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ABSTRACT

The axial vibration in a thin layer of finite cyliler made of trigonal (3M) piezoelectric crystal are
investigated. By using a closed form solution of #quations of motion and applying new boundary
conditions the effects of the geometrical dimensjoaxial hydrostatic pressure and electrostatic
potential along the axis of the cylinder shell oacilation frequency and amplitude of spatial

vibrations are simulated.
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1. INTRODUCTION

(Hison et al., 2005; Kraust al., 2003; Pasquale, 2003;
Bartlett et al., 2001; Gafsiet al., 1997; Inaudiet al.,

Piezoelectric materials are now widely used inynan 1994; Kawiecki, 1999). Models of piezoelectric $hel

fields of engineering. Thanks to their ability tonvert

are necessary not only to model transducer, buot tals

electrical in mechanical energy and vice versay the determine the material properties of the shells. 8y

serve as sensors, actuators and transducers. Rigrice

closed form solution of the equations of motion and

components and materials are integrated into comple boundary conditions the effects of the dimensionthe
smart structures or embedded as layers or fibems in shell and the piezoelectric coefficients on theabxi

multi functional composites. The interested reader
referred to recent conference proceedings (Galsyett
Tzon, 2001; Brebbiat al., 1998) for further information.
It is well known that ceramic cylindrical piezoeigc
shells are often used in underwater sound navigatil
ranging (sonar) transducers (Stansfield, 1991; aMils
1988). Axially polarized shells are used in projestand
radially polarized shells used in non-neutral etatt
beam diagnostics (Jagi al., 2006; Feriedom, 1968) and
hydrophones (Hisoret al., 2005; Krauset al., 2003;
Pasquale, 2003; Bartledt al., 2001; Gafsiet al., 1997;

vibrations are investigation in (Ebenzer and Ramesh
2003; Yang and Batra, 1995). The interest in these
problems arises because of their applications as
resonators. Vibrations of a circular cylindrical
piezoelectric shell, with deformations assumed ® b
either axisymmetric or with the tangential displaeat
taken to be zero and made of ceramics poled irowsri
direction, have also been studied in (Haskins ardsiy
1957; Shud’'geet al., 1984). The frequency spectra of
axial vibrations of cylindrical piezoelectric shelhave
significant variation, even when they are made e o

Inaudi et al., 1994). Projectors and hydrophones are batch. This causes a variation in the charactesisif
underwater analogues of loud speakers and micrgshon transducers. Quantities that can be measured @ashg

respectively. One notable civil engineering appiaraof
piezoelectric sensors is in structural health nwing

case of piezoelectric shells are, for example, the
frequencies at which resonances and anti-resonances
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occur when the shell is electrically excited. Heve

0 _
have presented a theoretical simulation for thealaxi 0 ;Z 21
mechanical  vibrations of finite  cylindrical 0 02 !
piezoelectric shells. It must be noted that commpari &= & (2)
with (Ebenzer and Ramesh, 2003; Yang and Batra, 0 & O
1995) we will study the frequency spectrum and its es 0 0
dependency on the geometrical dimensions, axial |-e,, 0 0]

hydrostatic pressure and electrostatic potentiahgl

the axis of cylindrical shell made of trigonal (3 m 414 the strain tensor Equation 3:
piezoelectric crystals. This study is organizedaor

sections and an appendix. The introduction was _ _
presented as section 1. In section 2 the geomeétrica
configuration and the basic governing equations of Sz
finite cylindrical shell of trigonal piezoelectrizrystal . |0
are presented. In section 3 by using a closed from®>”| o )
solution of the equations of motion the frequency 0
spectra and its dependence to the geometrical
dimensions, hydrostatic pressure and electrostatic
potential along the axis of this system are
investigated. In this section the graphs of ampktu
squared of spatial vibration versus the length of

cylindrical piezoelectric in different configuratie are s = ou 5, = 14du
22 T o 2T 5

Where:

presented. Finally, in section 4 a summary and 0z Rp%

conclusion is presented.

