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Abstract: The change in the thickness of an interface between two immiscible fluids due to the 
propagation of an internal capillary-gravity wave along the interface is considered using a Bhatnagar, 
Gross and Krook (BGK) lattice Boltzmann model of a binary of fluid. The vertical thickness of the 
interface is recorded from the simulations since this is the most easily measured quantities in any 
simulation or experiment. The vertical thickness is then related to the actual thickness (perpendicular 
to the interface) which is seen to vary with the phase of the wave. The positions of the maxima and 
minimum thicknesses are seen to be approximately constant relative to the phase of the propagating 
wave and the range of variation of the thickness decreases at approximately the same rate as the wave 
amplitude is damped. A simplified model for the interface is considered which predicts a similar 
variation due to the interface being stretched as the internal wave propagates. 
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INTRODUCTION 

 
 Internal waves can propagate along an interface 
between fluids of similar densities in the same manner 
as surface waves propagate along the interface between 
a liquid and a gas, as is most commonly observed 
between water and air. Internal waves vary in scale 
from capillary waves with wavelengths of the order of 
10-7 m[1] to gravity waves with wavelengths of the order 
of 102 m[2,3]. Capillary waves have wavelengths which 
are short enough that gravity forces are negligible 
compared to the surface tension forces acting at the 
interface, and can occur between any two immiscible 
fluids. Internal gravity is dominant over surface tension 
for the waves have a wavelength large enough that 
gravity is dominant over surface tension for the wave 
motion. Internal gravity and not surface tension is 
responsible for driving the motion, they occur whenever 
there is a change in the specific density of the fluid, 
either at the interface between two fluids of different 
densities such as fresh and salt water, or where the 
density of a fluid change rapidly such as at a thermo 
Cline. At intermediate wavelengths both gravity and 
surface tension have a significant effect and capillary-
gravity waves are observed. The wavelengths at which 
the different regime of pure gravity, capillary-gravity 
and strength of the surface tension at the interface and 
the densities of the two fluids. 
 The shape of internal waves has been studied by 
many authors,[4,6]. Here we consider the manner in 
which an interface between two fluids is altered due to 
wave propagation at the interface, and in particular we 
examine this by studying the change which occurs in 

the thickness of the interface. A numerical study is 
performed using an immiscible binary fluid consisting 
of two fluids of similar but distinct specific densities. 
The parameters used in this study have been selected so 
that both gravitational and surface tension forces are 
responsible for the wave motion.  
 

MATERIALS AND METHODS 
 
Numerical Model:  The internal waves are simulated 
using a lattice Boltzmann model which has been used 
previously to model internal standing gravity and 
capillary-gravity wave [7,8] and progressive waves[8]. 
This utilizes the immiscible binary fluid BGK model 
proposed by[9,10] with the inclusion of a body force[7]. 
Rather than considering separately the two density 
components of the binary fluid, ρ1 and ρ2, we work 
with the total fluid density, ρ = ρ1+ρ2, and the 
concentration difference or order parameter, d = ρ1-ρ2. 
To this end we need to consider two BGK Boltzmann 
equations[11] which describe the evolution of two 
distribution function fi and gi:  
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where, ei is a unit vector along direction i of the 
underlying lattice and τf and τg are three parameters 
which are considered later. These equations are the 
standard form of the lattice Boltzmann equation, with 
the addition of the term Faeia/3 which are associated 
with gravity force. Each equation describes the 
evolution of seven. Distribution functions, fi or gi, 
where i= 0 represents the rest distribution function 
which remains stationary at a grid site and i = 1, 2, …, 
6 represent the distribution functions hexagonal grid on 
which the simulations are performed. The left hand 
sides of the Boltzmann equations correspond to the 
streaming of the distribution functions along the grid 
while the right hand side is a BGK collision operator[11] 
which accounts for, in a simplified manner, the 
redistribution of the distribution functions due to 
particle collisions. The BGK collision operator of the 

fluid to its equilibrium state ( or )
− −

i if g  at a rate 

determined by the relaxation parameters τf and τg. From 
the evolution of the distribution functions the 
macroscopic quantities can be obtained. The total fluid 
density, ρ = ρ1 ρ2, the total fluid velocity, u, and the 
density difference, d = ρ1ρ 2, can be found from the 
distribution functions as:  
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where, the summation is over all the lattice directions, 
from  i= 0 to i= 6, and we use Greek subscripts to 

represent functions, 
−

if  and 
−

ig  are then 

selinteractionsimulate two ideal gases with  repulsive 
interactin energy[9, 10] and are given by:  
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 The body force term and the chemical potential 
differences are given by:  
 

