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Abstract: Problem statement: In the present study, a hybrid of Fourier transfand Variational
Iteration Method (FTVIM) is developed for solviniget non-homogeneous linear and nonlinear partial
differential equations of Cauchy reaction-diffusiproblem. Approach: The closed form solutions
obtained from the series solution of recursive segas is valid for the entire range of problem
domain.Results and Conclusion: Moreover, the very rapid convergence towards ttectesolutions
using the new method, FTVIM, indicates that the ami@f computational work is much less than the
computational work required for both the previous¥ and the modified VIMs.
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INTRODUCTION directional problem domain either in time or space
problem domain. In other words, the unsatisfied
In the physical real-life phenomena, the majosity boundary conditions in the solutions of the VIM and
governing differential equations do not have analyt other semi-analytical methods play no role in tmealf
solutions. Moreover, due to the non-linear naturd a results (Kasoziet al., 2011; Gupta and Singh, 2011;
variable coefficients of these differential equatip Othmanet al., 2010; Gepreel, 2011; Aslanov, 2011;
attentions are devoted to the approximate solution$ladaniet al., 2011; Heet al., 2010; Chen and Wang,
obtained by semi analytical methods such as th@010; Zhou and Yao, 2010; Odibat, 2010; Zhao and
Homotopy Perturbation Method (HPM) (He, 2009; Xiao, 2010; Shang and Han, 2010; Turkyilmazoglu,
Kasoziet al., 2011; Gupta and Singh, 2011; Othnean 2011; Afshariet al., 2009; Aruchunan and Sulaiman,
al., 2010; Gepreel, 2011; Aslanov, 2011) and2010). Therefore, there has been a deficiencylaslta
Variational Ilteration Method (VIM) (Hest al.,, 2010; in short comes in the solutions using the VIM atiito
Shakeriet al., 2009; Chen and Wang, 2010; Zhou andsemi-analytical methods.
Yao, 2010; Odibat, 2010; Zhao and Xiao, 2010; §han The basic objective of the present work is to
and Han, 2010; Turkyilmazoglu, 2011). The VIM is develop a new modified VIM, the so called FTVIM, to
developed by employing a correction functional @and overcome the deficiency caused due to validity of
general Lagrange multiplier for the differential solution in small range of problem domain, becahse
equation. Then by the variational principle theimpim  boundary conditions are satisfied only in one digi@m
value is obtained for the correction functional ans  (Heet al., 2010; Chen and Wang, 2010; Zhou and Yao,
solved using the iteration method (H¢ al., 2010; 2010; Odibat, 2010; Zhao and Xiao, 2010; Shang and
Shakeri,et al., 2009; Chen and Wang, 2010; Zhou andHan, 2010; Turkyilmazoglu, 2011), when using the
Yao, 2010; Odibat, 2010; Zhao and Xiao, 2010; §hansemi-analytical methods such as VIM. The new
and Han, 2010; Turkyilmazoglu, 2011). The variation modified VIM is developed by combining the Fourier
iteration method has been applied to so manyransform and VIM, where all conditions are sagidfi
engineering real-life problems so far (ldeal., 2010; over the entire range of time and space problem
Shakeriet al., 2009; Chen and Wang, 2010; Zhou anddomains. It is shown mathematically that as the lpem
Yao, 2010; Odibat, 2010; Zhao and Xiao, 2010; §hanof partial sum of the infinite series of approximat
and Han, 2010; Turkyilmazoglu, 2011). However, thesolution increases, very rapid convergence to libeed
solutions of these problems are valid only in one€orm solution, the exact solution of problem, isaibed
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which is valid for the entire range of problem dama E(u(x, t))=d(x, t), x=0, £0 (4)
In the present work, four different non-homogeneous
linear and nonlinear partial differential equatiptise usually the operator E can be decomposed into two

Cauchy reaction-diffusion are solved using the newparts, linear and nonlinear, as:
modified VIM (FTVIM). The closed form solutions for

the four partial differential equations which afeet | (y(x, t))+N(u(x, t))=¢(x, t) (5)
exact solutions of the problems are obtained.

Furthermore, the trends of very rapid convergerice oy(x, 0)= f(x) (6)
the results toward the exact solutions have been

demonstrated. and the boundary conditions Eq. 7:

MATERIALSAND METHODS u(0.t)= g(t), u(0.0= g ) 7)

Variational Iteration Method (VIM): The Variational ] ]
lteration Method (VIM) is originall y initted by Applying Fourier transform to Eq. 5 and 6 we
He et al. (2010). The basic idea of the VIM for solving Obtain as:

nonlinear differential Eq. 1 is as follow; considie
following differential equation: F{L(u(x, 1)} F{N(u(x, )}=F{ o(x, 1)},

Fu(x, 9}=F{f(x)} 8
E(u)=g(t) )

where, F indicates the Fourier transform. We dgvelo
where, E is any differential operator. We constract correction functional to Eq. 8 as follow:
correction functional as follow Eq. 2 (Wazwaz, 209

