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Abstract: The present work aims at finding an optimized finite difference scheme for the solution 
of problems involving pure convection heat transfer in slab shaped fresh water fish pieces. A 
generalized mathematical model was written in dimensionless form and an optimized scheme of the 
solutions was worked out. A fully explicit finite difference scheme, an implicit finite difference 
scheme and different combination of the two, with varying values of the weighing factor were 
thoroughly studied. All the possible options of temperature-time grid sizes were considered. It was 
found that the simplest explicit finite difference scheme with ten characteristic length division and 
Fourier number increments one sixth of the square of the space division size gives best convergence 
and minimal truncation error. Numerically computed and measured temperature-time variations 
were found to have excellent agreement. 
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INTRODUCTION 

 
 Cooling is a common and important fish 
preservation technique and it is used to maintain the 
quality and inhibiting the spoilage of the product. 
Transient heat transfer may play an important role in 
food-cooling applications. The most complicated heat 
transfer problems are successfully solved by using either 
finite difference or finite element techniques[1]. These 
numerical methods are capable of handling any type of 
boundary condition and product geometry. Any 
nonlinearity or singularity can also be handled and 
changes of thermo physical properties, if any, can be 
incorporated. In the present work the particular application 
of interest is the precooling of Malaysian Pangasius sutchi 
fish packages exposed to a chilled air stream. 
  This species of freshwater fish are extensively 
used as a food in Malaysia[2], nevertheless no 
publications are available regarding the thermal 
properties and heat transfer analysis during heating and 
cooling of this important fish species[3]. During its 
precooling, the fish is cooled after catching, so that its 
temperature is quickly brought to the cold storage 
temperature. This enables the refrigeration engineer to 
select a smaller size of heat transfer equipment for the 
cold storage warehouse. During the precooling process, 
the only convective heat transfer takes place for 
packaged food. Because of its relative simplicity, the 
finite difference method is more popularly used to solve 
the transient heat transfer problems related to food 
processors. By applying the numerical grid generation 
approach, it can be used for irregular geometry as 
effectively as the more complicated finite element 
method, without sacrificing its simplicity. A number of 

investigators have used finite difference methods for 
solving problems with pure convective heat transfer 
from the surface of food products. Major works are 
those reported by[1,4-8]. These models give satisfactory 
results during air blast cooling of wrapped, packaged or 
tinned foods or during hydro cooling. 
 Several finite difference schemes have been 
described in the solution of transient heat conduction 
equations with different initial and boundary 
conditions[9-11]. The present work deals with thorough 
comparative investigations of the fully explicit scheme, 
fully implicit scheme and different weighted averages 
of the two schemes, so as to establish the scheme which 
is best suited for computing temperature-time variations 
during precooling of the slab shaped freshwater fish 
packages with pure convection heat transfers.  
 
Mathematical formulations: The normalized transient 
heat conduction equation for isotropic solids in which 
heat transfer may be approximated to be unidirectional 
and there is no internal heat generation is described as 
follows[1, 12]. 
 

m
m

1 U U
x for o0 X 1

x x x

∂ ∂ ∂  = τ ≥τ ≤ ≤ ∂ ∂ ∂τ 
 (1) 

 
where, m = 0 for an infinite slab, 1 for an infinite 
cylinder and 2 for a sphere. If the product is initially at 
a uniform temperature and symmetrical cooling occurs, 
the initial condition and center boundary condition are 
defined, respectively, by the following equations 
 
U U(X) o0 X 1= τ = τ ≤ ≤   (2) 

 
U

0 for oX 0
X

∂ = τ > τ =
∂

 (3) 



American J. Appl. Sci., 1 (4), 316-320, 2004 

317 

 At the surface, the pure convection boundary 
condition is defined by the Eq. 4: 
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 (4) 

 
 The general finite difference representation of the 
governing heat conduction equation (1) is given as 
follows[9]: 
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where, subscript “i” and superscript “j” in the above 
finite difference representation stand for space and time 
step, respectively: 
 

