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Abstract: In recent years some cryptographic algorithms have gained popularity due to properties that 
make them suitable for use in constrained environment like mobile information appliances, where 
computing resources and power availability are limited. One of these cryptosystems is Elliptic curve 
which requires less computational power, memory and communication bandwidth compared to other 
cryptosystem. This makes the elliptic curve cryptography to gain wide acceptance as an alternative to 
conventional cryptosystems (DSA, RSA, AES, etc.). All existing protocols for elliptic curve 
cryptosystems that are used for either key exchange or for ciphering, assume that the curve E, the 
field Fq and a point P on the curve are all public. In this research we propose a modified protocol for 
elliptic curve key exchange based on elliptic curve over rings, assuming that only the curve E and Fq 

are public, keeping the base point P secret, which make attacking the cryptosystem harder by the 
eavesdropper. Also we provide imbedded authentication, so our protocol does not suffer from the 
man in the middle attack. 
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INTRODUCTION 

 
 With the proliferation of the handheld wireless 
information appliances, the ability to perform security 
functions with limited computing resources has become 
increasingly important. In mobile devices such as 
personal digital assistants (PDAs) and multimedia cell 
phones, the processing resources, memory and power 
are all very limited, but he needs for secure transmission 
of information may increase due to the vulnerability to 
attackers of the publicly accessible wireless 
transmission channel[1].      
 New smaller and faster security algorithms provide 
part of the solution, the elliptic curve cryptography ECC 
provides a faster alternative for public key 
cryptography. Much smaller key lengths are required 
with ECC to provide a desired level of security, which 
means faster key exchange, user authentication, 
signature generation and verification, in addition to 
smaller key storage needs. The terms elliptic curve 
cipher and elliptic curve cryptography refers to an 
existing generic cryptosystem which use numbers 
generated from an elliptic curve. Empirical evidence 
suggests that cryptosystems that utilize number derived 
from elliptic curve can be more secure[2]. As with all 
cryptosystems and especially with public-key 
cryptosystems, it takes years of public evaluation before 
a reasonable level of confidence in a new system is 
established. ECC seems to have reached that level now. 
In the last couple of years, the first commercial 

implementations have appeared, as toolkits but also in 
real-world applications, such as email security, web 
security, smart cards, etc. The security of ECC has not 
been proven but it is based on the difficulty of 
computing the elliptic curve discrete logarithm in the 
elliptic curve group[3]. 
 
The elliptic curve: An elliptic curve is the set of 
solutions of an equation of the form: 
 
y2 [ + xy ] = x3+ ax2 + b                       (1) 
 
where, x and y are variables, a and b are constants. 
However, these quantities are not necessarily real 
numbers; instead they may be valued from any field. 
For cryptographic purposes we always use a "finite" 
field - that is x, y, a and b are chosen from a finite set of 
distinct values[4]. If x3 + ax + b contains no repeated 
factors, or equivalently if 4a3 + 27b2 is not 0, then the 
elliptic curve:  y2 = x3 + ax + b[2]. An elliptic curve over 
real numbers may be defined as the set of points (x, y) 
which satisfy an elliptic curve equation 1, where x, y, a 
and b are real numbers.  
 
Elliptic curve over a finite field Fp: Using the real 
numbers for cryptography will cause a problem because 
it is very hard to store them precisely in computer 
memory and to predict how much storage we will need 
for them. This problem can be solved by using finite 
fields, i.e., Fields with a finite number of elements. 
Since the number of elements is finite, we can find a 
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unique representation for each of them, which allows us 
to store and handle the elements in a manageable way. 
The number of elements of a finite field (or Galois 
field) is always a positive prime power pn, the 
corresponding field is denoted GF(pn). Two special 
cases are popular for use in ECPKCs: fields of the form 
GF (p) (or n = 1) and fields of the form GF (2n), or p = 
2. For GF (p), the formulas are the same as for the reals; 
for GF (2n) they are slightly different[2]. 
Given a, b satisfying: 
 

4a3 + 27b2 mod p <> 0 
 
 Then the elliptic curve over a finite field Fp  with 
parameters a and b is defined as the set of points (x,y) 
satisfying the equation Y2 = x3 + ax + b together with a 
special point O which is the point at infinity , such a 
curve will be denoted Ep(a,b)[5]. 
 Let P1 and P2 be two points on E , it is possible to 
find a closed formula that gives the coordinates (xS,yS) 
of the sum PS of two points P1 and P2 as a function of 
their coordinates (x1, y1) and (x2, y2): 
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 Recall that the field Fp uses the numbers from 0 to 
p - 1 and computations end by taking the remainder on 
division by p. For example, in F23 the field is composed 
of integers from 0 to 22 and any operation within this 
field will result in an integer also between 0 and 22. 
 
