
 

 
 © 2019 Habib Ahmed Elsayir. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 

license. 

Journal of Mathematics and Statistics 

 

 

 

Original Research Paper 

Residual Analysis for Auto-Correlated Econometric Model  
 

Habib Ahmed Elsayir 

 
Department of Mathematics, Al Qunfudha University College, 

Umm Al Qura University, Al Qunfudha 21912, P.O. Box 1109, Saudi Arabia 

 
Article history 

Received: 15-11-2018  

Revised: 15-12-2018 

Accepted: 27-05-2019 
 

Email: Habibsayiroi@Yahoo.com 

Abstract: The aim of this article is to provide residual analysis for a time 
series data of Gross Domestic Product (GDP) of the Sudan. An 
econometric time series model with macroeconomic variables is 
conducted to examine the goodness of fit using residual. Many statistical 
tests are used in time series models in order to make it a stationary series. 
After applying these tests, the time series became stationary and 
integrated; thus, Box-Jenkins procedure is used for the determination of 
ARIMA, AR (0,1,0) in this study. This identified technique is useful for 
analyzing this study.  
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Introduction 

When dealing with validation of data, usually there 

exists a portion not explained by the model, which 

combines two parts, the whiteness and the independence 

test. According to the first part (whiteness test criteria), 

a good model has the residual autocorrelation function 

within the confidence interval of the corresponding 

estimates, indicating that the residuals are uncorrelated, 

as according to the second criteria of independence 

test, residuals of a good model should be uncorrelated 

with previous elements. In fact, there is a need to check 

residuals in order to validate model performance in 

regression analysis,which is the main purpose of this 

emperical study.  

Several procedures are used to analyze data within 

these domains. A useful common technique is the Box-

Jenkins ARIMA method (Box et al., 1994), which can be 

used for univariate or multivariate data set analyses. The 

ARIMA technique involve using Moving Averages 

(MA), smoothing and regression techniques to detect and 
manipulate data autocorrelation problems. Error 

modeling approach is has clearly been demonstrated by 

Firmino et al. (2015; Ikughur et al.,  2015). 
Diagnostic investigating and checking ARIMA time 

series models and residual analysis techniques has been 
used by McLeod and Li (1983). Lu (2009) has 
introduced forecasting for China GDP of a time series 
model. Andreii and Bugudui (2011) has presented an 
econometric modeling of GDP time series in the US 
economy. Other similar forecasting models using 
residual analysis were found in Okyere et al. (2015), 
Boshnakov (2016) and Lavrenz et al. (2018).     

Martin et al. (2017) showed checking regression 
assumptions (errors normality, constant variance, 
residual analysis plots) in regression analysis fitting 
experimental data via residual plots. 

Residuals Analysis 

Consider the regression model: 

 

y a bx e= + +   (1) 

 

The gap between the original value of the dependent 

variable (y) and the estimated value (ŷ) is known as 

the residual (e). It is the amount of variability in 

dependent variable that is (left over) after accounting for 

the variation explained by the predictors in regression 

analysis). Each data point has one residual: 

 

e = y–ŷ, where Σ e = 0 and e = 0. 

 

Seen as a powerful diagnostic tool, checking 

the residuals of a regression is a way of checking 

whether a regression has achieved its goal to explain as 

much variation as possible in a dependent variable. 

Ideally all residuals should be small and unstructured. 

Most problems that were initially overlooked when 

diagnosing the variables in the model or were impossible 

to see, will, turn up in the residuals, for instance: 

 

• Big residuals shown due to outliers 

• Certain structure will appear in residuals, will 
appear in the nonlinearity of the residuals 
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• Heteroscedasticity problem, a type of violation of 
the assumption of non-constant model variation of 
the residuals 

• Examining residuals plots to check appropriateness 
of regression model for the data (Jim Frost, 2012) 

• If the points in a residual plot indicates 
appropriateness of a linear or non-linear regression 
model for the data, Lavrenz et al. (2018) 

 
The residuals plot shows a certain pattern. Random 

pattern might be an indication of goodness of fit to the 
data of a linear model. A form of an autoregressive 
process time series is as: 
 

0 1 1t t t
x b b x

−

= + +∈   (2) 

 
For the basic analysis of residuals you will use the 

usual descriptive tools and scatter plots. A Q-Q Plot can 
be used to test for residual normality, beside Plotting the 
residuals to see if there appears any particular pattern 
(random cloud). A researcher may need to decide 
whether to adopt linear or log-linear trend models after 
answering some questions related to the estimated 
relationship around the trend line and the correlation of 
the error terms. 