2. CONFIGURATION AND GOVERNING Here u is mechanical displacement along the z-axis
EQUATIONS Introducing the electric field components (&, E) in

cylindrical coordinates as {EE,, E;) and making use the

Here we consider a thin shell of cylindrical constitutive relation Equation 4:
piezoelectric made of the trigonal (3 M) crystabai in

Fig. 1. The thickness of shell is much smaller than the T =8s5-%E (4)
length of the cylinder L and the mean radiysdR the
shelli.e., f <<L, Rs). The up and the down parts of the One can obtain the tensor elements of stressi@nso

piezoelectric tube are fixed at electrostatic ptiddnq,,
@ and hydrostatic pressures,, PPy, respectively.

Furthermore it is assumed that the down part has nqylindrical coordinates as the following form Ecjoat5:
spatial displacement and it locked by a hard hodder=

in terms of E= %(p and mechanical displacement u in
V4

0. The trigonal piezoelectric (3 M) crystals ardimted au 90
by the elastic stiff-nesses tensor Equation 1 (&fed Toe = Clzg - e.I.ZE :
Baillargeon, 2005; Destuynder, 1999): au P
Tzz =Cy—teu
_ _ 0z 0z
Ch C, Gy C, O O _ _0du
Trr =Ci—»
C, Cy Cs3 —C, 0 O 0z (5)
c= G G5 Cn O 0 0 1) T.= _014% + elsai(p )
Cu G4 0 cy 0 0 0z 0z
0 0 O 0 g g Te = ALQ.
0 0 0 0 g G R, 00
_ 1 0u
X X i . 6z — Ces R %
the piezoelectric moduli tensor Equation 2: P
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Z)P P, into the relations (5-7) and using.D=0 we obtain a
{— couple system of second order ordinary differential
equations for the longitudinal displacement u aedtdc
potential ¢. These differential equations have the
following form Equation 8 and 9:

ty

dzu(z)+ 0 G u(z)+&7&p (2) o (8)
dZ o R , dZ
H “-==¥=---'
g I
d°p(z) _ e,[ nt d u() _
" L/Pd Hard holder dz g, Rf] u@+ dZ =0 ®)
Fig. 1. Sketch of an annular cylindrical piezoelectric shel The detailed computations for independence on the

biased by electrostatic potential and hydrostatic radial coordinate are presented in the appendik par
pressure Its symmetric axis Equation (8-9) the tensor elemens g andJ; are the
piezoelectric moduli in unit Coulombs/métethe elastic

The governing equations for balance of linear stiff-nesses in unit Pa and dielectric permittivigt

momentum: constant strain in unit Farads/meter, respectivélye
general solutions of Equation (8 and 9) have the
T. =pil following form Equation 10:
i, i PP-J

and balance of electrical displacement vector with u(2)= Asin(kz)+ Beos(kz),

material properties: cp(z)=822[1— erin[Asin(sz Beos(ka)f Cz [ (10)
11 p

D=8E+8%
where, A, B, C, D Are arbitrary constants and
In cylindrical coordinates for piezoelectric regio Equation 11:

result Equation 6 and 7:

2
oo2+ﬂ(e2 /€,,= Cgs)
p Rz 2 'tn 66
P

TI’ZF+TZ +TZZZ:puZ (6)
e K2 = (11)
1 a a Cll+ e222 /811
u u
DezezziilDr= 14 . . . . .
R, 06 0z Substituting the general solutions (10) in Equatio
(6) the stress element,Ican expressed as Equation 12:
_ fol0} du
D, =-en_ e (7)1, =ce,+ ke, (Acos(kzy Bsin(kz))
ked, [, m’ o (12)
where, in the above equatioéss dielectric permittivity ¥ €, [1 R2k? (Acos(kz)- Bsin(kz)
at constant strain. It must be noted that the hogkl
effect is negligible when the radius of thin shdtisbe 3. GRAPHS OF FREQUENCY

much greater than their length. Therefore the tadia SPECTRUM AND MECHANICAL
displacements respect to the longitudinal displaaem
DISPLACEMENT

are neglected (Popow, 1968; Timoshenko and

Woinowsky-Krieger, 1959). Here by substituting: In this section we will use the following boundary

o o conditions for obtaining the special solutions gluB&tion
u=u(2)e™ e =0 (2)8° € (8-9) and the coefficient k Equation 13:
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u(z) .= 0, potentials are fix. The graphs Kg. 2 have shown for
W) =@ non-symmetric mode m = 2 and several mean radii of
o tube. As it shows the frequency decreases by isgrga
2) k== Q. (13) the radius of tube in a fix length of tube. Furthere,
Toz12-0 = P numerical computations show that the variations of
Tow =P frequency for higher order of m are considerabls. A

the Fig. 3 shows the frequency of axial mechanical

o » vibrations increases by increasing difference of
Taking into the account boundary conditions (13) g|ectrostatic potentials.

