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Abstract: Under increasing time-to-market pressures in the electric drives industries, the development 
time of new algorithms and new control systems including their debugging time must be minimized. 
This requirement can be satisfied only by using a well-defined system-level design methodology and 
by reducing the migration time between the algorithm development language and the hardware 
specification language. In this study, we propose to apply the SpecC methodology to the design of 
control systems for power electronics and electric drives. We first begin with an executable 
specification model of the control device. Then, we describe the different steps and transformations 
used to convert this model to a communication model and finally into an implementation model ready 
for manufacturing.  
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INTRODUCTION 

 
 Nowadays, motor control is being a vast market 
and the motor control industry is being a strong 
aggressive sector. To remain competitive, the industry 
has to develop sophisticated control systems which are 
often composed of standard processors (µP, µC, 
DSP)[1,2] and specific hardware components (ASSP, 
FPGA, ASIC)[3-6]. Design of these systems represents a 
difficult and studious task. Traditionally, engineers 
work on implementation of new control algorithms 
directly on an existing control device. Such projects 
typically require 6 to 12 man-months and are composed 
mainly of: (i) implementation of the developed 
algorithm on the processor (after coding); (ii) 
configuration and programming of the processor 
peripherals for I/O operations; (iii) development, if 
needed, of other interface circuits; (iv) test and 
debugging of the obtained control system (usually by 
using emulators); and finally, (v) validation of the 
system by experimentation. All these tasks needed in 
order to adapt the new algorithm to a given control 
board are usually done manually. As a result, neither 
the system performance nor the design time is 
significantly optimized. 
 A new trend is to use configurable logic circuits 
(FPGA, CPLD, etc.) with processor units on the same 
board. The use of these circuits allows rapid and 
efficient adaptation of the used board to new 
applications. However, partitioning between these 
processing elements is still done in an ad - hoc way. 
Therefore, important delays can be introduced into the 
design process, mainly if the first decision about 
partitioning of the application is not correct. 
 To summarize, the design of the control systems 
remains a delicate task, which is usually done manually 

and the design decisions are made heuristically. 
Consequently, resulting products are usually not 
optimal and the time-to-market is relatively large. 
 To resolve these problems, we suggest to apply 
the SpecC methodology[7,8] to the design of 
embedded control systems. This methodology 
presents two main advantages: (i) productivity gains 
by using automatic refinement tools and (ii) faster 
design space exploration by using intermediate 
models that are at higher levels of abstraction and 
provide rapid and useful feedback.  
 The benefits of the SpecC methodology have 
previously been demonstrated on several industrial-
strength data-dominated, multimedia examples[8]. In 
this study, we present the successful use of this 
methodology for control-dominated system design. This 
approach will be discussed using an application of the 
direct-current (DC) motor control. A generalization of 
this study to any other control system can be done 
easily using the same steps discussed below. 
 
SpecC methodology: The SpecC methodology is a set 
of models and transformations between models (Fig. 1). 
All models are written in a system-level design 
language (SpecC) and are executable descriptions of 
the same system at different levels of abstraction in 
the design process. The transformations are a series 
of well-defined steps through which the initial 
specification is gradually mapped onto a detailed 
implementation description ready for manufacturing. 
After each design step, design models are analyzed 
to estimate certain quality metrics such as 
performance, cost and power consumption. Analysis 
and estimation results are reported to the user and 
back-annotated into the model for simulation and 
further synthesis. 
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Fig. 1: SpecC methodology 
 

 
 
Fig. 2: General diagram defining the control algorithm 

(Ωref: the speed reference; Iref: the current 
reference; α: the pulse width of the control 
signal; Vh: the voltage applied to the motor; Im: 
the motor current and Ωm: the motor speed) 

 
 The specification model describes the functionality 
as well as performance, power, cost and other 
constraints of the intended design. It is a purely 
functional description and does not include any 
premature allusions to implementation details.  
 During architecture exploration the specification 
model is refined into an architecture model. This 
includes the following design steps: (i) allocation 
which determines the number and types of system 
components such as general-purpose or custom 
processors, memories and busses, which will be used to 
implement the system behavior; (ii) behavior 
partitioning which maps the behaviors (or processes) 
that comprise the system functionality onto the 
allocated processing elements; (iii) variable 
partitioning which assigns variables to memories; (iv) 
channel partitioning which assigns communication 
channels to busses; and (v) scheduling which 
determines the order of execution of the behaviors 
assigned to either the standard (software) or custom 
(hardware) processors after partitioning. 