F{U(X,t)}n+1 :F{U(X,t)} nt

M@ (LU, +HN(U(x, 9)} , F ¢, & § &
where,\ is a general Lagrange multiplier that has to be®
optimized by the variational principle, L and N are

linear and nonlinear operators and is the restricted

Uner = Uy * [A(L(U,)* N(u,)- g(O)clt &y ©)

where, u is a restricted variation and the first variation

of it, du(x,), vanishes. Taking the first variation from

variation of y where, 3u, =0 The main purpose of both sides of Eq. 9 we get the following:

constructing the correction functional, Eq. 2, et
calculation of the optimal value oh. Here for B
simplicity we assume that the operator E is lind@éus R Dby =HUOG D}, +

the optimum value oAk can be obtained by making use j)\(E)(F{L(u(x ). +FN(U(x, 9)} . F{ ¢x, D () g
of the rule of integration by parts as Eq. 3: o . e '

AU, @) =€), €)= [N €)u, €)E ©) ‘
& ., (x, 0} =F & (x, 0} +[X 9FL( & (x, Y)d & (10)
Equation 3 can be obtained by integration by parts

Having determined the Lagrange multiplig)=-1, the In Eq. 10 the Fourier transform is evaluated by
successive approximationg.Jn=0 of the exact solution  integration by parts as follows:
u is obtained upon choosing the proper value fcand

u=lim,_. U, As a matter of fact, the correction au(x.1)
functional (Eq. 2) can provide several successiveF{ . }:in{u(x,t)} -u(0,t) (12)
approximations and at the limit as u tends to ityfithe
resulting successive approximations approachesdo t
exact solution of the differential equation. d2u(x,t) ) )
F{ v }:—w Hu(x,t)} —iau(0,t) —u, (0,t) (12)

Basic Idea of FTVIM: The general forms of time-
dependent  one-dimensional nonlinear partial
differential equations are considered for illustrgtthe F{au(x,t)} =3F{u(x,t)} (13)
idea of the present method (FTVIM) as follows Eq. 4 ot ot
9
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E {a u(x, t)} =9 e ) (14)  {L+AQ) —%A(t)} |¢=0

o’ ot?
AE)| ez =0 (18)
and so on. The main step in the variational itenat ) d
method is to calculate the optimal valueh¢®) in Eq. {(F 9N _FEME) 052)‘(2)} [0

10. Making use of Eqg. 11-14 the optimal value\¢F)

using Eq. 9 is obtained as follow: Equation 18 in turn give the optimal valuedo¥Ve

call this optimal value\,, substituting this back into
Une2 (@, 1) = Un (@,1) Eqg. 15 and by adding the nonlinear operator from%q
gives the iteration formula as:

fioaio(w -u(o,&) -
1 WP Un (0,8) - iu(0F )- U, (OF Un+1(@, 1) = Un (@, 1)
*peo #ANG D, - §02 % (19) , .
+ 95 (mE)+ Un @)} (08 ~UOR ) 0F) (19)
e P +J' o] TIOU(0,E)~u (OZ) dWE) 3
+a%un(ooi)+ > Un @&)+ FIN(XE))},

Superscripts denote the Fourier transform. Taking

the first variations from Eq 15 we get the fO"M] Using Eq 19 the successive approxima‘[ions

uns1(w,t) ,i=20 can be obtained and the exact solution to

Uner (@, 1) = SUn @, 1) the nonlinear partial differential equation is thegual
o~ _ _ to u=lim,_ .U, Equation 19 introduces the recursive
i (*T (@8 -uo.8) relations as follows:
‘ o’ Un (@,§) —ieou(0.8)- u, (0F)
+5JA(E) +F{N(G(X,E))}n ~Kwd + 05 tdE Uo (@, 1) = U(w, 0) (20)
0 o€
(e )
(w,8) T un (@.8)} U (@, 1) = W @,0)

iwio(w&) = Uy (0.8)- o b @E )

< Taking integration by parts, Eq. 16 can be rewamitt +J‘-)\Op S (0,) - u (OZ) S 0E) d (21)
a%uo(w &)+ 6?2 Uo @& )+ FN(U(x &)k}
BUn+1(, £) = SUn (@, )+ A ()0 Un 2, 1)
A(0)3Us (w,O)—%)\ (B €, 1) G (@.0)= i 2,0)
9 - ,n J -
+= A(0)]108Un (@,0)+ A €) (17) t Pl @) 5 1 wF) (22)
9 _~ 9 _~ +_|.)\Op(§) dg
AU OO O3 0. e AN
. MEi i o 0 9 —&u(0,€) ~ wPdUn (,) R R
+J' ~i0du(0,)-3u, (0F) i Us(w, t) = Uz (,1)
°| 9 ~ 9 ~ R0 9+
~N(E)BUn (@.8) + 5 A E)BUn(@,E) 1 Wi (@E)+or e (E)
% % ey, % o @3)
° 5 U @E)+ ANU(E)))
Equation 17 yields the stationary conditions as: 0

10
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And so on. Using the Maple package we solve Equ(x,0) = x+€"

