined in the 
following; the second condition ensures the 
stabilizability of this observer despite the presence of 
uncertainty.  
 
Theorem 1:[28] 
Under assumption 1 there exists a linear transformation  
z =(z1

T z2
T)T = T0 x 

T0∈ℜnxn is a non singular matrix 
such that system (1-2) can be rewritten in the following 
canonical form :  
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where z1∈ℜ (n-p), z2∈ℜ p and matrix H11 is stable. 
 
Proof :[28]  
 
Sliding mode observer: Consider the dynamical 
system of the form 
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where s
� 22 is a stable design matrix, yyey −= �  and the 

discontinuous vector ν is defined by[27]: 
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where P2∈ℜ p×p is the symmetric positive definite 
Lyapunov matrix for s

� 22 . The scalar function ρ : ℜ+ × 
ℜp × ℜm→ ℜ+ 
satisfies 

01 ),(),,( γαρ ++≥ yturuyt  (7)  

and γ 0 is a positive scalar.  
If the state estimation errors are defined as 

111 zẑe −=  and 
222

zẑe −= then it is 

straightforward to obtain 
(t)(t)

1111
e�e =�  (8) 

�d�(t)e�(t)e�(t)e
2y

s
22121y −++=�  (9)  

since 
2y ee =  

 
Theorem 2:[23] 
 The nonlinear error system in (8)-(9) is 
quadratically stable and a sliding motion takes place 
forcing ey =0 in finite time. As a consequence, system 
(5) is a robust sliding mode observer for system (4). 
 
Proof:[23]. 
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 In the original coordinates, the robust observer for 
the system (1-2) can conveniently be written as 

�G(t)eGBu(t)(t)x̂A(t)x̂ nyl +−+=�  (10)  

)t(x̂C)t(ŷ =  
where the linear and the nonlinear gains are 
respectively  
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Remark 2: In the case where p=q, an observer of the 
form (10) which is insensitive to the uncertainty (3) will 
exist if and only if det(CD)≠0 and invariant zeros of 
(A,D,C)∈ C- That is, the triple (A,D,C) is minimum 
phase and relative degree 1 and the sliding motion is 
totally determined by these (n-p) invariant zeros. 
 
Remark 3: Consider the hyperplane given by S0 

={e∈ℜn : Ce=0} 
where xxe −= � . Even in the special case where D=B, 
the Walcott-Zak observer formulation[22] is different 
from that of (10) for p>m since their results guarantee 
sliding will take place on the surface in the error space 
defined by Sw z = {e∈ℜn : FCe=0} for a certain matrix 
F∈ℜm×p. This does not imply Ce=0, since the null space 
of F is not empty; and therefore, the Walcott-Zak’s 
observer, differently from (10), does not necessarily 
track the system outputs perfectly.  
 

RECONSTRUCTION OF FAULTS 
 
Problem statement: This section considers the use of 
the sliding mode observer defined in section II to 
reconstruct actuator and sensor faults. 
Consider a linear system subject to certain faults 

)t(Df)t(Bu)t(Ax)t(x a
.

++=  (12)  
y(t)=Cx + fs(t) (13)  
where the dimensions and ranks of matrices have been 
indicated in section II. Nonlinear functions fa(t) and fs(t) 
are deemed to represent actuator and sensor faults 
respectively and are assumed to be bounded.  
 The objective is to synthesize an observer to 
generate a state estimate (t)x

�  and output estimate 
x̂Cŷ =  such that a sliding mode is established in 

which )()(ˆ)( tytytey −=  is forced to zero in finite time, 

even in the presence of faults. It will be shown that 
provided a sliding motion will be attained, estimates of 
fa(t) and fs(t) can be computed by approximating the so-
called equivalent output injection signal required to 
maintain sliding motion.  
Reconstruction of the Actuator Fault Signals 
 Consider initially the case when fa(t) ≠ 0 and fs(t) = 
00During the sliding motion, ey=0 and 0e y =� . In the 

coordinates of the canonical form in Section II.A, 
equation (9) becomes 

eq
�(t)

a
fd(t)e�0 2121 +−=  

where νeq is the equivalent control. From Eq. (8), it 
follows that e1 → 0 and therefore 
νeq→d2 fa(t) (14)  
The equivalent control may be recovered by using a 
low pass filter[21]. Here, an alternative approach will be 
employed: Suppose, instead of the discontinuous 
component in (6), that we use the continuous 
approximation 
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 (15)  

where δ is a small positive scalar.  
The equivalent control can be approximated by (15) to 
any required accuracy by a small enough chosen value 
of δ. Since rank(d2)= q, it follows from Eq. (14) that 
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22i

+
−≈ −

 (16) 

The key point is that the signal on the right-hand side of 
(16) can be computed on-line and depends only on the 
output estimation error ey.  
 
Sensor faults detection and diagnosis: Now consider 
the case when fa =0 and consider the effect of fs(t). 
In this situation, from Eq. (13) it follows that 

)t(f)t(Ce)t(e sy −=  

The dynamics of the state estimation error (8-9) is 
given by 

(t)f�(t)e�(t)e s121111

.

+=�  (17)  

�(t)fH(t)f(t)e�(t)e�(t)e ss 22y
s
22121y

.