1
X

n
Λ =   (6) 

 
∆τ = size of the normalized time step  (7) 
 
Y = 0 for slab  (8) 
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θ is the weighing factor, which is 0 for explicit scheme, 
1 for the fully implicit scheme and for general implicit-
explicit scheme, θ is given as: 
 
0 < θ < 1  (11) 
 
 For higher computational accuracy, the first 
derivatives in the center and surface boundary condition 
equations are written in the form of the four-point 
formulae[13], given, respectively as below: 
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 Equations (12) and (13) are based on Lagrangian 
interpolation and are reported to have a truncation error 
O(∆X)3. 

Experimental procedure: In the present work, 
experimental and theoretical investigations were carried 
out on a slab shaped sample of fresh water Pangasius 
sutchi Malaysian fish. The work was started firstly with 
mass density measurement by means of electronic 
balance with resolution of 0.001 g. The volume was 
measured by dipping the sample in a calibrated jar 
filled with water. The measurement of water content of 
the fish sampled was made by a sensitive electronic 
balance fitted with infrared dryer set at 105 °C for 12 
hours. A mass of thinly cut fish pieces was determined 
before and after thorough drying until no further 
moisture loss was obtained. With the measured value of 
the water mass fraction (W), its thermal conductivity 
was determined by Sweat correlation[14]: 
 
k = 0.08+0.52W  (14) 
 
 The specific heat was determined by Reidel’s 
model for fish meat above freezing point as given 
below[15]: 
 
Cp = 1.672 + 2.508W  (15) 
 
 The coefficient of heat transfer was calculated by 
Nu- Re relationship given below[1]: 
 
Nu = p + qRer Prs  (16) 
  
 The air-blast cooling duct, its test section, 
rectangular shaped fish piece containers and related 
instrumentation have been explained elsewhere[16]. The 
temperature of the circulating air inside the test duct 
was maintained constant at 1°C and the velocity of air 
passing over the test container was kept constant 
throughout the experiments at 6 m/s. Five copper-
constantan thermocouple beads were installed inside the 
fish flesh, at the depths x0/5, 2x0/5, 3x0/5, 4x0/5 and x0 
from the sample surface. In order to insert the 
temperature sensors at the desired depths, five fine 
holes were drilled at equal distances of 5 mm from each 
other in the middle of one copper sheet cover of the test 
container. The lead wires of all the thermocouples were 
connected with a data logger. The temperatures were 
recorded at a specified equal time interval of 1 minute 
while each experiment lasted for 60 minutes. First the 
refrigeration system of the chilling duct was run until a 
constant temperature of 1°C was achieved. Then the 
fish package was suspended in the test section of the air 
duct such that the conducting surfaces were parallel to 
the direction of flow of the chilled air stream. The data 
logger was used to collect the transient temperature 
time data. 
 
Computational procedure: The system of equations 
(1-13) was solved for predicting temperature time 
variations during cooling of fish packages with pure 
convection heat transfer from their surface. The 
coordinate system for the fish package is shown in Fig. 
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1 and the mesh of time and space intervals during the 
finite difference solutions are shown in Fig. 2. First of 
all, measured thermo physical properties and a sample 
set of temperature-time records were chosen to 
establish the best calculation scheme. The measured 
and estimated thermo physical properties of Pangasius 
sutchi fish are listed in Table 1. 
 The experimental results for this slab shaped 
sample during its air blast cooling, considering only 
heat transfer, were compared to all the possible implicit 
finite difference schemes. The concept of least root 
means square method of the error has been used which 
is defined as: 
 
Table 1: Data for precooling of a slab shaped fish sample 
   Numerical  
Parameter Notation Units value 
Specific heat capacity  cp kJ/kg. K 3.75364 
Surface heat transfer  
Coefficient h W/m2. K 78.99 
Thermal conductivity k W/m. K 0.5296 
Dry bulb temperature Tdb °C 1   
Initial temperature Ti °C 25   
Half slab thickness x0 m 0. 0127 
Mass density ρ kg/m3 1052   
Relative humidity of air  Ø % 90% 
 