The Autoregressive Time Series Models 

Abbreviated as AR(p) models, where p stands for the 

number of the lagged values of the dependent variable 

which known as the model "order”. The "order" of the 

AR(p) models is the number of prior values used in the 

model. Thus: 
 

( ) 0 1 1
1 :

t t t
AR x b b x

−

= + +∈   (3) 

 

( ) 0 1 1 2 2
2 :

t t t t
AR x b b x b x

− −

= + + +∈  (4) 

 
and so on. 

When considering the autocorrelation of the 

residuals that are to be used to evaluate model fit, the 

testing procedure includes estimating the AR model 

and calculating of residuals (or error terms), estimating 

the autocorrelations for the error terms (residuals) and 

testing to see the inside structure of autocorrelations to 

se if statistically different from zero. For an AR(1), the 

values will stay constant when: 

 

( )0 1
/ 1

t
x b b= −  

 

And rise when: 

 

( )0 1
/ 1

t
x b b< −  

 

The value fall if: 

 

( )0 1
/ 1 .

t
x b b> −  

 

To determine whether a time series is an AR(p) or a 

Moving average- MA(q)-, examine the 

autocorrelations. Generally, AR model autocorrelations 

start at large values and then decline gradually, while 

the MA autocorrelations drop dramatically after reach 

of q lags. This behavior describes both the MA 

process and its order. 

Types of Residual Plot 

In first graph bellow, linear regression model is 
preferred since dots are randomly dispread, while in 
second and third plot, a non-linear regression method is 
suggested since dots are non-randomly dispread. The 
randomness property in the first plot shows indicates a 
good fit for a linear model, as the rest of the plot 
patterns indicate a non-random structure which 
expressed by (U and inverted U shaped), suggesting a 
non-linear model structure. 

 

 
 

Fig. 1: Types of residual plots 
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Table 1: The EMS for one-way ANOVA 

Source of Mean Squares Expected Mean  

variation  (MS) Squares (EMS) 

Factor A MSA 
2 2

e A
nσ σ+  

Error(Residual) MSerror 
2

e
σ  

 

Table 2: The EMS for a two-way ANOV 

Source of variation MS  EMS 

Factor A MSA 
2 2

e A
bnσ σ+  

Factor B MSB 
2 2

e B
anσ σ+  

A*B interaction MSA*B 
2 2

e AB
nσ σ+  

Error (Residual) MSerror 
2

e
σ  

 

Expected Mean Square (EMS) 

Expected Mean Square (EMS) represent the values 
that we will get for any given mean square (MS) statistic 
under distribution, on average over repeated experiment. 
Let: 

 

( )

1

2 2

1

/

   

,

,

k

ii

i i

k

A ii

k

It is

a

varianc

n

e like

d

µ µ

λ µ µ

σ λ

=

=

= −

=

∑

∑

 

 

Let 2

e
σ  be the true error variance. Then the ANOVA 

is as follows Table 1 and 2: 

The Proposed Model 

Let Y be the target predicting value and Yt is the 
value of Y at time t, then we aimed at constructing a 
model of the type: 
 

( )Y 1,Y 2,Y 3, ,Y
t t
Y f t t t t n e= − − − … − +   (5) 

 
where, Yt-1 is the previous observation value of Y, Yt-

2 is the value two observations before, etc. and et 
(a random shock or the noise term). The values of 
underlying variables that occur prior to the current 
observation are called lag values. In a repeating 
pattern time series, the value of Yt is expected to be 
highly correlated with Yt-cycle. Thus, the goal of 
constructing a time series model is to build a model 
such that the error term to be as small as possible.  
Let us consider an Xt, time series model, then the 