20-23 and then applying the inverse Fourier tramsfo u(0,t) =1, y(0,t)=e"-1 (27)
that will define 4, w, W, Us, ..., U, and the solution is _ _
then equal to u = lim..U, . It is worth noting that Eq. The Fourier transform of Eq. 27 is Eq. 28:

20-23 is a recursive approximation relations thaveh R
two advantages over the regular \(IM. First: aIItla_1| @+(l+ )i+ €'+ 1= 0
and boundary conditions are satisfied. Howevetheé ot (28)
VIM either the initial conditions or the boundary i O)=i(i+wn6(w)) L1

conditions are satisfied. Usually the initial cdiwhs ' o 1+iw

are satisfied and the boundary conditions remain

unsatisfied and any modifications to the unsatisfie where, 3(w) is the derivative of Dirac delta function.
boundary conditions do not affect the solution e t The Dirac delta functionp(w-a) is defined as zero
problem. Second: the amount of calculations is lesgverywhere expect at=a where it has a singularity.
than the one required for the VIM, because by @kin We construct a correction functional as:

the Fourier transform and integrating by parts the
complexity of the method reduces considerably. Unes (00,1) = tn (00, )+
Moreover the very rapid convergence to the exact o ’
solution can be achieved. In the following thesej)\(z) dUn
advantages are shown by solving three non- 0¢
homogeneous linear partial differential equationsl a
one more nonlinear partial differential equationtioé

Cauchy reaction-diffusion.

(29)

+(1+ ) + € + - 1|

Integrating by parts we gex(§)=-1. Assuming
Uo(w,1) = U(w,0) and substituting for the value »¢&)=-

RESULTS 1, using Eq. 29 the successive approximations(w, t)

. ) ) . ~are obtained as follows:
Fist we solve three linear partial differential

equations and then we handle one more nonlinetialpar i+ 1

differential equation. The Cauchy reaction-diffusio Uo(@,t)= 7+

equation in one-dimensional and time-dependent isase R

written as (Akbarzade and Langari, 2011): Us (00,1) = Uo (w,t)—j (%l?Jr 1+ 6 Yo+ & + do- 1)
0

W 1+iw

ou 0

E(X’t) = Dy(x,t)+ r(x, tyu(x,t) (24) Con
az(w,t):fh(w,t)—J(aa—L;l+ A+ )u + 6 + io- 1)d
where, u(x,t) is the concentration of the substance °

r(x,t) is the reaction parameter at position x énte t Lo

and D is the diffusion coefficient. Equation 24@ved ¢ t)= 1, (wlt)_J(%Jr 1+ )u + & + io- 1) (30)
subject to the following initial and boundary coiatis o 0%

Eqg. 25 and 26: . ~ L a0 ~
Un+1(00,t) = Un (m,t)—J'(a L (o’ )+ €5+ - 1)
u(x,0)=f(x) (25) 0 &
P By integrating the recursive approximate equations
u(0.H=g O (0.t= g (26) by parts, Eq. 30, we obtain the followings:

Example 1. The Kolmogorov-Petrovskii-Piskunov ao(w,t):i(i+®2(ﬂ5))+ 1

(KPP) is obtained by taking D=1,r=-1 in Eq. 24 as o’ 1+iw
. R e 2
follow: O (.t) = 1_ [1_(1+w2)t]+(|(|+w2(n6)))
1+iw w
du _ _ 0d%°u iwt?
E:Dﬁ_u'xz 0,t= 0 [(1—t)—w2t)]—7+[e'—(l—t)]

11
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()= 0 0o 1 PG )0

2

ATy -+ L) -1 + o)
w 2 2

s (31)

+|w(1+oo)t iot” |

2
e -@-t)]- (1+00) )[1 t+ e')l
Gs(oo,t):1+1
_ 23E i(i +wi(Td)) _ f_ﬁ P Y L3
@Q+w’) 6](7(02 @ t+2 6) wi(t-t°+ 2)
+w“(t—2—t—3]—m6t—3] +iofl +m2)[t—3—(1 +m2)t—4 Clat®

2 2 6 6 241

Het - - 0)- 4+ -+ )

ot
—(1+ )1~ t+E —-e']

Eq. 27 towards the exact solution is shown. In &abl
the percentage of relative errors of the resulig,Ef, t)

to u(x, t) of the FTVIM solution of Eq. 27 at each
location along the x axis and at different timeg ar
shown. The trend of very rapid convergence, the
maximum relative error of less than 0.03%, of the
results towards the exact solution is clearly shown

Example 2: The Kolmogorov-Petrovskii-Piskunov
(KPP) is obtained by taking D =1, r = 2t in Eq. &4
follow:

62
—2+2tu x=0,t=2 0
ox

ou

ot
u(x,0)=¢e*
u(o,t)= ",y (0,tF & (35)

The Fourier transform of Eq. 35 is Eq. 36:

And so on. The rest of the components were
obtained using the Maple package. Using the Maplea

package the inverse Fourier transform of Eq. 31 is:

Uy (x,t)=e*+ x

u, (x,t)=e”+ x(1- t)