 Architecture exploration is an iterative process 
culminating in an architecture model that represents a 
refinement of the specification model. Each candidate 
architecture is estimated to evaluate satisfaction of the 
design constraints. If constraints are not met, 
component reallocation is performed and a new 
architecture with different components, connectivity, 
partitioning, or scheduling is generated and evaluated. 
 The architecture model describes the system 
functionality as well as the overall structure of the final 
implementation for the design. Communication in the 
architecture model is described using abstract global 
channels on the message-passing level. 
 Communication Synthesis refines the abstract 
communication between components in the architecture 
model into an implementation over actual busses. The 
task of communication synthesis includes insertion of 
communication protocols, synthesis of interfaces and 
transducers and inlining of protocols into synthesizable 
components. In the resulting communication model, 
communication is described in terms of actual wires 
and timing relationships defined by the bus protocols. 
 The communication model is the final output of the 
system-level design process which describes the system 
structure as a set of components connected through pins 
and wires of the set of system busses. 
 In the backend, the result of the synthesis flow is 
handed off to the backend tools, as shown in the lower 
part of Fig. 1. For the software part, compilers are used 
to translate the software C code for the chosen 
processor. For the hardware part, high-level synthesis 
tools implement the behavioral C code describing the 
functionality assigned to custom hardware and the 
functionality of transducers which are necessary for 
connecting different processors, memories and IPs. 
After software compilation and hardware synthesis, the 
final implementation model is generated. 
 The implementation model represents a clock-cycle 
accurate description of the whole system. This 
description, in turn, then serves as the basis for 
manufacturing of the system using traditional tools for 
logic synthesis and physical design. 
 

EMBEDDED CONTROLLER DESIGN 
 
Description of the case study: The studied process is 
composed of a Direct Current (DC) motor, a four-
quadrant chopper, a current sensor (LEM) for the 
current capture and an optical incremental encoder 
(OIE) for the speed capture. 
 The used control algorithm is composed of two 
control loops: an outer motion control loop with a 
functioning period Tm and an inner current control loop 
with a functioning period Tc (Fig. 2).  
 The speed regulator computes the current reference 
value Iref from the speed reference Ωref introduced by 
the user and from the motor speed value Ωm. The 
current regulator computes the pulse width α of the 
control signals from Iref and the motor current Im.  
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Fig. 3: Specification model: overview of the DC_CTL 

behaviors 
 

 
 
Fig. 4: Architecture models after behavior partitioning 
 

 
 
Fig. 5: Communication model after protocol in lining 
 
 The interconnection of the components 
implementing these regulators to the physical process 
(chopper,   motor   and   sensors)   is   done   by     using 
Input/output (I/O) interfaces. For the studied DC 
process, we use a Pulse Width Modulation module 
(PWM) to generate two complementary control signals 
from the α value. These signals are applied to the 
control of the chopper functioning and therefore the 
motor speed. The current and speed digital values (Im 

and Ωm) are obtained from the sensor output signals by 
using capture modules (ACQi and ACQΩ) which 
translate information from the logic and analog domain 
to the digital one. 