Autoregressive Moving Average (ARMA) model 
combines two components, an autoregressive (AR) 
component and a moving average (MA) part. Following 
Brockwell and Davis (2002) and Pasavento (2007), th 
AR(p) model can be written in the form:  

 

1

p

t i t i ti
Y c Yϕ ε

−
=

= + +∑   (6)  

where, ϕ1,…,ϕp are the model parameters, c is a constant 

(which may be omitted for simplicity) and εt is an error 
term. The MA(q) notation stands for the moving average 
model of order q: 
 

1

q

t t i t i

i

Y ε θ ε
−

=

= +∑   (7) 

 
where, the θ1, ..., θq are the parameters of the model and 
the εt, εt-1,... is an error term.  
The ARMA(p,q) notation represents the p 

autoregressive terms and q moving average terms of the 
underlying model. This model is given the notation 
AR(p) and MA(q) models, which is: 
 

11

p q

t t i t i i t i

ii

Y Yε ϕ θ ε
− −

=
=

= + +∑ ∑   (8) 

 
where the error terms εt are distributed randomly and 
assumed to be independent with mean zero and variance 
σ2 that is εt ~ N(0,σ

2). 
The process (Y)t is defined to be ARIMA(p, d, q) if: 

 

( ) ( ) ( )*
1

d

t t
l l Y c lθ ε− ∅ = +   (9) 

 

where, ∅*(l) is defined in ∅(l) = (1-l) ∅*(l), ∅*(z) ≠ 0 

for all |z|≤1. And θ(l) is defined in θ(z) ≠ 0 for all |z|≤1.  
The process (Y)t is said to be stationary (i.e., its mean, 

variance and autocorrelation should be approximately 
constant through time) if and only if d = 0 in which case 
it eliminates to ARMA(p, q) process: 
 

( ) ( )
t t

l Y c lθ ε∅ = +   (10)  

 

where, εt∼wN(0,σ2).  
The Box-Jenkins methodology Box et al. (1994) is a 

five-step procedure for analyzing and assessing time 
series data models. Adopting the ARIMA (auto-
regressive, integrated, moving average) method 
iteratively, to best-fit time series data, then the (AR) 
component in ARIMA is structured as p, the integrated 
component (I) as d and moving average (MA) as q. The 
(AR) component represents the previous observations 
effects, where the (I) component represents model trends 
and the MA part holds effects of previous random 
shocks (or error). Then the order of the time series 
ARIMA fit can be selected assigning an integer value (0, 
1, or 2) for each component. 

Data and Methodology of Collection 

The Sudan Central Bureau of Statistics (CBS), 
issue annual report include all National accounts, 
while the Central Bank of the Sudan (Country Report 
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2015) also issues its annual economic records. United 
Nations forms are used for annual gatherings of the 
official national accounts data presented to the United 
Nations Statistics Division by the countries ,according 
to International Monetory fund (IMF, 2015). If a full 
set of official data is not reported, estimation methods 
are used to obtain estimates for the entire time series. 
Then annual percentage growth indicators including 
annual rates of GDP based on market prices is 
presented on constant local currency, while the 
aggregates are based on constant U.S. dollars.  

Data Analysis 

In this section, the data of GDP statistics of Sudan, 
which include the current and constant prices in 
million US$ for the period (1960-2015) will be 
investigated using SPSS Time Series Modeler. The 
created series for the GDP model with creating 
function has been made and presented in Table 4.1 
and result variables are displayed in Table 4.2. The 
result variables for the GDP model functions are 
identical. As in Table 4.3, applying the model 
specifications, it seems that it is not applicable for 
calculating standard errors of the partial 
autocorrelations, for independence (white noise). 
The partial autocorrelation for the built model is 