2

u,(x,t)=e" + x(1- t+%) (32)

t2 3

u,(x,t)=e*+ x(1- t+ ———
(X, 1) ( > 6)

and so on. The Taylor series expansion foisenritten
as:

( l)n tn

z (33)
By substituting Eq. 33 into Eq. 32, thus Eq. 38 ca
ultimately be reduced to Eq. 34:

u(x,t)=€e> + xe' (34)
This is the exact solution of the problem, Eq. IB7.
the following, Table 1, the trend of convergenceaheaf
results of yx, t) to y(x, t) of the FTVIM solution of
12

E+(w 2tu+ € (+1)= 0

U(w,0)=

1+iw (36)

We construct a correction functional as:

Unea (W, t)—ﬁn(w 1)
+j A(z)( +(co 2€)Un (37)
+& (|(,o+1)c£

Integrating by parts we get(§)=-1 . Assuming

Uo(w,1) = U(w,0) and substituting for the value »¢&)=-
1, Eqg. 37 can be rewritten as:

Uo (0, 1) =——
o) 1+iw

l]l (,t)= I:Io ((L),t)_j%l;

0

+ @ - Z) )b+ & @+ 1)d

Gz(w t)= U @, t)-

(38)
J‘6U1

I +(0f —28) s +

+ 6" (w+ D
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Table 1: Shows the percentage of relative erroth@fesults of gi(x,t) to u (x,t) of the FTVIM solution of Eq. 27

Percentage of relative error (%RE)

x=1 x=15 X=2
t=0.1 W (X,1) 0.07477121192 0.09032214097 0.0978530456
U (x,t) 0.003800859527 0.004591362922 0.004974182863
U (X,t) 0.0001277440452 0.00015431227 0.000167178564
us (x,t) 0.000003209433 0.000003876900 0.00000419D978
U (X,t) 6.467320576 e-8 7.78290731 e-8 8.431832780 e
Us (X,t) 8.46122714 e-10 1.26551338 e-9 1.542408428 e
t=0.4 W (X,1) 0.3175497177 0.4025035111 0.4467282577
U (x,t) 0.0677326919 0.08585315872 0.09528620484
W (X,t) 0.0093237900 0.01181817525 0.0131166876
us (x,t) 0.00095040761 0.001204669280 0.0013370311
U (X,t) 0.000077012174 0.00009761517 0.0001083405
Us (X,t) 0.000005181374 0.00000656758 0.000007289417
t=0.7 W (X,1) 0.5823426568 0.7800782162 0.8921791200
U (x,t) 0.2274069648 0.3046234333 0.3483992516
U (X,t) 0.0560054027 0.0750221439 0.08580317854
us (x,t) 0.0101241497 0.0135618240 0.01551072187
U (x,t) 0.0014485219 0.00194037040 0.002219210747
Us (X,t) 0.00017165199 0.00022993681 0.000262979752
~ ~ t 0 ~ _ +t2
Us(w, t) = Uz (m,t)—j%+ - Z) e+ &Y @+ 1) A = 2 é

0

aUn

un+1(u)t) un(u) t)- J

And so on by integrating the

+ - E)n+ & @+ 1)@

recursive

approximate equations by parts, Eq. 38, we obtan t

followings Eq. 39:

1

lAjo(m't):1+ioo

U =

. - wt)(1+ iw)

(i)e“(erf(m 5)- erf(' )

U, = o (1+t2+E 0)(t+ )+ w?)

(t+1t%) +oo“£) +(1+iw)
[a,,] - & (L+iw)[aL,] + (1+ iw)

I\/E)e_4(erf(|t+ 5)- erf(' )

ay = _% + % g —} e+
+(£)e 4en‘( )+ 4f erfé)

—4t%erf (5 1+ 2t)- erfé (1 2t)

(39)

13

it

+(—)e_4( ferf( )+ —erfe 1+ 2t)

+terf(5 1+ 2t)- erf(’5 )

4 t6

Us = e+t b
2 6

1+|oo
t2 t4 3
(t+t3+f)+w“(f+f)—

1 ey 1

el 4
+16e W I+ iw)ay ]++— 48

. 1 laeary
W (1+iw[a,,]-—e*
( )@, ] 24

1
L arige™™
64

i

1+ ioo)(7)e_711 (erf (it+ iE) —erf (12))

(1 2ty

W’ (1+ w)[ay]

7 [, 1+ 0 [8gs]- [g]-

1 1 _1 )
a,=-2e* (b 2tj- 8te’™? + 2¢+ 4é

) e i i
+i+/T(e 2 erf(E)—4te2

i St

erf(=)+ 4te? erf (it+ —
(2) ( 2)
e i .

-e?2 erf(|t+5)+ 4fe?

. _1_ 2 .
erf(it+l2)—4tze 2 erf('i))
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a,=6e (+ 2t§+ 24t @27 - 66 - 4ta- 1Bt

-2

e i 1
+ivmise 2 erf('—2)+ 12862

i e L
erf(=)—-5e?2 erf (it+ —
(2) ( 2)

e

R i
—12¢e2 erf(it+l2)— 16f e2

erf(it+l2)+16t3e2 - erf(i))

R 1 1 1 1
8, = 60402 — Gtes™? — G+ 2t¢- 4t é

2

1e i 1
+ivmie 2 erf(lz)+ 3te?

erf(ly+ace s erf(ite )
2 2

—t-t?

