
American Journal of Applied Science 2 (11): 1516-1519, 2005
ISSN 1546-9239
© 2005 Science Publications

Corresponding Author: Soumia Layachi, Laboratory of Research in LRI Data Processing, University Badji Mokhtar Annaba
1516

Test of a Data Basis Oriented Object after Phase of Conception

Soumia Layachi and M.T. Laskri

Laboratory of Research in LRI Data Processing, University Badji Mokhtar Annaba

Abstract: The concepts of the approach object introduce cause a lot of interest and make a large topic
of survey of it. These concepts applied to the data base are going to allow us to master the complexity
of the data base and facilitate us their reuse. If one considers the conception of a data basis oriented
object a lot of methods of conception make the object of survey; for the stage of test no strategy of test
has been proposed however, except some works that propose specific tests in the used domains and it
is especially applied at the time of the phase of validation of the data basis. In this study a strategy of
test of the applications oriented object is adapted to the data base oriented object.

Key words: BDD, BDDOO, AOO, Test, strategy of test

INTRODUCTION

 The modelling aims to réduirela compléxité as
isolating a peutit numbers elements importing at the
same time to éxaminer. A model constructs itself
therefore from an abstraction of the studied problem.
The abstraction is a human faculty that permits to
separate what is important and of what is not. To a
reality, there is an infinity of modéles. A good model is
the one that describes a reality for a problem posé[1].
 The recent research at the level of SGBDs has the
tendency to demonstrate that the most promising
solution to remedy the hiatuses of the present SGBDs
(basis of data for the domains industrial and big
systems) consists in adding persistence to a
programming language.
 While insuring that this system possesses an
important modeling power and offers all other
functionalities of SGBDs. SGBDOOs based on
programming languages such as (Small Talk, C++)
correspond well to this reality, whereas traditional
SGBDs and the programming languages constitute two
distinct realities (forever compatible) SGBDs are the
result of the integration of the classical functionalities
of SGBDs and an Object Oriented Language[2].
 If we consider the conception of an object oriented
database many methods of conception will be the object
of surveys in studies[3-10]; for the stage of test no
strategy of test has been proposed however, except
some works that propose specific tests in the used
domains[11-18] and it’s especially applied in the phase of
validation of the database.
 If we consider AOO, a strategy of test has been
proposed and can be adapted to the object oriented
database[19,20].
 Our project consists in the realization of a data
basis multi médiat that will allow us to stock medical
pictures of the sound and the text. His/her/its data will
be used later in entry for applications of treatments of
pictures and the sound.

 This basis of data must be reliable and of quality to
be able to use given them without none problems.
 One will use the UML method at the time of the
phase of analysis and cocéption of the data basis. The
graphs results of this concéption will be used at the time
of the stage of test. As for the programming the whole
work will be achieved in an environement of Java
programming.
 It is in this context and with the aim of proposing a
general test strategy for BDDOO that our work is
located. This strategy tests the database right after its
conception, something which permits to the inventor to
correct her (his) mistakes early before putting it at the
disposal of the user.

METHODOLOGY OF THE APPROACH

 The proposed strategy is essentially based on two
steps: a static analysis and a dynamic analysis.

Static analysis: In a first step we do a code static
analysis of different classes on the basis; the sought
goal being:

* The assessment of a set of quality indicators.
* The construction of the graphs of controls of the

class methods.
* The construction of the graphs of dependence

between classes.
* The analysis and the edition of the different graphs

(class, method)
* The interdependence between the different

constituents of the software.
* The addition, deletion and the modification of a

class of the database.

Dynamic analysis: In a second stage, we conduct the
analysis of the dynamic behavior of the classes of the
database. The sought goal is:

Am. J. Appl. Sci., 2 (11): 1516-1519, 2005

 1517

* The assessments of the efficiency of the tests.
* Help to the follow up and the pursuit of the tests.
* The assessment of the stopping criteria.

Test strategies of the object oriented applications:
The strategy recommended for the unit tests and
integration of the classes of the object oriented
applications presents the advantage of being generally
and remains applicable in most part of the programming
language by the object. It’s based on the two
approaches introduced earlier. The static analysis
permits to evaluate an important number of quality
indicators[21-23] specific to the object oriented
applications, starting at the first phases of the cycle,
thus permitting, on one hand, the development control
at different levels and on the other hand, to orient the
test process[24]. The dynamic analysis permits on one
hand, to refine a part of these indicators and on the
other hand, to evaluate the efficiency of the test through
the retained rates of cover[19,20].