the coefficients directly are determined as Equiatié: For fixed configuration the higher frequency
refers to the higher order of m as showrFig. 4. The

B=0 effects of hydrostatic pressure of lower pagt dn
D=¢ frequency are illustrated iRig. 5. As it shows for a
c=Pa__ PP fix configuration the frequency of axial mechanical
€2 Eaoskiy1) (14) vibrat.ions decreases by i.ncreasin‘g Bomparing all
0.D the Fig. 2-5 shows that in all cases the frequency
A= U= " " decrease by increasing tube length Rigure 6-10
k(cos(kL)- 1{ ql+822[ 1—2‘2]} present variations amplitude of mechanical vibnasio
& Rk A versus the operating frequency. As showrFig. 6

for a fix configuration the amplitude decreases by
and the parameter k will appear in an implicit fume as increasing the radius of tube in a fix frequency.
Equation 15: FurthermoreFig. 7 shows that amplitude increases by
increasing the difference of electrostatic potdatia
1+(cos(kL)—{ezz((p“_(pd)_PdL] a fix operating frequency and configuration. The
L(p, = Pq) amplitude decrease by increasing length of tube as
shown in Fig. 8. Figure 9 shows that for fixed
1-_m (15) operating frequency and configuration the greater
_sin(kL)| e, Rpk? -0 amplitudes coincident with large number of m.
k | Ley, €2 m? - Finally, Fig. 10 illustrates that the amplitude decrease
[Clﬁzz(l‘ Rzkz]] by increasing the hydrostatic pressute IR Fig. 6-10
P as they shown the amplitude decreases by increasing

) ) . the frequency of mechanical vibration for all
The detailed computations are presented in theconfigurations.

appendix part. In other word, the Equation (11) &)

present the permission frequency of vibrations g@ltre =~ APPENDIX
axis for a fixed configuration. In continuation ofir
discussion we will present several graphs of pesimis
frequency and amplitude of mechanical displacerfemt
several configurations. It must be noted that oated

2

8ll

By taking in to account radial depending of u(g) a
u(r, z) from dynamics equation we have:

refer to LTaO; (one of trigonal (3 m) crystals) with mass %u(r,z) [ m® nt g, g,0% (r,2)
densityp = 7454 Kg/ni at temperature 2&. For this oz ¢, P, u(r,z)+a 0z
crystal we have (Zelenka, 1986): S e, 0

24 ——u(r,z)+2B—o0(r,z)= 0

c,, 019z c,00z

€, =1.59 C/m, ¢;; = 229.&10°N/m?,
Ces= 92.10°N/m?, &1, = 339.5% 10> F/n?
and fromd.D = 0 we will obtain:
Figure 2 illustrates the permission frequency of
axial mechanical vibrations versus the length o th
piezoelectric tube L. In this figure both thg updan az(p(rz’z)—%[nfu(r,z)+azu(2r'z)]—gl 0° u(r,zx (
down pressures and the difference of electrostatic 92 Ea T 0z 00z

////i Science Publications 16 PI



H. Zeynali et al. / Physics International 4 (1):23 2013

Pa = 3000 pa. du-ts =40 V
= LT T P.=6000pa.m=2
o R,=030m
"’."p .. - i
'““905555,"-. »R,=033m |]
ol ", OR,=038m
| O p. @ =
> 6 nu.‘ L T
an| n.‘ a
=t gkF_=
= nl" ™
— o O )y @ -
% o_»*,
S nui -
-y 8 gk *® ]
5 >
o¥, e
o .
(=} > 8
L gk = ]
u.‘ [ ]
4 D:p e T
e
L 1 | | 1 s 1 L 1 L nInnn
0.01 0.02 0.03 0.04 0.05 0.06
Lm