1. ., . 1
. O 2
-5e 2 erf(|t+5)— 4fe?

o S
erf(it+—)—-3te 2 erf (it+ —
( 2) ( 2)

—18e4<1+21 16t e“ @2t 4 18é

&y, =
—20te7 + 8t é71 - 16t E‘

1e i .
+iymte 2 erf(lz)— 16te?

o erf% )

12 i -
erf (|t+5)— 4e?

" erf(itr—
2

) L i i
+16t'e 2 erfé W e?

aet "l
8t°e erf (it+ 5 )

1.1 éHQ

835 =~

T

( )e“( erf( )+

Eerf (5 1+ 2t))+ terfe2 I+ 2t))» terfé )

8y = -1 +} é —} e

i/t

+(—)e 4 (erf( )+ 4t erfé)
-4t%erf (E 1+ 2t)- erf% (1 2t)

where, erf(x) is the error function. The rest ok th

8-20, 2011
Uy (x,t)=e™

u (x,t)=e* I+ (t+ £))

U, (X, t)=e* (I+ t+g t+ t”+t—;)

e (1+ (t+ €)+% (t+ £Y) (40)

£

Ug(x,t)=e™ (1+ t+§ €+z £+ f‘+f+tf6)=
2 6 2 6

e 1+ (t+ €)+§ (t+ t2)2+%3 (t+ £F)

and so on. The Taylor series expansion foise
written as:

=yt 41
e n;n! (41)

By substituting Eq. 41 into Eq. 40, thus Eq. 46 ca
ultimately be reduced to Eq. 42:
u,(x,0)= e* &" (42)

This is the exact solution of the problem, Eq. I85.
the following, Table 2, the trend of convergencehf
results of y(x,t) to u(x,t) of the FTVIM solution of Eq.
35 towards the exact solution is shown. Table 2nsho
the percentage of relative errors of the results,Eft)
to w(x,t) of the FTVIM solution of Egq. 35 at each
location along the x axis and at different timesieT
trend of very rapid convergence, the maximum redati
error of less than 0.15%, of the solution towards t
exact solution is clearly shown.

Example 3: The Kolmogorov-Petrovskii-Piskunov
(KPP) is obtained by taking D=1, r = -(-1hin Eq.
24 as follow Eq. 43:

ou
at

2
:%—(—1+ 4x°)ux= 0,t= @
X

ux,0)= e u(O,tF & ,u(0,t5  (43)
By applying the Fourier transform to Eq. 43 we

obtain the following Eq. 44:

components were obtained using the Maple package. .

Using the Maple package the inverse Fourier transfo
of Eq. 27 is:

14

2 ~
a—u+iwe"+ (1)2—1—4()—2 u=0
ot ow
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Table 2: Shows the percentage of relative erroth@fesults of gi(x,t) to u (x,t) of the FTVIM solution of Eq. 35

Percentage of relative error (%RE)

x=1 x=15 X=2
t=01 B (X0 0.1041658643 0.1041658644 0.1041658643
U (%, 1) 0.005624109412 0.00562410955 0.005624109412
Uz (%, 1) 0.0002043128913 0.00020431290 0.00020431289
Us (X, 1) 0.000005587317504 0.000005587466 0.0000TBEEE04
W (%, 1) 1.227292766 e-7 1.22854411 e-7 1.227292786
Us (%, 1) 2.687502407 e-9 2.81039503 e-9 2.687502407
t=0.4 6 (x, 1) 0.4287909361 0.4287909360 0.4287909361
U (%, 1) 0.1089138602 0.1089138601 0.1089138602
Uz (%, 1) 0.01934827902 0.01934827890 0.01934827902
Us (X, 1) 0.002629370713 0.002629370740 0.00262933071
W (%, 1) 0.0002887233335 0.0002887234084 0.0002883%3
Us (%, 1) 0.00002657093203 0.00002657081515 0.000P255203
t=0.7 6 (x, 1) 0.6957787359 0.6957787359 0.6957787359
U (%, 1) 0.3337554316 0.3337554317 0.3337554316
Uz (%, 1) 0.1183515656 0.1183515656 0.1183515656
Us (X, 1) 0.03290803214 0.03290803214 0.03290803214
W (%, 1) 0.007488581039 0.007488581083 0.00748858103
U (%, 1) 0.001438751495 0.001438751489 0.00143875149
NP 3l 92 )~
U(®0)= > e’ % ) (44)  Una(@,1)= Un @, 1)- j + e’ +(of - 1_60)2] u|d

where, erf (x) is the error function. We constract
correction functional as Eq. 45:

l’:|n+1((‘0, t) = an ((A), t)

AUn

2 45
+JA(&) "] g

+ioe™ +(oo -1-4—
0w?