the autocorrelation of time series observations separated by 
a lag of 16 time units with the effects of the intervening 
observations eliminated. Autocorrelation presented in Table 
4.4 with autocorrelation function (Fig. 4.1)-values seen        
above zero in ( figure 4.3) too- and partial autocorrelation 
tables (Table 4.5) with partial autocorrelation (Fig. 4.2) 
are also provided for the residuals (errors) between the 
actual and predicted values of the time series. 
Examining the autocorrelation table shown in Table 
4.4, we see that the highest autocorrelation is 0.875 (the 
first value in the lags) which occurs with a lag of 15. 
Now we aim to be sure to include lag values up to 15 
when constructing the model. Based on the 
assumption that the series are not cross correlated and 
that one of the series is white noise, the cross 
correlations are found in Table 4.7.  

Using Time Series Modeler, the model specification 

was shown with range of lags from -7 to +7 as seen in 

Table 4.6 and described in Table 4.8 that is 

(ARIMA(0,1,0) and the model fit summary is shown in 

Table 4.9 and the residuals ACF summary is presented 

in Table 4.10. 

The autocorrelation ACF and partial autocorrelation 

PACF tables provide valuable information about the 

significance of the lag variables. An autocorrelation is the 

correlation between the target variable (GDP) and lag 

values for the same variable. It is known that correlation 

values lies between -1 and +1. A value of +1 indicates that 

the two variables move together perfectly; a value of -1 

indicates that they move in opposite directions (see the 

results of Table 4.12. The third column of the 

autocorrelation table shows the standard error of the 

autocorrelation, this is followed by Box-ljung statistics 

based on the asymptotic chi-square approximation (all 

values are significant) in the fourth column. The 

autocorrelation bar chart is used to indicate positive or 

negative correlations up or down of the centerline. The 

dots shown in the chart mark the points two standard 

deviations from zero. If the autocorrelation bar is 

longer than the dot marker (that is, it covers it), then the 

autocorrelation should be considered significant. In this 

model, significant autocorrelations occurred for all lags 

except for lag 15. On the basis of the assumption that 

the series are not cross correlated and that one of the 

series is white noise, the cross correlations and range of 

lags (from -7 to +7 are displayed in Table 4.11 and Fig. 

4.3. The figure which shows confidence limit to be all 

above zero for the GDP.  

Proportion of variance explained by model is the best 

single measure of how well the estimated values match 

the original values. If the estimated values exactly match 

the original values, then the model would explain all the 

amount of variation (100%). In fact this is not always the 

case (here the model explains 98.2% of the variance due 

to the R square value), as seen in Table 4.11. The 

ARIMA model parameters using natural log show 

significant t value (0.001) as in Table 4.12. The residual 

ACF is displayed in Table 4.13 and the residual PACF is 

presented in Table 4.14.  

Finally, the model forecast has been shown in Table 

4.15, since one of the strengths of time series model 

analysis is its ability of generation of future data 

forecasts by depending on observed past observations. 

Thus, if we rely on this information, we may conclude 

that we have a good model fit. 

Discussion 

A residual is the vertical distance between a data 

point and the regression line. Considering residual 

plots, it can be used to assess whether the observed 

error (residuals) is consistent with random (or 

stochastic) error. In a regression model, the residuals 

should not be either systematically high or low. So, 

they should be spread about zero throughout the range 

of fitted values. Further, in the context of OLS method, 

random errors are assumed to yield normally 

distributed residuals. This means that the residuals 

should be distributed in a symmetrical pattern and 

spread constantly throughout the range. 
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We evaluate Autoregressive Integrated Moving 

Average (ARIMA) model of the GDP series using 

Box-Jenkins methodology by using four different 

equations which are, linear, logarithmic, quadratic and 

exponential equations. Rely on the parameter 

estimates, it is found that the ARIMA (0,1,0) is the 

best model for the data. Comparing with other models, 

ARIMA model has been selected as the final model. 

The method for prediction and forecasting then has 

been provided based on data, which may be 

performable and useful to governmental and 

nongovernment institutions. 

