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ABSTRACT 

Recently Salim et al. (2007), have shown that galactic dynamo seeds can be possibly attainable in bouncing 
cosmological models with QED Lagrangeans. In this study we generalise their result by include torsion of 
spacetime in bouncing cosmology. It is shown that by considering a semi-minimal photon-torsion coupling 
and a Lagrangean of the type RF2 it is possible to find a fast decoupling between magnetic and torsion fields 

in the contracting phases of the universe. Besides torsion field decays as 
2

3K a�  while the magnetic field 
grows as B∼a−5.5 thus explaining the fast decoupling between the two fields. It is expected that at some 
point of the contracting phase the amplification of the magnetic field may give rise to a enough strong 
magnetic field to seed a galactic dynamo. 
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1. INTRODUCTION 

Enqvist et al. (1992) place limits on neutrino 
masses from galactic dynamo mechanism. Since 
neutrino masses are important in extending the 
standard model of particle physics, it seems worth to 
investigate the relation between Lorentz Violation 
(LV) and galactic dynamos in torsion fields for 
example (Campanelli et al., 2009; Barrow and Tsagas, 
2008). Therefore knowledge of the dynamics between 
torsion and cosmic magnetic fields may reveal if 
dynamo mechanism is a powerful mechanism to feed 
the galactic magnetic fields of nano-Gauss observed in 
nature. In this letter one shows that by using a scalar 
electrodynamics in the context of Quantum 
Electrodynamics (QED) (Drummond and Hathrell, 
1980) it is possible to show that magnetic field decays 
when torsion is fast amplified. It is shown that torsion 
needed to seed galactic dynamo is of the other of 10-
18 cm−1 which can be found in nature and is even 
weaker than the value estimated in the Early Universe. 

In previous work (Barrow and Tsagas, 2008) one 
notice that semi-minimal coupling has been used on a 

Lagrangean of the type 
1

4
ij kl

ijklR F F , [i, j = 0,1,2,3]. This 

has provided further constraints on torsion up to 
10−31GeV. Here though semi-minimal coupling is 
preserved, we shall use, another gravitational sector in 
the Lagrangean given by the coupling RFij Fij as used in 
the study by (Mazzitelli and Spedalieri, 1988). The term 
Rijkl Fij Fkl displays the same symmetries of LV term, 
where the Riemann-Cartan curvature tensor, including 
torsion terms plays the role of the Higgs sector constants 
kijkl. Here we will not address the problem of the LV 
since the Lagrangean term used does not favor that. In 
this study, we show that the use of this photon sector 
coupled semi-minimally with torsion mode, in scales of 
10 kpc would require a not very strong torsion field that 
might exist in nature, so it seems that the only conclusion 
is that this necessary imply that galactic magnetic fields 
can be seeded by a such torsion models also in the 
(Mazzitelli and Spedalieri, 1988) scalar electrodynamics 
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is concerned with semi-minimal coupling of course. 
Some physicists (Kosteleckly, 2004) argued that torsion 
is very weak to have time to seed magnetic fields but 
actually here from Mazzitelli and Spedalieri (1988) 
scalar QED we have shown that the torsion field may 
grow exponentially in regions of weak primordial 
magnetic field which is not strong enough to seed 
galactic dynamos. The study is organised as follows: In 
section II we review Mazzitelli and Spedalieri (1988) 
scalar electrodynamics. In section III we apply the semi-
minimal coupling to their equations to introduce the 
torsion field which grows in the contracting phase of the 
universe as in a bouncing model (Kostelecky et al., 
2008), presenting a decoupling between torsion to 
magnetic fields. Section IV contains conclusions and 
discussions. 