Specification: The specification model of the studied 
system is composed of three modules encapsulated in 
SpecC behaviors (Fig. 3a): (i) CTL_Alg for the control 
algorithm, (ii) ACQ for the information acquisition 
and (iii) PWM for the generation of control signals. 
Each of them can be split up into different sub-
behaviors associated with different clocks. As an 
example, Fig. 3b shows the control algorithm split up 
into two sub-behaviors: M_CTL which represents the 
speed regulator and C_CTL which represents the 
current regulator.  
 The SpecC specification describes the control 
device functionality in a clear and precise way as it uses 
a modular and hierarchical representation. The resulting 
model is executable and allows the validation of the 
developed algorithm by simulation. Using the SpecC 
specification, we were able to evaluate several different 
variants of the control algorithm in a matter of hours. 
 
Architecture exploration: For the design of control 
devices, the I/O modules are usually implemented as 
hardware modules (ADC, Timers, etc.) while the 
control algorithm is implemented in a standard 
processor. However, this solution is not always 
adequate for real time requirements of sophisticated 
algorithms. In these cases, we have to move the critical 
tasks (such as the current regulator) of the control 
algorithm from the processor into custom hardware.  
 According to these considerations, we explored 
several architecture solutions for the implementation of 
the algorithm ranging from a pure software solution to a 
pure hardware one. However, as a compromise between 
real-time performance, flexibility and user-friendliness, 
we only considered mixed solutions which include HW 
and SW components. Specifically, Fig. 4 shows the two 
possible candidate architecture models we developed 
for the DC-process controller. 
 At this stage of architecture exploration, SpecC 
tools allow estimation of certain quality metrics such as 
performance, power consumption, etc. Results showed 
that the execution time of C_CTL is reduced by 88% 
(from 5 µs down to 0.6 µs) when moving C_CTL from 
software to hardware. Furthermore, C_CTL takes up 
70% of the DSP utilization (compared to 2 µs execution 
time of M_CTL), i.e. moving C_CTL into hardware 
frees up the processor for other tasks and/or for power 
savings. We therefore selected the second architecture 
model (Fig. 4b) which is composed of: (i) a hardware 
component   (PE1-ASIC) implementing the I/O 
modules  and  the  current  control  module;  and (ii) a 
processor  core   (DSP56600 core)   for both of the 
speed control module and the interface with the user 
(PE2-DSP).  
 In order to simplify the communication between 
processors, we selected a communication architecture 
with only one bus and one bus master (DSP) where 
synchronization between slaves and masters is 
implemented using interrupts.  
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Fig. 6: RTL processor implementing the C_CTL module 
 

 
 

Fig. 7: RTL processor implementing the EXCH module 
 

 

 
 
Fig. 8: Co-simulation results of the C_CTL hardware 

module 
 
At the beginning of each new Tc period, the ASIC 
interrupts the DSP and both start the exchange process. 
Acquisition of Ωm values is done by the master at the 
beginning of each Tm period. 
 
Communication synthesis: We used the DSP 56600 
bus protocol[9] for both the ASIC and the DSP. The 

communication model is generated using two steps: 
protocol insertion (protocol of the DSP 56600) and 
protocol inlining into the ASIC. 
 The resulting communication model is shown on 
Fig. 5. Note that we added a hardware exchange 
module (EXCH) to the C_CTL module for 
implementation of its communication with the DSP. 
 

IMPLEMENTATION AND VALIDATION 
 
Overview of the implementation: At the end of the 
SpecC   synthesis  flow,   the  final communication 
model  is  handled  off   to   the   backend tools. For 
each  software  part, C  code is   generated and 
compiled   into a program that runs on the 
corresponding   processor. For each hardware part, 
high-level   synthesis is performed to create RTL 
models which are   processed   using   traditional   logic 
synthesis   and   place   &   route tools. The outputs of 
the high-level synthesis process are RTL processor 
structures   which   are   composed of a custom 
controller associated with a custom Datapath. For 
examples, Fig. 6 and 7 show the RTL processors 
synthesized for the C_CTL and the EXCH hardware 
modules, respectively. 
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Fig. 9: Implementation characteristics of different 