In time series regression analysis of data, caution 

must be taken about using this technique, because of 

autocorrelation and violation of the assumption of 

errors independence which leads to increase in type I 

error when autocorrelation is present. Furthermore, 

time series patterns must be accounted for within the 

analysis. 

Conclusion 

This article has discussed the technique of residual 

analysis for an economic GDP model. The procedures- 

which mainly depend on time series analysis and 

ARIMA method in particular- used here might be 

valuable only for a time series that is stationery and it 

is much preferred and more recommended when 

carried out for a model with at least 50 data 

observations (our model has 57 observations). The 

procedure of residual analysis in an economic time 

series model is outlined. The model has been 

investigated to describe the data to see how well the 

underlying model fits the GDP data which can help 

econometricians to understand the behavior and 

structure of the sudanese economy. Thus,this analysis 

may provide practical utility of the procedure of 

residual analysis. 
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Table 4.1: Created series 

  Case number of non-missing values 

  --------------------------------------------- 

 Series Name First Last N of Valid Cases Creating Function 

1 GDP_1 2 56 55 DIFF(GDP,1) 

1 GDP_1 2 56 55 MA(GDP,1,1) 

1 GDP_1 2 56 55 T4253 H(GDP) 

 

Table 4.2: Result variables 

Result Variables

GDP_1 1 1 57 57
SMEAN(G

DP)

1

Result

Variable

N of Replaced

Missing

Values First Last

Case Number of

Non-Missing Values N of Valid

Cases

Creating

Function

 
 

Result Variables

GDP_1 1 1 57 57
SMEAN(G

DP)

1

Result

Variable

N of Replaced

Missing

Values First Last

Case Number of

Non-Missing Values N of Valid

Cases

Creating

Function

 
 

Result Variables

GDP_1 1 1 57 57
SMEAN(G

DP)

1

Result

Variable

N of Replaced

Missing

Values First Last

Case Number of

Non-Missing Values N of Valid

Cases

Creating

Function
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Table 4.3: Model description 

Model Description

MOD_1

GDP in  billion US$

None

0

0

No periodicity

16

Independence(white noise)
a

All lags

Model Name

1Series Name

Transformation

Non-Seasonal Differencing

Seasonal Differencing

Length of Seasonal Period

Maximum Number of Lags

Process Assumed for Calculating the Standard

Errors of the Autocorrelations

Display and Plot

Applying the model specifications from MOD_1

Not applicable for calculating the standard errors of the partial

autocorrelations.

a. 

 
 

Table 4.4: Model autocorrelations 
Autocorrelations

Series: GDP in  billion US$

.875 .130 45.167 1 .000

.774 .129 81.184 2 .000

.688 .128 110.152 3 .000

.601 .127 132.735 4 .000

.505 .125 148.958 5 .000

.402 .124 159.476 6 .000

.326 .123 166.539 7 .000

.236 .122 170.309 8 .000

.157 .120 172.002 9 .000

.097 .119 172.665 10 .000

.056 .118 172.892 11 .000

.027 .116 172.945 12 .000

.006 .115 172.948 13 .000

-.011 .114 172.957 14 .000

-.022 .112 172.994 15 .000

-.027 .111 173.054 16 .000

Lag
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Autocorrel

ation Std. Error
a

Value df Sig.
b

Box-Ljung Statistic

The underlying process assumed is independence (white

noise).

a. 

Based on the asymptotic chi-square approximation.b. 
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Table 4.5: Partial autocorrelations 
Partial Autocorrelations

Series: GDP in  billion US$

.875 .134

.038 .134

.014 .134

-.039 .134

-.093 .134

-.095 .134

.032 .134

-.106 .134

-.022 .134

.022 .134

.036 .134

.024 .134

.025 .134

-.023 .134

-.002 .134

-.003 .134

Lag
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Partial

Autocorrel

ation Std. Error

 
 

Table 4.6: Model description 
Model Description

MOD_2

GDP in  billion US$

year

None

0

0

No periodicity

-7

7

All lags

Model Name

1

2

Series Name

Transformation

Non-Seasonal Differencing

Seasonal Differencing

Length of Seasonal Period

From

To

Range of Lags

Display and Plot

Applying the model specifications from MOD_2  
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Table 4.7: Model cross correlations 
Cross Correlations

Series Pair: GDP in  billion US$ with year

.603 .143

.631 .141

.658 .140

.685 .139

.711 .137

.737 .136

.761 .135

.785 .134

.678 .135

.587 .136

.507 .137

.431 .139

.352 .140

.274 .141

.211 .143

Lag
-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

Cross

Correlation Std. Error
a

Based on the assumption that the series are not cross

correlated and that one of the series is white noise.

a. 