 
 
Fig. 1: Coordinate system during precooling 
 

 
 
Fig. 2: The mesh of time and space intervals during 

the finite difference solutions 
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where, j = 0, 1, 2, 3, 4 whereas, Te, Tp are experimental 
and computed temperatures respectively and m is the 
number of data points  
 

RESULTS AND DISCUSSION 
 
 A program was developed (visual FORTRAN) for 
the system of  Eq (1-16) to predict the temperature 
distributions versus time at five locations inside the 
food sample, so as to compare the computed values 
with the experimental results as shown in Fig. 3. For the 
stability consideration in the explicit finite difference 
scheme, ∆t was chosen to be equal to (∆X)2/6[10]. The 
program was repeated run many times for all the 
possible finite difference schemes to establish a scheme 
which is accurate, reliable and efficient for heat transfer 
analyses during precooling of infinite slabs. 
Calculations were repeated for different values of 
weighing factor (θ) from 0 to 1 in step of 0.2. During 
all the calculations, higher deviations between 
computed and measured temperatures were observed 
for some initial time. Thorough investigations revealed 
that the variation continued to occur until τ > 0.2 on all 
samples, for all the values of θ and n. Fig.  4 shows the 
optimum value of θ with constant n that yields 
minimum computational time and high accuracy of the 
sensor locations starting from the center of the slab, E 
(0), toward the surface of the sample at five equidistant 
locations. It was observed that up to X = 0.6, there was 
little deviation between the measured and computed 
temperatures. But beyond this, the deviation was 
sufficiently high. It was interesting to note that the 
simple explicit finite difference scheme yielded 
temperatures, which were consistently in good 
agreement with measured values. The computational 
time for the implicit finite difference scheme, using n = 
45 was 36 times more than that for the explicit scheme 
and accuracy was also slightly impaired. The same 
trend persisted for higher values of n. The error value at 
any sensor location decreased very slightly with n and 
the minimal one was obtained from the sensor fixed at 
the center, whereas the error increased with the sensor 
distance from the center of the infinite slab. Figure 5 
shows the variation of error with n for fully explicit, 
fully implicit and Crank Nicolson schemes. 
 The minimal error could be obtained with n =10 for 
all the schemes investigated. All the schemes yielded 
the same value of error in the range of 10 ≤ n ≤ 45. 
Beyond this range, the implicit scheme was found to be 
slightly more accurate than the explicit scheme at the 
cost of much increased computational time. The Crank- 
Nicolson Scheme was found to be less accurate for the 
present set of equations. 
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Fig. 3: Comparison of computed and measured 

temperatures at the center of a slab 
 

 
 
Fig. 4: Error distribution throughout the sample 
 

 
 
Fig. 5: Comparison of computational error 
 

CONCLUSIONS 
 
 On the basis of thorough numerical and 
experimental investigations performed in the present 
work by the explicit finite difference scheme, implicit 
finite difference scheme and implicit explicit finite 
difference schemes with varying weighing factors, it 
can be concluded that: 
 
• As n increases from 5 to 10 the accuracy increases 

and beyond that the computational accuracy will be 
least affected  

• For n = 45, the computation time increases 36 
times for the implicit scheme compared to that 
scheme while computational error decreased very 
slightly 

• The computational error increases as we approach 
nearer to the surface of the sample. For X > 0.6, the 
computational error is on the higher side 

• All the finite difference schemes were found to 
yield reasonably accurate and reliable results for 0 
≤ X ≤ 0.6, n = 10 and t > 0.2 

• The simple explicit finite difference scheme with n 
= 10 and  ∆τ = (∆X)2/6 gives the most reliable and 
accurate results for making thorough heat transfer 
analyses during air blast precooling of an infinite 
slab shaped packages of 

• Fresh water Pangasius Sutchi Malaysian fish. It 
may be recommended for temperature calculations 
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NOTATION 
 
