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ABSTRACT

The groundbreaking discovery, that somatic mammatiells can be epigenetically reprogrammed to a
pluripotent state through the exogenous expressidie transcription factors Oct4, Sox2, Klf4 andgc,

has yielded a new cell type for potential applimatin regenerative medicine, the induced Pluripog&tam
Cells (iPSCs). Since the first demonstration ofatirgy iPSCs in 2006 great efforts have been matie in
improving iPS cell generation methods and undedstanthe reprogramming mechanism as well as the
nature of iPSCs. The iPSCs technique makes it Iplesgd produce patient-specific pluripotent stertisce
for transplantation therapy without immune rejectiblowever, some restriction still remain, inclugliviral
vector integration into the genome, the existenteexmgenous oncogenic factors and low induction
efficiency. In this review we discuss recent adwsnin methods of generating safer iPSCs lines lagid t
possible use for biomedical applications.
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1. INTRODUCTION moral and ethical dilemma surrounding the requisite
blastocyst destruction and oocyte donation necgdsar
The ability to reprogram asomatic cell into generate patient-specific pluripotent stem cellender,
a pluripotent cell has been a goal of regeneradgearch  2010). Reprogramming of somatic cell by nucleandfer
for many decades. Initial attempts to reprogramiscel indicates that unfertilized eggs and ESCs contaatofs
involved transplanting asomatic nucleus into anthat can induce pluripotency. Therefore, nuclear
enucleated oocyte, called Somatic Cell Nuclear §femn  reprogramming studies using SCNT have demonstrated
(SCNT) (Lenger, 2010; Nsair and MacLellan, 2011eT that transcriptional factors are essential for the
procedure was first successfully accomplished inreprogramming of terminally differentiated cells.
mammals in 1996 with the birth of a cloned lambisTh Based on this hypothesis, 24 different candidai®fa
discovery caused a paradigm shift in developmentalwere examined for their ability to induce pluripoty
biology. However, the process was very inefficiend the  (Ma et al., 2008; Ohet al., 2011). In 2006 Yanamaka’s
reprogramming incomplete leading to Dolly’s prematu group demonstrated that viral transduction of maurin
death and early onset of a number of degeneraibeask  fibroblasts with only four transcription factors,ci@,
(Kang et al., 2010; Patel and Yang, 2010). This Sox2, KIf4 and c-Myc, could reprogram these celiskb
reprogramming method also has proved successful foto an undifferentiated embryonic state. Human iP&&%
several species, but there are technical issuapplying first generated in the same lab by transducingt éaumhan
this approach to human cells (Fezt@l., 2009). The other dermal fibroblasts with viral vectors carrying tlkey
major impediment of nuclear transfer-derived Emhbigo  pluripotency genes (Yamanaka factors). Thomsorosigr
Stem Cells (ESCs) based therapies in humans invtiee  independently published a similar screening styatesing
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only human materials and identified that Oct4, Sox2

lentiviruses. They are less mutagenic than retoseis

Nanog and Lin 28 were sufficient to reprogram humanbut are also not a perfect alternative. Unlikeawtuses,

cells. Since then, alternative strategies for ptivey
iPSCs have been developed. These
reprogrammed cells are similar to ESCs in capdoity
self-renewal in vitro, pluripotency, cell morphology,

lentiviruses infect both dividing and non-dividiglls,

completelyhence could vastly improve the rates of cell tractidn

and the production of lentiviruses is not overly
complicated, therefore, very efficient, stable,

patterns of epigenetic changes, capability to formeéproducible gene expression could be achieved and

embryoid bodies, teratoma, viable chimeras and overe
murine iIPSCs, when they are injected into tetraploi
blastocyst, can developed into whole organism. bn t
other hand, several groups have compared the ntatecu
signatures of iPSCs and ESCs in their undiffereadia

state. One study showed that while iPSCs were mor

similar to ESCs than to the paternal somatic céisy
still possessed a distinct gene expression signa@ther
great advantage is that iPSCs avoid ethical isseeause
they do not involve the use of embryonic or fetaltenial
(Cui et al., 2009; Herbertgt al., 2011; Liet al., 2010;
Medvedev et al., 2010; Nsair and MacLellan, 2011;
Takahashi and Yamanaka, 2006). Today, these aalis h
become the major tools in advancement of persathliz
medicine (Ferreira and Mostajo-Radji, 2013).