Key exchange: Key exchange protocols allow two 
parties to agree on a secret shared secret key that they 
can use to do further encryption for a long message. 
One of these protocols is the Diffie-Hellman, which is 
the most used one. The Elliptic curve Diffie-Helman is 
considered as an extension to the standard Diffie-
Hellman. 
  
Elliptic curve Diffie-Helman: Elliptic curve Diffie-
Helman protocol (ECDH) is one of the key exchange 
protocols used to establish a shared key between two 
parties. ECDH protocol is based on the additive elliptic 
curve group. ECDH begin by selecting the underlying 
field GF (P) or GF (2k) , the curve E with parameters a, 
b and the base point P. The order of the base point P is 
equal to n. The standards often suggest that we select an 
elliptic curve with prime order and therefore any 
element of the group would be selected and their order 
will be the prime number n. At the end of the protocol, 
the communicating parties end up with the same value 
K which is a point on the curve.  

 
 
Fig. 1: Elliptic curve diffie-helman 
 
 As shown in Fig. 1 the Elliptic curve Diffie-Helman 
protocol will work as follows.  
 
Setup: Alice and Bob agree on a common group G and 
a common group element g. Then Alice chooses a secret 
number a, which serves as her secret key and Bob 
chooses a secret key b. 
 
Communication: Alice computes ga and sends it to 
Bob over a public channel; Bob sends gb to Alice. 
Although ga and gb is closely related to a and b 
respectively, the hardness of the DLP ensures that the 
secret keys cannot be computed from them in a practical 
situation. Therefore, ga and gb can serve as public keys, 
corresponding to the private keys of Alice and Bob 
respectively. 
 
Final step: Alice takes Bob's public key and computes 
(gb)a = gab; Bob computes (ga)b = gab. As we see, 
Alice and Bob obtain the same result and this result 
could not be computed by an adversary who only knows 
the public keys. Therefore Alice and Bob have agreed 
on a shared secret key. 
 Note that the hardness of the DLP does not 
guarantee the security of the Diffie-Hellman protocol: 
computing gab from ga and gb may be easier than 
computing a from ga or b from gb. 
 
Necessity of authenticated key exchange protocol: In 
the standard Elliptic Curve Diffie-Helman key exchange 
Fig. 1, a shared secret key is established by multiplying 
the public point by both the secret key generated by 
Alice and Bob  Ted has now exchanged keys with Bob 
and Alice. Bob. This scheme has one major problem, it's 
not authenticated. This means that Alice has no way of 
knowing if bP actually was sent from Bob. A third party 
Ted could have intercepted the transmission from Bob 
and substituted his own value (say cP) as shown in Fig.  
2. Ted can exchange keys with Bob and Alice. Bob and 
Alice think they've exchanged keys with each other. 
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Fig. 2: Man-in-the-middle attack 
 
 All Ted has to do now decrypts the message from 
Bob re-encrypt it with Alice’s key and he can monitor 
the communication without detection. One of solutions 
to this dilemma is described in Viega[6]. It involves the 
use of a trusted "certificate authority" or CA. When 
queried the CA and returns a digitally signed 
"certificate" that can be compared to one that has been 
transmitted by another means. In 7] an authenticated key 
exchange based on the difficulty of the qth root problem 
was described. In[8] a new three pass key agreement 
protocol with key confirmation is proposed.  
 
Proposed Protocol: All existing protocols for elliptic 
curve cryptosystems assume that the curve E, the field 
Fq and a point P on the curve are all public. This 
proposed protocol assumes that only the curve E and Fq 

are public, keeping the base point P secret, which make 
attacking the cryptosystem harder by the eavesdropper. 
The proposed protocol is also secure against the "man-
in-the-middle" attack allows an eavesdropper to monitor 
communication between two parties. 
 