++−+= ��  (18) 

Note that fs and sf�  appear as output disturbances and 

thus ρ in Eq. (6) must be chosen to be sufficiently large 
to maintain sliding in the presence of these 
disturbances. Arguing as before, provided a sliding 
motion is attained, Eq.(18) can be written as  

eqo �(t)f�(t)f�0 s22121

.

e ++−= �  

Thus for slowly varying faults and if the dynamics of 
the sliding motion are sufficiently fast, 

s)f���(�� 12
1

112122eq
−−= −  (19)  

As previously, νeq can be calculated from Eq. (15); and 
consequently, if )���(� 12

1
112122
−− is nonsingular, the 

fault signal can be obtained from Eq. (19).  
Note that from the Schur expansion 
det (H)=det (H11).det (H22-H21H11

-1H12) 
and thus )���(� 12

1
112122
−−  is nonsingular if and only 

if  det (H) ≠ 0 . 
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Fig. 1: Schematic of inverted pendulum 
 
Table 1: Model parameters for the inverted pendulum  
M  (kg)  3.2 Fx (kg/sec) 6.2  
M  (kg)  0.535 Fθ (kg/m2)  0.009 
J  (kgm2) 0.062 g (m/sec2)  9.807 
L  (m)  0.365 

  
 
Remark 4: Note that even if )���(� 12

1
112122
−−  is 

singular, it may still be possible to reconstruct some of 
the sensor faults fs depending on the structure of the 
rank deficiency, as it will be shown in the next section. 
 
Remark 5: The fault detection approach adopted here 
is based on the equivalent control concept and thus does 
not interact in any way with the use of the sliding mode 
observer as a state estimator. A set of states compatible 
with the current plant output will always be produced; 
this is not the case with those fault detection methods[25] 
which rely on breaking the sliding motion in order to 
detect faults. 
 
Numerical example: To illustrate the method, consider 
the inverted pendulum mounted on a cart shown in Fig. 
1, under the dynamic output feedback control 
developed in[29]. The equations of motion of the system 
are 

umlxFxmM
x

=−+++ )sincos()( 2 θθθθ ������  

0cossinlg =+−+ θθθθ θ xmlmFJ �����  
where the particular values of the system parameters are 
given in Table 1. 
 Suppose that the state variables x,θ and x �  are 

measured. The control law which requires the state ��  
to be reconstructed, does not have to be influenced by 
faults. 
 A linearization of the nonlinear equations around 
the equilibrium point at the origin generates the system 
triple 
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 In this particular situation, any actuator faults, will 
occur in the input channel and hence in the notation of 
section II the fault distribution matrix D=B. It can be 
readily established that the existence conditions of T0 
are satisfied and using the algorithm that results from 
these conditions, it can be shown that the linear change 
of coordinates To is 
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and that the system (20) may be transformed into the 
canonical form (4) where  
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d2 = 0.3205 and 
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 (21)  

where by design H11 = -10. In this particular case  
),,(s� 131211diag22 −−−= which furnishes the linear 

component of the observer with poles approximately 
three times faster than the closed-loop poles of the 
controlled plant. The symmetric positive-definite matrix 
P2 has been selected as the unique solution of the 
Lyapunov equation 

IP��P 2
T
22222 −=+  

In this particular design the scalar function ρ = 75 and 
the observer design is complete. 
 
Estimation of faults: It can be verified that the 
eigenvalues of the matrix A are 
{0, 5.8702, -6.3965, -1.6347} and thus the steady-state 
gain from fs to νeq is singular. It can be verified that 
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100

..

.)����( 12
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 (22)  

is clearly rank deficient. However, if νeq,i and fs,i 
represent the ith components of the vectors νeq and fs 

and from Eq.(19) and Eq.(22), it is apparent that 

3eq, s.,f� −≈1  (23) 

,2eq. s3.0888f� −≈2  (24) 

It is also clear that any fault in the first output channel 
has no direct long-term effect on νeq. Furthermore,  
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because of the structure of d2 in (21), it can be verified 
that 

[ ]1200300 .d)d(d T
2

1
2

T
2

=−  

and so from (14) 

af.�eq,3 32050≈  (25) 

Thus the three components of the equivalent output 
injection signal, properly scaled, provide estimate of fs,3 
and fs,2 and f a respectively and may be used as detector 
signals .  
  

SIMULATION RESULTS 
 
 Figure 2 shows the effect of a parabolic fault in the 
input channel. As predicted, the third detector signal 
reproduces the fault signal (Eq. (25)) whilst not 
affecting the other two signals ( Eq. (23-24)).  
 

 
Fig. 2: Effect of a parabolic fault in the input channel  
 

 
 Fig. 3: Effect of a ramp in the first output channel 
 
 Figure 3 shows the effect of a ramp in the first 
output channel. As predicted, the detector signals (Eq. 
(23-24)) do not reproduce the fault signal (although the 
second detector signal approximates the gradient of the 
fault signal).  
 Figures 4 and 5 show that the appropriate detector 
signal reproduces the ramp fault signals in output 
channels 2 and 3. In both cases the detector signal 3 is 
influenced as well. 

 
Fig 4: Effect of a ramp in the second output channel 
 

 
 Fig. 5: Effect of a ramp in the third output channel 
 
Remark 6: In the Walcott-Zak approach, the equivalent 
control would have only one component making it 
difficult to distinguish between faults in different 
channels.  
 

CONCLUSION 
 
 This study has explored the use of sliding mode 
ideas for the purpose of fault detection and diagnosis. 
The approach adopted here differs significantly from 
the work of Hermans et Zarrop in that the underlying 
intention is to ensure that sliding is maintained even in 
the presence of faults. By examining an equivalent 
output injection signal it has been demonstrated that 
certain fault signals can be faithfully reproduced. 
 The inherent perspectives of this work are situated 
in the general context of active fault tolerant control for 
nonlinear systems. The authors’ research interest will 
be particularly to look forward to: 
* Extend fault identification to nonlinear systems and 

especially in the case where a part of the 
nonlinearity is known (nonlinear function of the 
state and inputs) and may be used to design the 
observer  

* Develop tolerant sliding mode controls to faults 
integrating fault signals estimation. 
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