Proposed strategy: After the conception of the
database, the inventor applies the test strategy of object
oriented applications, to his object oriented database
since we retrieve the same concepts packets of classes,
classes and methods. We can construct all the graphs
necessary to the test of our database (graph of
inheritance, graph of call between classes, graph of
control of a method, graph of call between methods).
 We intend to evaluate, starting right at the
conception phase of the database, an indicator
characterizing the estimable reliability of a class noted
IFP[19-22,24].
 It is in fact about an evaluation of the rate of
mistakes that if we can think that it is often linked to the
failing rates, doesn’t permit however, to evaluate to
assess the operational reliability[21,23].
 The IFPs are used in the test strategy of databases
to inform us about the classes of the most critical
databases as well as the critical methods on which it is
necessary to concentrate more the test. Thereafter, all
along our work, they will help us to update the database
(when adding, deleting and modifying)
 Indeed, for each class of the graph of calls, we
insure though these rates of cover, that the set of
messages that is addressed to it as well as the messages
that it sends to the other classes have been executed at
least once (global communication of the class) (Fig. 1).
The elimination of an arc (Ci ,Cj) of the graph of calls,
cannot be done, unless the set of messages between Ci
and Cj have been executed at least once corresponds to
the matching degree C (Ci, Cj). We can hold this same
reasoning for each class in the graph of calls. The node
corresponding to a class Ci can’t be deleted from the
graph of calls with the set of arcs leaving from and
arriving to that node, unless the set of messages of the
calling classes Ck and the set of messages addressed to
the called classes Cj have been executed at least once
(Fig. 1).

Fig. 1: Global communication of the class

Fig. 2: General principle of the addition of a class

Fig. 3: Global communication of the class

 The computed rate of the test along the test will
help the developer to decide if he got to a satisfactory
rate, in other words, have a database well tested. The
developer should be able to add, suppress or modify a
class.

Addition of a class: We indicate the super class of the
class to add, in other words, the code of the class to
add. We don’t accept the addition before the root class
of the graph. We display the initial inheritance graph
and the modified inheritance graph by marking the
added class Fig. 2.
 The analysis of the code of the methods of the class
will allow us to know the communication of this class
with the other classes (through these methods) of the
BDD Fig. 3.

Am. J. Appl. Sci., 2 (11): 1516-1519, 2005

 1518

Fig. 4: Graph of dependence used between classes of the application

Fig. 5: Steps to follow for the suppression of a class

Fig. 6: Steps used to suppress a method

 We throw the unit test of the added
methods as well as their integration test.
Thereafter we throw the unit test of class and
its integration test. Throughout this work we use
the test that we have already used for the AOO,
as well as the rates corresponding to each step
of the test to be able to evaluate the IFPs of this
added class.
 Once this part is finished, we notice that in the
methods of this added class we needed the
other methods pertaining to the BDD class, but no
class of the database needed the methods of the
added class. This modification (add a call toward
these methods) will be taken under account by
the modification part.

Addition of a method: The developer indicates the
class where he wants to add a method. Thereafter the
method is added, we analyze the code of this method
and we should display the method control graph and the
graph of call between methods of the class and the
graph is used since it’s modified by the adding of that
of that method. We throw the unit test of the method
and its integration test.

Deletion of classes: The developer indicates the class
to suppress, we don’t admit the suppression of the root
class of the inheritance graph. We display the
inheritance graph and the used graph informed of the
information (IFP, Si, C)[20] to indicate for it the
importance of the class relatively to the set. The

Am. J. Appl. Sci., 2 (11): 1516-1519, 2005

 1519

developer can come back on his decision if he judges
the class important otherwise he will have an idea on
the modifications to bring thanks to the information on
the machings indicated at the level of the used graph
(C). Figure 4 gives an idea of that information:
 If the developer indicates a class which has some
son classes, all the class packets will be suppressed. We
display the inheritance graph by marking the class or
classes to suppress.
 For each class to suppress we should consider its
methods and indicate for each method the set of
methods it calls and the set of methods calling it, like
indicated in the Fig. 5.
 For the methods which call the methods of the
class to suppress, we should modify these methods and
ignore their call toward these suppressed methods. We
throw back the unitary test of these methods and their
integration test. We should redo this same work for all
the classes to suppress. During the suppression we
should follow the following steps (Fig. 5)