1.1. iPSCs Generation by Viral Vector

Several methods have been used thus far to produce

iPSCs Fig. 1), which involve the transfer of genes into the
target cell (Deng, 2010). The system of gene dslive

system is akey aspect for iPS cell generation. yMan

researches in this field use viral or nonviral rodt to
reprogram mature cell and some groups have triagsd¢o
nongenetic materials for the generation of efficeamd safe
iPSCs. However, there are still a number of problem
related to current reprogramming methods éCdh., 2011).
Most of the iPSCs lines established to date haea be
generated using integrating retroviral and lendvir

vectors to deliver reprogramming factors. The majorincludes episomal

advantage of using retroviral vectors is that esgian of
the pluripotency factors is driven by the retrovitdR

wide variety of cells could be transduced. Although

retrovirally-transduced genes are generally subject

epigenetic silencing during the process of iPSCs

induction, reactivation of these geriasivo may lead to

a higher risk of tumor incidence and malignant
rogression. While retro- and lentiviral integratids
hought to occur randomly in the genome, certaiene

may cause activation of nearby oncogene or inaaiva

of atumor suppresor gene (Duinsberggtnal., 2009;

Gardlik, 2012; Wong and Chiu, 2011).

The attempts to make iPSCs more
therapeutically applicable have led to the purstihon-
integrating virus vectors. Adenovirus, which is can
integrating vector and remains as an epichromosomal
form in cells, offers a flexible platform. However,
adenovirus is generally rather poor at gene trankfés
also very difficult to control the level of genepggssion
infected cell (Lakt al., 2011; Patel and Yang, 2010).
Another viral vector system without genomic
integration is Sendaiviral (Sendaivirus) vector,ickhis
a RNA virus that replicates its genome exclusivelthe
cytoplasm, efficiently generated iPSCs from human
somatic cells (Macarthwt al., 2012; Otet al., 2011).

1.2. iPSCs Generation by Non-Viral Vector

The success of the non-integrating vector with
transient gene expression to generate iPSCs hailgdo
an opportunity to potentially develop a non-viralidery
strategy, which is safe, cost-effective, easier to
manufacture and manipulate. Non-viral delivery eyst
plasmide transfection, minicirle
plasmids, piggyBac transposition system, protein
transduction and most recently, repeated admititstraf

(long terminal repeat). The retroviral LTR becomes synthetic mMRNA and using of small molecules (Huang
silenced in pluripotent stem cells, so upon correctand Wu, 2012; Niet al., 2012; Wong and Chiu, 2011).

reprogramming of the fibroblast and expressionhef t
endogenous pluripotency genes, the
reprogramming factors are silenced. The potential f

Plasmide transfectionusually uses plasmids

exogenougarrying the reprogramming genes encapsulated by

lipid or cationic polymers and subsequently trasfdc

oncogenesis due to insertional mutagenesis that isnto the cells to be reprogrammed. Episomal plasmid

inherent to stable genomic integration has beentiiiked

as a limitation. However, it is important to recagmthat
distinct advantages of the retroviral-based vesystems
enabled critical insight into the fundamental metbias
of nuclear reprogramming (Seifinejatal., 2010).