ˆ( ) ( ) e= − + +   zaF d b dγ ρ γ ρ   

 

 And 21 /
log

2 2 1 /

 Λ +µ = − + − ∇ − 

d T d
d

d

ρ κ
ρ ρ

respectively 

where êz  is a unit vector in the vertical direction. The 

parameters which have not yet been defined can in 
general be selected to determine the properties of the 
simulation,[7,9,10]. Here we define them and give the 
value used here and, for the parameters of particular 
importance to our simulation, we briefly discuss their 
significance. The temperature T was set to 0.5, the 
interaction strength parameter Λ was set to 1.1 and the 
mobility Γ was set to 0.1; for these parameters an 
immiscible binary fluid is simulated. The interfacial 
thickness of about ten lattice units. The gravitational 
coefficients aγ  and bγ  were set to 5.0 ×10-5 and 5.5×10-

5 respectively; this gives a gravitational strength of 
1.075 × 10-4 and a relative density difference =1.05. 
The relaxation parameter fτ is set to 0.7; this gives a 

fluid viscosity of 0.05. The other relaxation parameter 

gτ  is set to 0.789 to eliminate third order corrections in 

the equation of motion for the order parameter. All 
these parameters are measured in the units of the lattice, 
that is the lattice spacing and the time-step. Comparison 
with a physical situation can be made by considering 
the dimension parameters describing the system such as 
the Froude number, the Reynolds number and the 
relative density difference. This binary fluid system can 
be shown[10] to satisfy the continuity equation, 

0,∂ + ∂ =t a auρ ρ  and the Navier-Stokes equation, 

,∂ = ∂ = −∂ + ∂ ∂ +∂ ς∂t a a a a au u u p v u uβ β β β β βρ ρ ρ ρ where 
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This ensures that the 

lattice Boltzmann model used here is mimicking a real 

fluid. While the form of 
−

if  and 
−

ig ensure that the 
equilibrium state is thermodynamically consistent and a 
true binary fluid is being simulated.  
 Internal Wave Simulations: This lattice Boltzmann 
model was used to simulated progressive internal waves 
on an interface at the center of a 256 by 256 site grid. A 
solid no-slip boundary[12] was applied at the bottom and 
top of the grid and periodic boundary conditions at the 
outer edges. The wave was initialized in four steps: (1) 
the grid is set-up with a horizontal interface and 
constant total density everywhere. Gravity is then 
applied to a steady-state is reached-this initializes the 
density is each fluid. (2) The interface is perturbed to a 
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sinusoidal shape with wavelength λ = 256- this 
represents a standing wave at the extreme of its 
oscillation[7]. (3) The standing wave is allowed to 
oscillate for a quarterly period until the interface is 
flat[7,13] this allows the shape and width of the interface 
to form. (4) The velocities under the standing wave are 
measured and used to initialize the progressive wave, 
the shape of the interface to form. (4) The velocities 
under the standing wave are measured and used to 
initialize the progressive wave, the shape of the 
interface is formed by shifting the grid by an amountη , 
the shape of the interface[13] this initializes the 
progressive wave with the correct velocities and 
interface shape (measured from the standing wave 
simulation) rather than imposing them on the wave. 
Using this initialization technique the vertical thickness 
of the interface is approximately constant. This 
technique is used so that no velocities or densities are 
imposed on the wave; alternatively the wave could be 
initialized from linear or higher-order wave theory.  
 Approximating the fluid by two immiscible, in 
viscid fluids at a sharp interface the frequency of the 
wave motion is given by[14,15]: 
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where, σ is the surface tension, k is the wave number, f  
is the relative density differences 1 2ρ / ρ  and g’ is the 

relative gravity:  
 

1
'