Integrating by parts we get(€) = -1. Assuming

uO(w t)= (w 0) and substituting for the value dfE) =
-1, EqQ. 45 can be rewritten as Eq. 46:

e4erfP)

uO(oot

ﬁl(w,t):ﬁo(w,t)—I 6au; + e’ +(w -1 4;—(;]% 4
. a—alﬂme“
Ge(e0,0)= 0,0~ ]| % & (46)
0 0’
(w -1- 4@]

L Yoto . o (, 9 )~
U3(w,t)—uz(w,t)—j rivet+| W -1-4—|u| @
0

15

And so on. By

integrating the

recursive

approximate equations by parts, Eq. 46, we obtaén t

followings Eq. 47:

NELRC T
—e 4 erf
¢ el)

Uo(w, t) =

o .
&@ﬁ:é¥78ﬂ$MTWGMTF€

(47)

~ Jn - e t2
ux(w,t)=—e 4 erf - t+—
@H=77 % 2

t? [j .
1-t+—-¢e |- W

2
@ 2 43
e erf&){l— t+t—t]

2
2t

—ia((w? -1)? —24)(1— t+5—g— e‘tJ w (W - 1)

2 3 2 3
IR FELIPRLISL J L L e
2 6 2 6

And so on. The rest of the components were
obtained using the Maple package. Using the Maple
package the inverse Fourier transform of Eq. 47 is:

—i( o ~1)

VY

as (o, t)=

gE

u=e’,u=¢e" (&t



Phy. Intl. 2 (1): 8-20, 2011

Table 3: Shows the percentage of relative erroth@fesults of g(x,t) to u (x,t) of the FTVIM solution of Eq. 43

Percentage of relative error (%RE)

x=1 x=15 X=2

t=0.1 Ww(x 1) 0.1051709181 0.1051709181 0.1051709181
U (X, t) 0.005346173692 0.005346173731 0.00534617369
W (X, t) 0.0001796808982 0.0001796808276 0.00017288D
Us (X, t) 0.000004514291649 0.000004514352332 0.0000D4291649
Us (X, t) 9.062401529 e-8 9.059532239 e-8 9.062401539
Us (X, t) 1.436722194 e-9 1.467979761 e-9 1.436722194

t=04 Ww(x 1) 0.4918246977 0.4918246978 0.4918246977
U (X, 1) 0.1049051814 0.1049051813 0.1049051814
W (X, t) 0.01444079445 0.01444079451 0.01444079445
Us (X, t) 0.001472002375 0.001472002326 0.00147200237
Us (X, t) 0.0001192773519 0.0001192773575 0.000113217F
Us (X, t) 0.000008024972596 0.000008024915289 0.08024072596

t=0.7 Ww(x 1) 1.013752707 1.013752707 1.013752707
U (X, 1) 0.3958741878 0.3958741878 0.3958741878
W (X, t) 0.09749522555 0.09749522557 0.09749522555
Us (X, t) 0.01762430429 0.01762430440 0.01762430429
Us (X, t) 0.002521613488 0.002521613516 0.00252164.348
Ua (X, 1) 0.0002988149244 0.0002988150145 0.0002983441

2 t? -X
u,=¢e* (1— t+2J (48) u(x,0)=1- e¥2

2 3
u;=e*| 1- L
2 6

And so on. The Taylor series expansion fbise
written as:

e'= i
n=0

Substituting Eq. 49 into Eq. 48, the closed form
solution of Eq. 43 is given by Eq. 50:

(1t
n!

(49)

u(x, t)= e (50)
This is the exact solution of the problem, Eq. 43.
In the following, Table 3, we have shown the treifid
convergence of the results of(ut) to u(x,t) of the
FTVIM solutions of Eq. 43 towards the exact
solution. Table 3 shows the percentage of relative
errors of the results ofy(x,t) to u(x,t) of the FTVIM
solution of Eq. 43 at different locations along the
axis and at different times. The trend of very dapi
convergence, the relative error of 0.03%, of the
solution towards the exact solution is clearly show

Example 4. Consider the following nonlinear
differential equation, the nonlinear Cauchy reattio
diffusion as the forth case study problem:

@:a( ou
ot  ox

u—J+u(l— U x= 0,t= C
0X

16

t

uO,0=1- 67 y (O,t):% @ (51)

By applying the Fourier transform to Eq. 51 we
obtain as follow Eq. 52:

% —G+(1+%J F{u2}+%e_E [1— e_Z] +i—;)[ - éZJ = (

- _ W2
u(w,0)=TO (W) 703(2iw+\/§)

(52)
where, superscript on the dependent variable u
indicates the Fourier transform, Ejus the Fourier

transform of Gandd(w) is the Dirac delta function.
We construct a correction functional as:

an+1(w, t) = an ((A),t)

t )‘(E)GT? - +[1+‘;] Hu’}

o E

0 1 -3 3 iw _E 2
+t—=e?|l-e?|+—| e’
V2 2

Integrating by parts we get&(= -1 . Assuming

(53)