Later generations of iPSCs were produced usingMedvedev et
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vectors are able to replicate themselves autonolyous
as extrachromosomal element. They also exhibit
prolonged expression of the reprogramming genes in
target cells. Nevertheless, the reprogramming ieffizy
of this approach was extremely low (Leti al., 2011;
al., 2010; Yu e al., 2011).
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Fig. 1. Reprogramming strategies used to induce pluripatiem cells from adult somatic cells

The piggyBac system-is promising system used forenter

iPSCs production without any modification of thesho

the cell, although at different efficiencies
(Seifinejad et al., 2010). This method eliminates

genome based on DNA transposons. The transposofimitation that may be caused by viral or any other

includes a mobile genetic element that can be teed
integrate  transgenes. Successful
reprogramming of fibroblasts to iPSCs
a significant advance in current methods of transge
delivery. This system couples enzymatic cleavagé wi
sequence specific recognition using transpon/tramape

interaction to ensure high efficiency removal aniked

DNA without footprint. It permits technical
simplification and improved accessibility of
reprogramming methodology by making use of effssle

DNA-based reprogramming methods, it means the

transposon-basepotential risks associated with chromosomal integna
representsand mutation. Zhowet al. (2009) demonstrated that

protein-induced Pluripotent Stem Cells (p-hiPSCa) ¢
long-term self-renew and are pluripoténtvitro andin
vivo. These iPSCs exhibited similarity to ESCs in
morphology, proliferation and expression of
characteristic pluripotency markers. The mouse i®SC
were generated using recombinant proteins of
reprogramming factors which were produced in bécter

plasmid DNA preparation and commercial transfection However, iPSCs derivation required the additiorthef

products for delivery. Also the range of somatidl ce
types that could be used for reprogramming isinuted

by adecreased susceptibility to viral
Importantly, this study also demonstrated that iomeid

infection.

histone deacetylase inhibitor valopronic acid. Tsaidy

first demonstrated that somatic cells can be fully
reprogrammed into pluripotent stem cells by direct
delivery of recombinant reprogramming proteins.

expression of exogenous reprogramming factors ts noHowever, the generation of p-hiPSCs is very ingffit

required forin vitro reprogramming (Seifinejadt al.,
2010; Woltjenet al., 2009). However, despite the high
efficiency of exogenous DNA excision from the genioyn
this system, the removal of a large number of rassn
copies is hardly achievable (Medvedtal ., 2010).

Direct protein transduction systenrepresent
significant advance in generating iPSCs and hasraév
major advantages. The observation that

exogenous proteins are capable of being taken up byanog

the cell has resulted in the identification of giat
transduction domains, also called
peptides” or “cell-penetrating peptides”. When fiise
other proteins, these peptides allow the cargoejmdb
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and requires further optimization. The efficiency o
production is around 0,001%, which is one ordelotlian
by using retroviral vectors. In particular, the centration
of the individual factors needs to be calibrated to
approximate normal endogenous level (Kémnal., 2009;
Lai etal., 2011; Wong and Chiu, 2011).

Yakubovet al. (2010) reported the use of vitro-

someproduced mRNA encoding for Oct4, Lin28, Sox2 and

for reprogramming of human foreskin
fibroblasts to generate RNA-produced iPSCs (RiPSCs)

“transduction This procedure also avoids any DNA integration éven

and the associated genomic damage. The procedure of
RNA preparatiorin vitro is simple and easy to scale up
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and transfection is very efficient. The productioh at the individual patient level (Cwt al., 2009). They
RiPSCs by RNA overcomes an important hurdle on thecould generate a limitless source for tissue ergging
way to personalized cell therapy. and regenerative medicine application&ig( 2).
Small molecules-another alternative approach toAnother key advantage is the possibility of repayri
safety improve the reprogramming process for thedisease-causing mutation by homologous
generation of iPSCs is to use a cocktail of small recombination, a technology that has been used with
molecules that are linked with epigenetic modifiarsl  limited success in adult stem cells because ofrimis
major signaling pathways. Notably, some of these_dlfflcultles in growing them_ou_ts_|de th_e body. Huma
molecules can also replace individual reprogramming!PSCS could have also significant impact on drug
factors, raising the possibility of deriving iPS&slely deyelolpment_ and tOXI(éIty tests to replace ggieefm
with chemicals. These molecules are inhibitors of gg'ﬂ;a e;perlments a:jn :?St (Ma;tgﬂo%z.-FeSrpzﬁ Id., d
Histone De A Cetylases (HDACs)-Val Proic Acid ’ appas an ang, ' adtie an