Fig. 2. Graph of frequency of longitudinal mechanical ations ® versus to length of the piezoelectric tube L,«f)for
several radii tube R
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Fig. 3. Graph of (Le) for several longitudinal voltages loadipgaqy
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Fig. 6. Graph of amplitude of longitudinal mechanical d@tions a versus the frequency of oscillatiens(w-A) for several
radii of tube R

J=
1e o000 =44V B, =001lm
- - m=10
103 = P:=3000 pa
1l e B, =6000 pa
7 -
= 84" .
e 1r e
A d » e
= Gi . ..
= ] > .
43" '. *a
1@ > L [T
- o La -
7 o .’b .."-.
e o e, -."'inoo
a % 8 g L ey LS
] © 0 o o om o B0 B B O B

(]
N
(o 08
[ea]
—
=

wx10°Hz

Fig. 7. Graph of (@-A) for several longitudinal voltages loadigg @y
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Fig. 10. The hydrostatic pressure effects anA) graph

By averagingl.D = 0 in across of thickness of shell ordinary Bessel and Neumann functiong, M) of the

between r = R(inner radius) and r = A (outer radius)
for a fixed value of z and taking u (r, z) 3 R) Z; (2),

m order where m is the order of angular dependefce
displacement and potential function. Therefores ieasy

or, z) = R() Zxz) and introducing B= - to see that (Arfkewt al., 2011):
0’ : :
€31 ——u(r,z)we will obtain: a2 1 ~Rp+a 1
aro im— = = i
roz lim dZZZZ(Z)AfRD R,(r)dr=0,lim Zl(z)z
_ 1 (Rpsa o? 1 (Rp+A 1 RotaR (1) _ . . P 1 (Rp+a _
B== fR,, Bdr O {dzzzz(z)A fR,, R (ndr, 2 (2) jRp =0, im-—7,(2) jRp R, (r)dr=

Rp+A R, (1) (i 1 (Rp+a
by gz a@gly RO

Generally in the problems including cylindrical
configuration R(r) and R(r) are in order of series of
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Taking in to account the above results and usingdimensions. We have shown that the frequency dfl axi

them in average of dynamic equation one can fiatt th

22

The two above results let us to neglect the radial
coordinate dependence of u apth governing equation.
About using the boundary conditions (13) and detait
obtaining the Equation (15) it must be noted wedniee
determine the coefficients A, B, C, D and k.

From u (z = 0) = 0 we will find B = 0 and from
®(2),-, =@, We have D =g. Furthermore:

R0
oroz

WZ)pe =0, =@, =0, + CL+—‘322 Asin(kL) 1——?22 ,
€, Rk
e m?
T,.0=P, = P =8,Ct AK ¢, +-2| +
22|z 0 d d € % Gy 811|: Rikz :l}

2
o+ 1 1T
8ll

T
21,2
R2K

zz|=L

=P, =>p,=e,C+ kAcos(kL%

)

Finally from three above equations we will find:

A: PU_Fl)i ,
£, 1 m?
k(cos(kL)- 1 -2 -—
(cos(kL) G £ R2K?
C:i_ Pu_Pd
€, €,(cos(kL)- 1),
o _RL__LP-P)
e e (cos(kLy 1
m? .
1-— |(p, — R )sin(kL)
e, ( Rikz] ’

2

€

S

m2

21,2
R2K

11

811
k(cos(kL)- 1){ Gt

)

In this study we have reviewed a combined electro-
mechanical problem for axially polarized of an danu
cylindrical piezoelectric made of trigonal (3M) stgls.
We applied new boundary conditions and we obtamed
frequency spectrum of axial mechanical vibratioasaa
implicit function including the axial hydrostatic
pressures, axial electrostatic potential and geocaét

4. CONCLUSION

////i Science Publications 21

mechanical vibrations increases by increasing the
difference of electrostatic potential and ordeanimuthal
dependence m. Furthermore, we have obtained the
frequency decreases by increasing the radius ef dwiol
hydrostatic pressure. The graphs of amplitude of
vibrations versus the operating frequency have been
presented. They have been shown that the amplitude
decreases by increasing radius of tube and itsHegud

the hydrostatic pressure. So it has been shownttieat
amplitude increases by increasing the electrogtatiential

and order of magnitude of azimuthal dependence m.
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