2. FLAT SEMI-MINIMAL TORSION-
PHOTON COUPLING OF RF2 

LAGRANGEAN 

Though torsion effects are highly suppressed in 
comparison with curvature ones of Einstein gravity 
sector, we do not consider here Minkowski space since 
as can be easily shown here from the field equations that 
torsion vanishes in Minkowski space Mazzitelli and 
Spedalieri (1988) Lagrangean is Equation 1: 
 

( ) ( )
1

4 2 22
2

1 1

4
j

jS d x g F m R D D
m

ε φφ φ φ = − − + + − 
 

∫  (1) 

 
where, Di = ∂i-ieAi is the covariant derivative for the 
scalar fields. Mazzitelli and Spedalieri (1988) have 
computed an effective Lagrangean for the e.m field by 
integrating the quantum scalar field. Via dimensional 
regularisation they obtain the effective Lagrangean 
(Kostelecky et al., 2008) Equation 2: 
 

( ) ( )
4

2 4 2
2

2

1 1 1

4 2 4

d
j d

e f f jd

m
L F a x m j

uπ

−
− = − + − ∑ Γ − 

 
 (2) 

 
The first Schwinger-De Witt (SDW) coefficients 

Mazzitelli and Spedalieri (1988) work Equation 3 to 6: 
 

0 1a =  (3) 

 

1

1

6
a Rε = − − 

 
 (4) 

( )
2

2
2

2
2

1 1 1

180 2 6

1 1

6 5 12

ijkl ij
ijkl ija R R R R R

e
R F

ε

ε

 = − + − + 
 

 − ∗ 
 

 (5) 

 
2 2

2
3

1
... ...

60 90 6
ij kl ik kl

ijkl ij

e e
a R F F R F F RFε = + − + − + 

 
 (6) 

 
where, we have omitted the Maxwell terms that will not 
be of our interest in the sequence of the study. Here we 
note that due to the use of semi-minimal coupling where 
torsion, which is our only gravitational field, appears 
only in α2 as first term, since in the semi-minimal 
coupling torsion does not appears in the covariant 
derivative and consequently not in the electromagnetic 
field. Actually following this reasoning torsion appears 
only in the curvatures appears for the first time in α2. 
Following them I shall consider the following effective 
Lagrangean in Riemann-Cartan spacetime, through the 
minimal coupling as Equation 7: 
 

2
2

1
1

4e f f

b
L F R

m

 
= − + 

 
 (7) 

 
where, we have taken n = 1 such as in (Turner and 
Widrow, 1988; Salim et al., 2007). From this effective 
Lagrangean we obtain the field equations for the 
Friedmann spatially flat metric Equation 8 and 9: 
 

( )2 2 2 2ds a d dxη= −  (8) 

 
As: 

 

2
1 0i

i j

bR
F

m

 
∂ + =  

 
 (9) 

 
From these equations one may obtain with 

appropriated approximations Equation 10: 
 

2
2 2

1 0k k k

bR bR
A k A A

m m R

 
 + + + =  

 

&
&& &  (10) 

 
These equations one may yet approximate for high 

coherence scales where k2<<1. We also addopt here the 
fact that in Riemannian case in inflationary epoch R>>> 
m2 so this would reduce the last equation to: 
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0k k

R
A A

R

 
+ = 

 

&
&& &  (11) 

 
where, R is the Ricci scalar. This shows that although 
there is no inflation here we consider that torsion has a 
similar behaviour so actually 2K m>>>& . 

3. GALACTIC DYNAMO SEEDS IN RF2 
SEMI-MINIMAL COUPLING 

In this section we shall solve Equation 11 in the case 
of curved spacetime with and performing the semi-
minimal coupling where the Ricci scalar is approximated 
taken as 2K& , where K is the time component K0, 
which to simplify matters is the only homogeneous 
component of contortion, an algebraic combination of 
torsion. Here we addopt linearisation of the Ricci-
Cartan scalar (Kostelecky et al., 2008) Equation 12: 
 