Uo(00,) = U, 0) and substituting for the value of &) (
= -1, Eqg. 53 can be rewritten as:
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o(w.t) = @) -— V2 L =205 + G+ Y 2076+
. . X2+ 2) wt? ++/2itw? — 2tw— 8u)e_71
Uz (0, 1) = Uo (W, t) =t
7 _ | -2ic*2In(e? ¥ + 20€'

%—ﬂo +[l+j Fu}+ An == -t

2 -6w’e' + 2’6’ - 16° é

» [ ~
e 2(1 82J+iw( 1= égzj -4 In(e? )- 2/ 2it+
ﬁ 2 | 4mid(w)ort + 2028 (@)t

13

ﬁz(oo, t)= U @,1) -t

) A23=_i+\/§ez_}e-l_,l'm
Jur ~ o’ 2 2
128 G 14 | ey +

NG

_J‘ 0¢ 2 de (54 [ -3-e'+ 4e2— ZI{ \ZD
£ EY _EY?
° \Ee{l—eﬂﬁ?(l— ezj

. . N iv2
U3((L),t): Uz ((A),t) U3((D-t)—7'[5(0))'7w(2iw+\/§)+
WG 1+ 2 Ry + 149
| 08 2 1 2 [A]+
_I 1t £) R % dé 64 0(2io +v/2)o(o+~/2)
iy 2[1 EZJ (1_ eZJ : A+ A
+
240 (2i0 +~/2)(io ++/2) At A
And so on. By integrating the recursive . .
approximate equations by parts, Eq. 54, we obtan t A, =[-128it +t—(2im2 +J§w)+L
followings: 5 4
4
" (—16iu)2—8\/—2m)+t—(—16h)2
o (00, ) = T (@) - —— V2
(2iw+~/2) 8y 2w)+ 22 5 (0 P13+ 32/ 20 £
R iz —128r[6(w)w3t+ 192/ 218 (0 )07 t+ 1285 @ P t
Uz (@, 1) =T (W) - ———F—
W(2iw+2 ) 3} ;
t e 36t - L gt g6V awe? - 42/ 27 t+ 197 @° @
2|w+J— x/E J2 -2\ 2w
1. _ L -t
—2|o{ 3-¢'+ 4e2 - 2Ir[ ZD iRt + T2V 2wt + 961i,)zeZI
R PN (7l o
-48J 25 In(e2 ¥ - r‘—T
o’
. 1+ = -t -t
U (c0t) = T(00) — V2 1 T2 A, =-| +32ic’ In(e? )’ + 192" € — 36"

o(2iw+ \/—) 4 0(2iw+/2)(iw++/2)

[AZJ] W[ 21 A 33

-
+96iw't + 48’ t— 32w* In(e? ¥
1 ., NP
———t* + 96V 't -~ — 48it 55
NG ) (55)
-1924 25 - 96w? + 72/ & ()it

3
A, =[-8it +L(2im2 +20) +22wt? - 8 (w)w’t
3 ~48B @)Wt + 48 (o t— 192i°

+124/ 2mid () t+ 8 W )t]
17
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Table 4: shows: the percentage of relative errbtleresults of gi(x,t) to u (x,t) of the FTVIM solution of Eqg. 51
Percentage of Relative Error (%RE)

x=1 x=15 X=2
t=0.1 w(xt) 0.04528854092 0.02517778762 0.01542386214
W (X, t) 0.001141648184 0.0006346899044 0.00038858®7
W (X, 1) 0.0000191066097 0.00001062209702 0.00000®3@7 08
us (X, t) 2.389927040 e-7 1.330036012 e-7 8.156201486
U (X, t) 2.448309812 e-9 1.341964586 e-9 7.804978460
Us (X, t) 5.64994572 e-10 2.982143524 e-10 1.30082¢570
t=04 w(xt) 0.1498855718 0.08758887901 0.05502145006
W (X, t) 0.01548784334 0.009050656766 0.005685427655
W (X, 1) 0.001049498124 0.0006132967980 0.000385286D1
us (X, t) 0.00005299093855 0.00003096660541 0.0008233099
U (X, t) 0.000002133791266 0.000001246697341 7.838189 e-7
Us (X, t) 7.143941207 e-8 4.186826399 e-8 2.609392082
t=0.7 w(x t) 0.2231418390 0.1352415250 0.08663826135
W (X, t) 0.04132309083 0.02504504695 0.01604432753
W (X, 1) 0.004958271810 0.003005103159 0.0019251@553
us (X, t) 0.0004412202143 0.0002674141922 0.000173339
U (X, t) 0.00003123500257 0.00001893090247 0.0009220132
Us (X, t) 0.000001836667987 0.000001113201244 7.13082 e-7
t Lt
Ag=-——t ez -tet-t %
J2 27 2 ux,t)=1-e (58)

This is the exact solution of the problem, Eq. IB1.
the following, Table 4, we have shown the trend of
convergence of the results of(xit) to w(x,t) of the
BTVIM solutions of Eqg. 51 towards the exact solatio
®able 4 shows the percentage of relative errorthef
results of y(x,t) to u(x,t) of the FTVIM solution of Eq.
51 at different locations along the x axis andifiedent