1

−=
+

f
g g

f
  

 
 Now, the strength of the surface tension can be 
determined by considering, in the absence of gravity, a 
‘bubble’ of one fluid inside the second. The density 
difference, ∆ρ , between the fluid inside and outside the 
bubble can be measured and the surface tension 
calculated through Laplace’s law, = ∆ rσ ρ , where r is 
the radius of the bubble and the difference ∆ρ is given by 
the ideal gas law ∆ρ = ∆ρΤ . The surface tension is 

calculated in this way to be σ = 1.8×10−2. Hence we see 
that, for the parameters used here: 
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 Thus both surface tension and gravity forces are 
important in determining the wave motion, although the 
influence of gravity is less than that of surface tension.  
 
Determination of the interface thickness: This 
interface thickness can be found by considering the 
concentration difference, d, which is the difference in 
the densities of the two fluids. This has an 
approximately constant positive value in one fluid and 

an approximately constant negative value of the same 
magnitude in the other fluid. At the interface d varies 
smoothly. In each vertical column of simulated data the 
order parameter was fitted[16] to a curve of the form d = 
a tanh (bz + c), where a, b and c are the parameters 
being found by the fitting process.  
 Since there are many points away from the 
interface the value n of a should be found very accurate. 
The values of b and c are determined by about ten 
points over the interface. This is, however, enough 
points to determine a good fit with the simulated data. 
A typical fit is shown in Fig. 1 indicating that the 
interface has a tan h shape and that the results from 
curve fitting are accurate. The accuracy of the curve 
fitting can also be seen by considering the vertical 
position of the center of the interface, where d = 0. Now 
for the interface defined as d = a tan h (bz + c) the 
center of the interface occurs when z = -c/b. Figure 2 
shows the position of the interface measured in this 
manner and the position of the last site above the 
interface. These results show that the curve fitting 
procedure gives an accurate method for determining the 
position of the interface to an accuracy much greater 
than one lattice site and that the values of b and c are 
found to a reasonable accuracy despite the relatively 
small number of sites in the interface region.  
 The gradient of d can be easily found by 
differentiating d = a tan h (bz + c), allowing us to find 
the gradient of the order parameter at the center of the 

interface: 
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 Now we can define the vertical thickness of the 
interface:  
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where, ∆d  is the change in d across the interface which 
is 2a. This definition of v is chosen since it fits in with 
our analysis scheme. In other situations a different 
destination may be preferred, for example the vertical 
interface thickness might commonly be taken to be v’ = 
z1 –z2 where d (z1) = 0.95 a and d(z2) = -0.95 a. In this 

case 1' tanh (0.95)− =  v v  that is the different definitions 

of the vertical interface thickness will only differ by a 
constant magnitude term.  
 Consider a linear interfacial wave with the 
interface at z = α sin (kx + Ψ) as shown in Fig. 3 At 
any point x0 the tangent to the interface intersects the 
horizontal at an angle θ where tan θ = αk sin(kx + Ψ). 
 Now the interface thickness, t, is given by t = v 
cos(θ) or:  
 

 [ ]12
cos(tan cos( ) ).−= +α ψt k kx

b  
 
 This means that the interface thickness can be 
found from the fitted parameter b provided the values 
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of α, the wave amplitude, and ψ, the wave phase can be 
found, the value of k is known when the wavelength is 
fixed. Several methods were considered for obtaining 
these values include estimating them from the position 
and depth of the crest and the trough and applying the 
curve fitting algorithm to the surface profile.  
 

 
 
Fig. 1: Comparison, in the Area of the Interface, of the 

Simulated Order Parameter (Symbols) and the 
Fitted Tanh Profile  

 

 
 
Fig. 2: The Center of the Interface Calculated as z=-c/b 

(Dashed Line) and as the Last Site above the 
Interface (Solid Line) 

 

 
 
Fig. 3: The Interface Thickness, t, the Vertical 

Thickness, v, and the Angle between the 
Interface and the Horizontal, θ  

The method used here, however, was to find the value 
of αk cos (kx + ψ) rather than the individual variables. 
This was done by differentiating the central interface 
profile (-c/b) using a central difference equation.  
 