22i j i
i j iR g R R K K∗= = + ∇ −  (12) 

 
where, Kj = Krj

r, represents the trace of torsion tensor, 
R* is the Riemannian Ricci scalar that here shall be 
taken as constant like in de Sitter or Einstein space, to 
simplify computations. Minkowski space where it 
vanishes can be also addressed. Let us now perform 
the variation of the Lagrangean density gL  with 

respect to the scale cosmological factor a and 
contortion K, to complete the system of Einstein-
Cartan-Maxwell equations of course with propagating 
torsion. This can be done easily by computing the 
Euler Lagrange Equation 13 and 14: 
 

0
gL gLd

dt a a

∂ ∂
− =

∂ ∂&
 (13) 

 

0
gL gLd

dt K K

∂ ∂
− =

∂ ∂&
 (14) 

 
Let us start from the last equation to determine K in 

terms of the scale factor a. This yields Equation 15: 
 

3a
K

a
= −

&
 (15) 

 
Before applying this result to the expression for the 

Ricci-Cartan scalar, let us express this scalar in terms 
of the scalar a and torsion trace K. This yields the 
following expression Equation 16 and 17: 

22 lni j i
i j tR g R R K K gK∗= = + − + ∂&  (16) 

 
Or: 

 

( )
2

2 36 2 lni j i
i j t

a a
R g R K K a K

a a

  = = − + + − + ∂  
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Which yields Equation 18: 

 
2

2
2 3

a a a
R R K K K K

a a a
∗   = + + + + −  
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The expression for K&&  is Equation 19: 

 
33

2
3 3

a aa a
K

a a a

  = − − +  
   

&&& &&& &
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The expression for Ricci-Cartan scalar Lagrangean 

gR  is Equation 20: 

 
3 2 23 3 7a R aa a a = − + && &&  (20) 

 
Substitution of this expression into the Euler-

Lagrange equation above one has Equation 21: 
 

4 0aa aa− =&& &&&  (21) 

 
By making use of the ansatz a∼tn where n is a real 

number, one obtains the following algebraic Equation 22: 
 

( ) 22 4 0n n n− − =  (22) 

 

Which yields immeadiatly 
2

4
n =  and a∼t−1, which 

represents a contracting phase of the cosmological model 
with torsion. Therefore from the above expression for K 

one obtains 
2

3K a� . On the other hand the magnetic field 
undergoes a dynamo like phase undergoing an 
amplification according to the law B∼a−5.5. This can be 

easily seen by computing the ratio 
R

R

&

 as Equation 23: 

 

( )2 2
3

2 2
3

3 .

3

K KR

R K K

 − =
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&&

&
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Since the torsion is a very weak field this can be 
approximated to Equation 24: 
 
R K

R K
≈
&&

&
  (24) 

 
Substitution into the Maxwell like equation above 

and solving it and taking into account the expression 
Equation 25: 
 
B ikA=  (25) 
 
where, B is the magnetic field and k is the wave number 
which is given by the inverse of the coherent scale, 
one obtains the above value of B∼a−5.5. Therefore one 
may conclude that the torsion decays while the 
magnetic field grows in the contracting phase of the 
universe (Salim et al., 2007) exactly like in the general 
relativistic version investigated by Salim et al. (2007; 
Novello and Bergliaffa, 2008). 

4. DISCUSSION AND CONCLUSION 

In this study we show that a semi-minimal torsion 
coupling in Riemann-Cartan spacetime can be used to 
generalize previous papers on QED cosmology where a 
Minkowski space with torsion has been used. 
AsLagrangeans can be used to determine the torsion 
which can be used to seed galactic dynamos. 

The motivation from this study came from some 
work by Campanelli et al. (2009) where they 
investigate similar subjects in the general relativistic 
backgrounds of Riemannian geometry and by the 
work of Salim et al. (2007) on the amplification of the 
magnetic field in bouncing cosmological models. As 
in their case we think some improvements can be 
made in obtained galactic dynamo seeds if one uses 
the matter content of the universe instead of the 
vacuum QED in curved spacetimes with torsion used 
here. This may appear elsewhere. 
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