. . . Hochedlinger, 2010; Vitalet al., 2011).
(VPA), Tricho Statin A (TSA), Histone De Methylases —peocantly there have been great advancements in the

(HDMs) and Histone Methyl Transferases (HMTS), suydy of iPSCs in the field of regenerative medicin
which regulate chromatin remodeling and act as majo organ transplantation among nonrelated individisls
players in building up the epigenetic landscapeABD  complicated by the limited availability of matched
inhibitors  significantly were shown to improve tissues and requirement for life-long treatmenthwit
reprogramming efficiency. Also other small molesule immunosupresive drugs that can have serious side
have been reported to be able to replace someeffects. Somatic cells isolated from a patient nieey
transcription factors. For example, ag,Gnhibitor, reprogrammed to pluripotent stem cells and then
BIX 01204 Was reported to induce iPS cells from neural theoretically could be used to replace diseaseld ael
stem cells, in place of Oct4. In addition, a Transfing ~ the ~same patient avoiding the problem of
Growth Factor (TGFB inhibitor could replace Sox2 histocompatibility or immune rejection. Many human
during iPSCs generation. Vitamin C also improves th diseases, such as myocardial infarction, diabeeemal

efficiency of reprogramming in both mouse and human degeneration and $p|nal cc_)r(_j Injury, occur k_)ecemlse
somatic cells and promotes the transition of pértia cell loss, de.generatlon gnd injury. Theoreticaliith the

: . transplantation of specific cells created from &gas
reprogrammed iPSCs to fully reprogrammed statdylike

. . ) ; iPS cells, the cells that lacking can be replerdshed
by reducing reactive oxidant species and senescence replace by cells with the defects corrected, thereb

Because small molecules provide several distinCtrg|ieving a patient’s symptoms. The mostly use sizma
advantages in controlling protein fusion, they have cells are fibroblasts, but different groups geretalso
attracted much interest for control reprogramming iPS cells from other somatic cells providing eviden
toward a faster and more efficient proceStemical that is possible to reprogram cells of differenigors
strategies are being used to find additional small(Deng, 2010; Ebbest al., 2011; Patel and Yang, 2010;
molecules that may ultimately allow reprogrammirfg o Uemuraet al., 2012; Vitaleet al., 2011; Waliaet al.,
lineage-restricted cells to pluripotent state in a 2012; Wong and Chiu, 2011; Zeng and Zhou, 2011).

completely chemically defined condition. However, i Other sources of iPSCs that can be easily
should be noted that chemical substitution of arzec%é).grgmr_ned alre hzuorrign keraltlnocytes ('A;%BE'E""
reprogramming factors is, in most cases, associaitd ; betitet al, ), oral mucosa fibroblasts

2 . . (Miyoshi et al., 2010), dermal papilla cells (Tsetial.,
a 5|gn|f|can.t d_ecrgase in the .number Of.'PSCS slone 2010), pancreatic beta cells (Stadtfedd al., 2008),
generated, indicating that no single chemical campo

: ) . o neural stem cells (Kimet al., 2009), mature B

is able to entirely replace_ the function of a t@ipion lymphocytes (Hannat al., 2008), liver and stomach

factor (Fenget al., 2009; Liet al., 2011; Luet al., 2013;  cells (Aoiet al., 2008) and cord blood cells (Catial.,

Nie et al., 2012; Stadtfeld and Hochedlinger, 2010; 2010; Takenakaet al., 2009). For example, human

Ohetal., 2011; Shet al., 2008). keratinocytes have been shown to be 100-fold more

efficient and 2-fold faster than human fibroblasts

(Aasentet al., 2008). The goal is to find the most
Human iPSCs might be used to treat degenerativeaccessible, efficient and safest cell to reprogram

and genetic diseases and to study diseases meghanisfuture clinical applications.