RESULTS 
 
 A progressive internal wave was initialized using the 
method described above for the parameters discussed. 
Analysis of the position of the interface, η = -c/b, (scaled 
by a factor 1/30), the vertical thickness, v = 2/b, measured 
from the simulation and the interface thickness: 
 

12 d( / )
cos(tan )

d
− − =  
 

c b
t

b x  
 
 After 2,000 times-steps. The value of the interface 
thickness, observed in Fig. 4 is seen to vary by about 
4% depending on the phase of the wave. The two 
vertical lines are at the crest and the trough of the wave 
and correspond to the position at which t and v coincide 
since the interface is horizontal. The peak values of the 
interface thickness occur slightly behind the crest and 
the trough of the internal wave. The interface changes 
from its initial uniform vertical thickness (with v 
varying by only 0.05% in a non-sinusoidal manner) to 
the approximately seasonal variation (with half the 
wavelength of the internal wave) in the first 2,000 
times-steps. During the next 4,000 times-steps the 
interface thickness continues to change until it reaches 
the final from shown in Fig. 5 which shows the 
thickness of the interface after 8,000 times-steps. The 
thickness sill peaks just behind the crest and the trough 
of the wave, however now the peak of the wave crest is 
larger than the one at the trough. The minimum values 
of the interface thickness occur between the peaks with 
the minimum behind the crest being more pronounced 
than the other minimum. This appears to be the final 
form of the interface thickness.  
 The variation in the thickness of the interface is 
caused by the propagation of the internal wave across 
the interface. Thus we would expect the variation in the 
thickness to decay at the same rate as the wave is being 
damped. The height of the internal wave, H, which is 
twice the wave amplitude can be calculated as the 
differences between the maximum height of the 
interface and the minimum height. Similarly h, the 
height of the variation in interface thickness, can be 
found as the difference between the mean of the two 
maximum thicknesses and the mean of the two 
minimum thicknesses. This is shown in Fig. 6 which 
shows the rate at which H and h are damped. The 
damping rate of the wave is approximately constant. 
The best straight-line fit through the results for H 
was found and a straight line with the same gradient 
has been drawn through the results for the h. Four 
times greater than about 8,000 time-steps to be 
damped  at  approximately the same rate as the wave.  
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Fig. 4: The Shape of the Interface (Dot-Dashed Line) 

Travelling from Left to Right, the Measured 
Vertical Interface Thickness (Dashed Line) and 
the Calculated Interface Thickness (Solid Line) 
after 2,000 Time-Steps 

 

 
 
Fig. 5: The Thickness of the Interface after 8,000 

Time-Steps as a Function of the Wave Phase, φ, 
the Crest of the Wave Corresponding to φ= 0 

 
At times earlier than 8,000 times-steps there is some 
deviation probably due to the initial formation of the 
variations in interface thickness and the changing of 
these variations as observed between Fig. 4 and 5. The 
position of the maxima and minima are shown in Fig. 7 
relative to the phase of the wave, φ =0 corresponds to the 
wave crest. In general these occur at φ slightly less than 
nπ/2 for n = 1,2,3,4 as was observed for the maxima in 
Fig. 4. Initially the position of the extremes is relatively 
constant. As the wave decays and the variation in the 
interface thickness becomes small, the results become 
noisy making the determination of the exact maximum or 
minimum impossible, thus the results become less 
accurate as time increases. This is particularly true for the 
first maximum and minimum after the wave crest so 
these results are only shown four times < 32,000.  

 
 
Fig. 6: The Damping of the Wave Height (Solid Line) 

and the Interface Thickness Variations (Dashed 
Line) as Functions of Time. Also Shown (Dot-
Dash Line) is a Line with the Same Gradient as 
the Best-Fit Strength Line through the Results 
for H Drawn through the Results for h 

 

 
 
Fig. 7: The Positions of the Maxima and Minima 

Interface Thickness Relative to the Phase of the 
Internal Wave, φ = 0 Corresponds to the Crest 
of the Wave  

 
The maximum and minimum behind the crest are larger 
and so an estimation of their position can be made for 
>32,000 although it will be less accurate that the earlier 
measurements. The approximately constant position of 
the maxima and minima relative to the phase of the 
propagating wave is consistent with the interface 
thickening and thinning being a direct result of the 
wave motion. 
 