hardware modules 
 
Validation of the implemented hardware modules: 
The implemented hardware modules have been 
validated separately by co-simulation using Xilinx 
System Generator and Matlab tools. Results are 
compared to those of a software floating-point 
implementation. Figure 8 shows the obtained relative 
errors on the current and speed values and demonstrates 
the efficiency of the designed system. 
 The different hardware modules have been 
implemented using Xilinx Virtex2XC2V250 type 
FPGAs. The resulting design characteristics are 
summarized in Fig. 9.  
 These results show that the designed hardware 
modules occupy less than 30% of the circuit surface. 
We can therefore confirm that hardware 
implementation   of   digital   control devices is 
nowadays   very  advantageous given the high 
integration  scales of FPGA circuits and the 
performance of EDA tools. 
 

DISCUSSION 
 
 Figure 10 and Table 1 show the results for the 
design of the controller system from specification 
model down to implementation model.  
 To validate the models, we performed simulations 
at all levels. As we move down in the level of 
abstraction, more timing information is added, 
increasing the accuracy of the simulation results. 
 As the results show, moving to higher levels of 
abstraction enables more rapid design space 
exploration. Through the intermediate models, valuable 
feedback about critical design aspects can be obtained 
early and quickly. 
 As code sizes for different models suggest, more 
lines of code are added to the model with lower levels 
of abstraction, reflecting the additional complexity 
needed to model the implementation details introduced 
with each step. Table 1 demonstrates with the use of 
available refinement tools that can automatically 
generate all design models from the initial specification 
model, large productivity gains of 500x or more can be 
achieved  (especially for the sophisticated control 
systems). 

 
 
Fig. 10: Design model complexities 
 
Table 1: Refinement effort 
 Modified Manual Automated 
 lines   User/Refine 
Spec →  Arch 550 1~2 weeks 5mins / <0.5min 
Arch → Comm 200 0.5~1week 5mins / < 0.5min 
Comm → Impl 2000 4~8 weeks 40mins / <4mins 
Total 2750 5.5~11 weeks 50mins / <5mins 

  
 The implementation results of the DC process 
controller demonstrate the importance and efficiency of 
VLSI technology in the development of real-time, 
control-dominated systems. Using the SpecC 
methodology   and  associated  EDA tools, the 
presented design was implemented as a circuit on a 
single  FPGA  component  and  completed  in a matter 
of weeks.  
 Moreover, with the evolution of semiconductor 
technology and the development of efficient CAD tools, 
the use of the FPGA circuits will become increasingly 
important, particularly for developing reconfigurable 
SOC (RSOC) specific to process control. These RSOC 
involve    the   integration  of  different  PEs  (such    as  
processors and peripherals) and their interconnection on 
the same reconfigurable component[10,11]. 
 The use of co-design methodologies and RSOC 
techniques and tools[12,13] will be very advantageous for 
rapid and efficient development of digital control 
devices. In future work, we are planning to develop IPs 
specific to the automation domain. Furthermore,  we are 
studying the efficient integration of such IPs into RSOC 
systems and system design methodologies. 
 

CONCLUSION 
 
 In this study, we applied the SpecC system-level 
design methodology to the design of control systems for 
power electronics and electric drives processes. We 
presented the study of a DC motor drive with a control 
system based on a DSP for the motion control, an ASIC 
for the current control and custom hardware modules 
for I/O processing. This study can be easily generalized 
to other process control systems. 
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 We have shown the various steps that gradually 
refine the initial specification down to a detailed 
communication model. This model is then further 
implemented using traditional CAD tools and FPGA 
circuits.  
 Using the SpecC methodology, we were able to 
finish the complete design in a short amount of time. 
Results show that with the help of automatic refinement 
tools, significant productivity gains can be achieved.  
Furthermore, intermediate models at every stage of the 
design process provide useful feedback about design 
quality metrics for rapid, early design space 
exploration, allowing us to evaluate several algorithm 
variants and candidate architectures. In summary, the 
well-defined nature of the methodology’s models and 
transformations helps focusing design efforts on central 
issues, provides the basis for design automation tools 
and enables application of formal methods in the future. 
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