Suppression of a method: If we want to suppress a
method in a class we should first indicate the class to
which the method belongs. Thereafter, we determine
the communication of that class with the other classes
(for that method). Then we should update the calls of
the other methods toward that method. We should
throw the unitary test of the updated methods and
thereafter throw their integration test. Throw the unitary
test of the class where we operated a modification, Fig
6.

Modification of a class: This modification consists of
deleting, adding or modifying a method.

Modify a method: The developer brings the desired
modification at the level of the method and then throws
the unitary test of this one and then its integration test.

CONCLUSION

 The strategy that we recommend for the unitary
and integration tests for the classes of the object
oriented databases has the advantage to be general. It is
proposed to AOO and can be applied to BDDOO right
after the conception phase.
 It stands on two approaches: static and dynamic, it
permits us to evaluate in the static analysis phase an
important number of quality indicators specific to
object oriented applications which will be adapted to
BDDOO and the dynamic analysis permits us to refine
these indicators, to follow their evolution during test
and evaluate the efficiency of the test.
 This strategy is the first part of a work on the test
of BDDOO, the second part should take under account
the dynamic test of the object oriented database to be
able to verify the integrity constraints of the database.

REFERENCES

1. www.univ-reunion.fr/~panelli/enseignement/coo/td.html
2. www.syspotico.ca/mapoisson/sgbdoo/chap2.html.
3. www.Vision.
4. www.orsys.fr/cours/conception_orientée objet.htm.
5. www.philippe.guezelon.frée.fr/mcd/mcd.htm.
6. www.ese_metz. fr/metz/personnel/ popineau/ ML/UML

présentationpdf.
7. www.ceation_site_internet.info/chap004.htm.
8. www.test.int-evry.fr:8088/biblio/livres/basesdonnees.php
9. www.chez.com/etranvouer/cours/S5-ProgMultimediat-

1p.pdf
10. www.alrj.org/docs/langages/pooc.pdf
11. www.VerifySoft.com/fr_cmtjava.htm.
12. WWW.VerifyS.oft.com/fr-jcover.htm.
13. WWW.moteurprog. com/?url= article_Affiche. php&\D_

article=68.
14. WWW.Papp.in2p3.fr/Evenement/ Anssors/ aussoicristal.

pdf.
15. www.i3s.unice.fr/~mh/RR/2002/RR-02. 01-F.MALLET.

pdf
16. www.phpaie.net/archives/jan04/threads.html
17. www.microsoftemea.comea.com/desktopdeployment/

download/ BDDtechnicaltraining/FAQ%20section
18. www.news.webplanete.net/Optimiser_ objet_ messages.

htm
19. Badri, M., L. Badri and S. Ferdenache, 1995.

Towards quality control métrics for oriented
objected systems analysis. Proc. of Tools
Europe’95, Versailles, France, Prentice hall.

20. Badri, M., L. Badri and S. Layachi, 1995. Vers une
stratégie de test unitaires et d’intégration des
classes dans les applications orientées objet. Génie
logiciel, no. 18.

21. Aubry, R., C. Lamy and Y. Martinez, 1984.
Maitrise de la fiabilité d’un logiciel temps réel dès
la phase de conception. Approche quantitatives en
génie logiciel . Sophia-Antipolice, juin 1984.

22. Badri, M., R. Aubry and Y. Martinez, 1989.
Indicateur de qualité d’un logiciel et suivi de son
évolution en cours de test deuxième colloque
annuel du club Fiabex. Sûreté de fonctionnement et
sciences des systèmes Evry, édition EC2.

23. Laprie, J.C., 1988. Surrêté de fonctionnement et
tolérance aux fautes: Concepts de base, Rapport
I.AAS n° 88.287, Toulouse.

24. Badri, M., R. Aubry and Y. Martinez,1989. Outils
d’aide à l’orientation et au suivi des test
d’integration. Deuxième journées internationales.
Le génie logiciel et ses applications. Toulouse,
France, Edition EC2.