DISCUSSION 
 
 The results have shown that internal wave 
propagation at an interface can cause a variation in the 
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interface thickness. Consider the following simple 
model for the interface. Assume that the interface 
consists of a series of small incompressible elements 
which do not translate in the x-direction and which 
have length ∆x and width t when the interface is flat. If 
the interface is perturbed by an amount η(x) = α cos 
(kx-Ψ), then each element is stretched to a length 

2 2 1/2[( ) ( ) ]= +∆ ∆ ∆s x y , where 
cos[  ( + ) + ] - cos[ ].+∆ α ∆ ψ α ψy =  k x x kx  

 Thus the new length of the element is 
21
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length of 
21

2

∂∆
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η
. Thus we expect a relative 

decrease in the thickness of t*, where: 
 

2 2 21
sin ( )

2
≈ +*t k kxα ψ

 
 
 Comparing the expression  for t* with the results in 
Fig. 1 and 4, we see from Fig. 4 that the interface 
thickness has a maximum of 4.33 when cos(kx + ψ) ≈ 1 
and cos(kx + ψ) ≈ -1, (corresponding to t* ≈ 0). This 
value of t is comparable to the value of 4.35 
(corresponding to b = 0.46) found from the tanh fit in 
Fig. 1. The minimum value of the thickness in Fig. 4 
occurs close to cos (kx + ψ) =0. The maximum relative 
variation in t is found from Fig. 4 to be t*

max = 0.036. 
The analytic value is t*

max = 0.097 which is somewhat 
larger but of the same order of magnitude. This 
suggests that the observed change in the interface 
thickness may be due to the interface stretching days' its 
shape changes. As noted in Fig. 4, there is a small time 
lag between the wave amplitude and the interface 
thickness which is not predicted by the simple model 
represented by above. A time lag is to be expected since 
the thickness will not change instantaneously with a 
change in the interface shape. Other factors, such as the 
velocity shear produced by the wave, may also be 
contributing to the changes in the interface thickness. 
 The lattice Boltzmann model utilized here 
incorporates the correct free energy of a binary fluid to 
a thermodynamically consistent fluid with a 
thermodynamically consistent equilibrium state[10]. It is 
therefore well suited to studying capillary waves at the 
interface. Here the model has been applied in 
conjunction with a body force to simulate waves where 
both gravity and surface tension act as the interface. If 
pure gravity waves were to be considered the nature of 
the interface will not be significant in determining the 
wave behavior. In such a case this lattice Boltzmann 
model has already been shown to give a realistic 
representation of wave motion[7]. Thus we expect the 
model and the results presented above to be applicable 
to a wide range of waves extending from pure capillary 
to pure gravity waves. 

 The results presented here show a variation in the 
thickness of a fluid interface as an internal wave 
propagates along it. The variation can be thought of as 
being approximately sinusoidal with wavelength half 
that of the progressive wave,  although the two maxima 
which occur slightly behind the wave crest and trough 
need not have the same value, and similarly the two 
minima need not be equal. In a binary system where the 
two fluids have the same mass any wave propagating at 
the interface is a pure capillary wave. In such a case 
inverting the z direction should have no effect on the 
system and so we would not expect there to be any 
differences between the values of the two maximum 
thicknesses or the two minimum thicknesses. This 
should also be true if the two fluids have different 
masses but the wavelength is short enough that the 
waves can be considered as capillary waves. Thus the 
differences observed between the interface thickness at 
the wave peak and the wave trough can be associated 
with the density difference of the two fluids. It is 
expected that this difference will decrease with the 
wavelength and the density difference. As the 
wavelength is increased or the density difference 
becomes larger we expect the difference to remain and 
probably become larger.  
 In conclusion, we have observed a variation in the 
thickness of a fluid interface when an internal wave 
propagates along it. The magnitude of this variation 
was seen to depend on the wave amplitude in that it is 
damped at approximately the same rate. The thickness 
of the interface is maximum slightly behind the wave 
crest and trough and minimum halfway between the 
maxima. Some variation was also observed between the 
two maxima and minima in each wavelength, 
particularly at larger themes: the maximum just behind 
the crest being larger than the maximum just behind the 
trough and the minimum behind the larger maximum 
being more pronounced than the other minimum. 
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