1.3. Applications of Human iPSCs
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Fig. 2. Applications of iPSCs technology

The potential use of iPSCs as treatments for variou It was also demonstrated that murine iPSCs have
disorders has been proposed and testednoritro ability to differentiate into mesenchymal cellsdikells
and/orin vivo animal models with promising results of bone, cartilage and fain vitro and maintain an
(Patel and Yang, 2010). Proof of principle for iBSC osteoblast phenotype on a scaffatdvitro andin vivo.
based therapy was first demonstrated in mice. iPSCsThe maintenance of this stable osteoblast phenotype
were generated from tail-tip fibroblasts of humauwiz  spotlights these cells as a viable source for adincell-
sickle cell anemia mice. After the sickle cell gene based therapy to treat musculoskeletal disease
mutation in the generated iPSCs was corrected viaBilousovaetal., 2011).
homologous recombination, the cells were directed t First endodermal-derived cells differentiated form
differentiate into hematopoetic progenitor cétisitro. ~ iPS cells were hepatocytes, which could potentially
After they were transplanted into the affected dono revolutionize hepatology with respect to the stuafy
mice, resulting in restoration of the functional hepatitis B and C viruses, alcohol-induced cirrbcsnd
hemoglobin protein in the bloodstream and restoringcongenital liver diseases (Gallicano and Mishrd, @0
disease parameters such asred blood cell count, Other potential application in near future can e u
hematocrit, weight and breath rate to normal values of iPSCs derived spermatozoa to treat infertileptesi,
Also kidney defects due to the red blood cell where male suffer from Non-Obstructive Azoospermia
destruction in renal tubules with reduction in fena (NOA) (caused by testis failure or impaired
blood flow were rescued upon iPSCs therapy €al., spermatogenesis). These patient specific iPSCyatkri
2009; Hannaet al., 2007). Thus, the first therapeutic spermatozoa can help patient create their own @enet
application of iPSCs technology illustrated the offspring via ICSI, they also allow the developmeit
advantages of both regeneration of degenerativadés novel reproductive engineering afpproaches and
as well as gene-specific correction of an inhel¢ab advanced studies on pathogenesis and treatment of

effect (Nelsoret al., 2010). | _ fertility (Yao etal., 2011).
For example, of particular interest are iPSCs dgkiv

from patients suffering from neurodegenerative aties. 1.4 Future Perspectives
These iPSCs lines can be differentiabeditro into the Despite success in animal models, iPSCs technology

affected neuronal cell type (Lenger, 2010). iPS@geh s not yet ready for transplanting cells into patse The
been generated from patients with amyotryophicrédte main issue is safety concerns, iPSCs, like ES,delts]
sclerosis and they could be differentiated into onot to form teratomas and current differentiation pcols
neurons. Greater progress has been made in gewgerati cannot efficiently eliminate residual undifferemdid
enriched population of ventral midbrain dopaminergi cells. The researches still do not know for eachf
neurons that are relevant for Parkinson diseaseclone whether nuclear reprogramming is complete.
(Marchettoet al., 2011). Aberrant reprogramming may result in an impaired
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ability to differentiate and may increase the rigk Chiu, 2011). For human iPSCs to be therapeutically

immature teratoma  formation after direct effective in transplantation it needs to be alsowshthat

differentiation. Most patient-specific iPSCs haveeh their progeny will function normally in the interdisite for

generated with integrating vectors, which may net g significant periods of time, which will require exisive

silenced efficiently or could disrupt endogenousag testing first in animals and then in appropriatégsigned

which also pose potential impediments for the uke o clinical trials (Sipp, 2010).

human iPSCs in cell therapy. For diseases thatinequ

gene targeting to repair mutant alleles, more ieffic 3. ACKNOWLEDGEMENT
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