Protocol: Key exchange based on En (a, b) can be set 
up as follows.  
 The two parties agreed on the Elliptic curve 
equation, that is select prime number n and two 
parameters a and b , En (a,b):  Y2 = x3 + ax + b , 
satisfying gcd (4a3+27b2, n ) = 1. 
 Select   n =  pq   as   in RSA, p  and  q  are  two  
prime numbers. Ø (n)= (p-1) (q-1). Select an integer e 
where gcd (Ø (n), e ) = 1, where 1< e < Ø (n) , d then 
can be calculated by this formula:   
 

d ≡ e-1 mod Ø (n)[9] 
 
 Now A will select the following: 
 
Xa A's first ephemeral key, random number in Fn  
Ra A's second ephemeral key, random number in Fn  
Pa Elliptic curve point chosen by A  

Similarly B has Xb , Rb  , Pb. 
 The security of this technique is based on the 
discrete logarithm problem for both the elliptic curve 
and RSA because the proposed protocol has the 
characteristics of both of them. 
 The agreement between two entities A and B will 
be proposed in two-pass key agreement, the scheme 
works as follows: 
 
1. A will compute the point:   Ga = XaPa   and send it 

to B , on the other  hand B will compute the point  :   
Gb = XbPb   and send it to A 

2. A receives Gb from B and compute the point: Sa = 
RaGb   and send it to B.  

3. B receives Ga and computes the point:   Sb = RbGa 

and send it to A 
4. A receives Sb from B and compute the session key:  

K  = e (Sa +  Sb )   
5. B receives Sa from A and compute the session key:   

K  = e (Sa +  Sb)   
 
 In the last two steps the resulting point much be 
checked no to be equal to O. If K= O the scheme will 
terminate with failure. 
 Multiplication by e is important for two reasons. 
First it gives the protocol public key characteristics, so 
that the public key will K for both parties and the 
private key will be d (Sa +  Sb )   . Second it increases the 
security of the protocol, so it will not suffer from the 
man-in-the-middle attack as discussed in the next two 
sections. 
 
Protocol characteristics: Here we prove our protocol 
meets the following desirable security attributes. 
 
Known-Key Security: The protocol provides known-
key security. Each run of the protocol between two 
entities A and B should produce a unique session key. 
Although an adversary has learned some other session 
keys, he can't compute K, because he doesn't know 
private keys d. 
 
Perfect Forward Secrecy: It also possesses forward 
secrecy. Suppose that shared key is compromised.  
 However, the secrecy of previous session keys 
established by honest entities is not affected, because in 
each time the two parties need to share a session key 
they select different points on the elliptic curve and 
different ephemeral key. 
 
Unknown key-share: It also prevents unknown key-
share. It is difficult for the adversity to know the private 
key for any party, or the shared key. This is discussed in 
the next session. 
 
How the attack is blocked: Now we will show how the 
protocol doesn’t suffer from the man-in-the-middle 
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attack. The imposer would be able to select the 
following he elliptic curve 
 
X i Imposer's first ephemeral key, random number in Fn  
Ri Imposer's second ephemeral key, random number 

in Fn  
Pi Elliptic curve point chosen by Imposer  
 
 And so still he can compute Gi = XiPi   and send the 
value of both A and B, but still the attack is blocked 
because of  four reasons: 
 
1. The public point in the elliptic curve is not known. 
2. The protocol is to pass key agreement, so the 

imposer must catch two values to continue his 
attack. These values are Gi ,  Si where i = A, B . So 
for each key agreement the imposer must watch the 
line to get these values. 

3. It's difficult for the imposer to calculate K = e (Sa +  
Sb)  because he will not know the value of e. 

4. If the imposer known the value K, he will not be 
able to use this value to communicate with the 
parties, because the private key (which depend on 
d) for both parties will be hidden. 

 
CONCLUSION 

 
 Using the elliptic curve in cryptography has been 
gaining a lot of attention lately. In this research a new 
protocol for exchanging key between two parties was 
defined. This new protocol has two major advantages 
over all previous key exchange protocol, first this 
technique offers no exchange in public point which will 
increase the security, the second one is that this protocol 
does not suffer from the man-in-the-middle problem, it 
has an embedded solution to this problem that has only 
two-pass key agreement. The proposed protocol is also 
easy to implement, it's based on the characteristics of 
both elliptic curve and RSA encryption systems. The 
protocol has only to pass key agreements, which mean 
no communication overhead will be added as offered in 
some key-exchange algorithms.   
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