1 L
iu{—B—e“ +4e? - 2Ir[ e D

The rest of the components were obtained using th
Maple package. Using the Maple package the invers
Fourier transform of Eq. 55 is:

U =1-e"? times. The trend of very rapid convergence, thatines
0 ' error of 0.0002%, of the solution towards the exact
u, =1- o2 +1 oV solution is clearly shown.
gk g DISCUSSION
u,=1-e¥?+=e¥? t3 e'? 1 (56)

Case study: The Cauchy reaction-diffusion equation
expresses the mathematical models of the influerdfice
- 1 = the chemical reaction which the substances are
u, =1-e 5 e "3 e'? te e % transformed into each other and the diffusion whteh
substances are dispersed over a surface in sphie. T
And so on. The Taylor series expansion foréquation has wide applications in chemical enginger
et biology, geology, ecology and physics.

_ Tﬁ o _ We solve four one-dimensional transient and non-
ux,n=1-e IS written as: homogeneous linear and nonlinear partial diffeegnti
equations, the Cauchy reaction-diffusion problem, t
demonstrate the effectiveness and the validity haf t

1-e @ =1-1 e'% wi é% : present method, FTVIM, in the entire range of peatbl
2 2 (57)  domain. The validity and effectiveness of the new
1 -%€+ie-ﬁﬁ+ method are shown in Table 1-4 by solving four linea

8 48 and nonlinear non-homogenous differential equations
of Cauchy reaction-diffusion problem. Moreover, the

Substituting Eq. 57 into Eq. 56, the closed formvery rapid convergence to the exact solutions igied
solution of Eg. 51 is given by Eq. 58: mathematically. The very rapid convergence towards
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the exact solutions shown in tsbles 1-4 using the n Aslanov, A., 2011. Analyzing homotopy perturbation
method, FTVIM, indicates that the amount of method for solving fourth-order boundary value
computational work is much less than the problem. Math. Problems Eng. DOI:
computational work required for both the previous 10.1155/2011/296796

VIMs and the modified VIMs. Ultimately, the Chen, X. and L. Wang, 2010. The variational itenati

deficiency of the previous VIMs caused by unsagifi method for solving a neutral functional-differemtia
boundary conditions is overcome by the new method equation with proportional delays. Comput. Math.
(FTVIM) where, the solution is shown to be validtire Appli., 59: 2696-2702. DOl:
entire range of problem domain. 10.1016/j.camwa.2010.01.037
Gepreel, K.A., 2011. The homotopy perturbation
CONCLUSION method applied to the nonlinear fractional
Kolmogorov-Petrovskii-Piskunov equations.
In this study a new effective modification to the Applied Math. Lett.,, 24: 1428-1434. DOI;
VIM, the Fourier transform variational iteration thed 10.1016/j.aml.2011.03.025

(FTVIM), is proposed. The new modification to the Gupta, P.K. and M. Singh, 2011. Homotopy
VIM is the combination of the Fourier transform and  perturbation method for fractional Fornberg-
variational iteration method. The validity and  Whitham equation. Comput. Math. Appli., 61: 250-
effectiveness of the new method is shown by solving ~ 254. DOI: 10.1016/j.camwa.2010.10.045
four linear and nonlinear non-homogenous diffesnti He, J.H., 2009. An elementary introduction to the
equations of Cauchy reaction-diffusion problem #rel homotopy perturbation method. Comput. Math.
very rapid convergence to the exact solutions iifigd Appli., S7: 410-412. DOL:
mathematically. The very rapid convergence towards 10.1016/j.camwa.2008.06.003 .
the exact solutions using the new method, FTvIM,He J-H., G.C. Wu and F. Austin, 2010. The varredio
indicates that the amount of computational work is Iteration method which should be followed. Nonl.
much less than the computational work required for ~ SCl- Lett, A 1:1-30.
both the previous VIMs and the modified VIMs. Kasoz_|,_ J. F. Ma_ya_mbgla a_md C.W. Mahera, 2011.
Moreover, the deficiency of the previous VIMs calise Dividend _maximization in th? cramer-lundberg
by unsatisfied boundary conditions is overcome ey t gt3?6|792'f_%7h0§§|t-0fg 3a8n4a4:,)//'?$53m62t8(1)g' 6‘1‘ 6I\;Iath.
new method (FTVIM) where, the solution is shown to Madani M M Faithizadeh. v Kﬁlan gﬁd A .Yil(.jirim
be valid iq t_he entire range of problem domain. 201’1 On the coup;liné of the .homotop;/
Trerive 1 conn it e FTVM S0 D e o Lape varomtn
the accurate solutions to both linear and nonlinear 'iﬂoa.tldleljc.)r;nfrﬁ?zol\lﬂfoi..(’)2?? + 1937-1945. DO
part|al_d|fferent|al equations as well as otherefifve Odibat, Z.M., 2010. A study on the convergence of
nhumerical methods. variational iteration method. Math. Comput.
Model., 51: 1181-1192. DOI:
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