Bi Biot number (h. xo/kfish) 
E error value at any temperature sensor location 
h surface film conductance (W/m2. K) 
k thermal conductivity of product (W/m. K) 
Nu Nusselt number (h. xo/kair) 
Pr Prandtle number (µ. cp/kair)  
Re Reynolds number (ρ, V. xo /µ) 
t time (s) 
T temperature (°C) 
Tdb dry bulb temperature of chilled air (°C) 
Tcm cooling medium temperature (°C) 
Ti initial product temperature (°C) 
U dimensionless temperature [(T- Tcm)/(Ti- Tcm)] 
x distance from center (m) 
X dimensionless space coordinates (x/x0) 
x0 half thickness of infinite slab 
τ Fourier number (α .t/x0

2) 
α Thermal diffusivity of product (m2/s) 
 

REFERENCES 
 
1. Ansari, F.A., 1984. Heat and Mass Transfer 

Analysis in Cold Preservation of Food. Ph.D. 
Thesis, University of Roorkee, India. 



American J. Appl. Sci., 1 (4), 316-320, 2004 

320 

2. Mohsin, A.K.M. and M. A. Ambak, 1980. 
Freshwater Fishes of Peninsular Malaysia. 
University Pertanian Malaysia. 

3. Hasimah, H.A., 2003. Personal communication 
with Malaysian Agricultural Research and 
Development Institute. Food Technology Centre. 

4. Baird, C.D. and J.J. Gaffney, 1976. A numerical 
procedure for calculating heat transfer in bulk loads 
of fruits and vegetables. Transactions. Am. Soc. 
Heating Refrigerating and Air-conditioning 
Engineers, 82: 525-40. 

5. Gaffney, J.J., C.D. Baird and K.V. Chau, 1985. 
Methods for calculating heat and mass transfer in 
fruits and vegetables individually and in bulk. 
Transactions. Am. Soc. Heating Refrigerating and 
Air-conditioning Engineers, 91: 333-352.  

6. Hayakawa, K.I. and J. Succar, 1982. Heat transfer 
and moisture loss of spherical fresh produce. J. 
Food Sci., 47: 595-605. 

7. Hayakawa, K. I., 1978. Computerized simulation 
for heat transfer and moisture loss from an 
idealized fresh produce. Transactions. Am. Soc. 
Agri. Engineers, 21: pp. 1015 

8. Hayakawa, K.I., 1982. A new method for the 
computerized determination of the apparent 
thermal diffusivity of food. Proceedings. First 
Pacific Chemical Engineering Congress, Part II, 
pp: 129. 

9. Richtmyer, R.D. and K.W. Morton, 1967. 
Difference Methods for Initial Value Problems. 
Second Edition (Tracts in Mathematics Number 4). 
New York, Inter science Publishers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

10. Crank, J. and P.A. Nicolson, 1947. Practical 
Method for Numerical Evaluation of Partial 
Differential equations of Heat Conduction Type. 
Proceedings, Phil. Soc., 43: 50. 

11. Smith, G.D., 1965. Numerical Solution of Partial 
Differential Equations with Exercises and Worked 
Solutions. Oxford University Press, London. 

12. Narayanan, B.K., 1976. Heat and Mass Transfer 
Studies and Evaluation of Thermal Properties of 
Food Products. PH. D. Thesis, Indian Institute of 
Technology, Madras, India. 

13. Berezin, I.S. and M.P. Zhidkov, 1965. Computing 
Methods, Addison Wesley Publishing Company 
Inc., Reading, Mass., 1: 210. 

14. Sweat, V.E., 1975. Modelling the thermal 
conductivity of meats, Transaction of ASAE, 18: 
564-568. 

15. Sudhaharini, R., 1998. Measurement of Thermal 
Properties of Seafood. M.Sc. Thesis, Virginia 
Polytechnic Institute and State University. 

16. Ansari, F.A., M.A. Wan and KA. Abbas, 2003. An 
improved scheme for temperature calculations in 
food. Energy Conversion and Management, 44: 
2373-2382.  

 
 