 
 

Table 4.8: Model description 

Model Description

ARIMA(0,1,0)Model_1GDP in  billion US$Model ID
Model Type

 
 

Table 4.9: Model summary 
Model Fit

-2.2E-016 .-2.2E-016-2.2E-016-2.2E-016-2.2E-016-2.2E-016-2.2E-016-2.2E-016-2.2E-016-2.2E-016

.982 . .982 .982 .982 .982 .982 .982 .982 .982 .982

3.157 . 3.157 3.157 3.157 3.157 3.157 3.157 3.157 3.157 3.157

13.577 . 13.577 13.577 13.577 13.577 13.577 13.577 13.577 13.577 13.577

77.561 . 77.561 77.561 77.561 77.561 77.561 77.561 77.561 77.561 77.561

2.190 . 2.190 2.190 2.190 2.190 2.190 2.190 2.190 2.190 2.190

7.296 . 7.296 7.296 7.296 7.296 7.296 7.296 7.296 7.296 7.296

2.372 . 2.372 2.372 2.372 2.372 2.372 2.372 2.372 2.372 2.372

Fit Statistic

Stationary R-squared

R-squared

RMSE

MAPE

MaxAPE

MAE

MaxAE

Normalized BIC

Mean SE MinimumMaximum 5 10 25 50 75 90 95

Percentile
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Table 4.10: Residual ACF summary 

Residual ACF Summary

.056 . .056 .056 .056 .056 .056 .056 .056 .056 .056

.060 . .060 .060 .060 .060 .060 .060 .060 .060 .060

-.020 . -.020 -.020 -.020 -.020 -.020 -.020 -.020 -.020 -.020

.141 . .141 .141 .141 .141 .141 .141 .141 .141 .141

-.181 . -.181 -.181 -.181 -.181 -.181 -.181 -.181 -.181 -.181

-.050 . -.050 -.050 -.050 -.050 -.050 -.050 -.050 -.050 -.050

-.070 . -.070 -.070 -.070 -.070 -.070 -.070 -.070 -.070 -.070

.174 . .174 .174 .174 .174 .174 .174 .174 .174 .174

-.034 . -.034 -.034 -.034 -.034 -.034 -.034 -.034 -.034 -.034

.102 . .102 .102 .102 .102 .102 .102 .102 .102 .102

-.161 . -.161 -.161 -.161 -.161 -.161 -.161 -.161 -.161 -.161

.025 . .025 .025 .025 .025 .025 .025 .025 .025 .025

.042 . .042 .042 .042 .042 .042 .042 .042 .042 .042

-.143 . -.143 -.143 -.143 -.143 -.143 -.143 -.143 -.143 -.143

-.313 . -.313 -.313 -.313 -.313 -.313 -.313 -.313 -.313 -.313

-.064 . -.064 -.064 -.064 -.064 -.064 -.064 -.064 -.064 -.064

-.103 . -.103 -.103 -.103 -.103 -.103 -.103 -.103 -.103 -.103

-.083 . -.083 -.083 -.083 -.083 -.083 -.083 -.083 -.083 -.083

-.064 . -.064 -.064 -.064 -.064 -.064 -.064 -.064 -.064 -.064

.047 . .047 .047 .047 .047 .047 .047 .047 .047 .047

.082 . .082 .082 .082 .082 .082 .082 .082 .082 .082

-.102 . -.102 -.102 -.102 -.102 -.102 -.102 -.102 -.102 -.102

-.069 . -.069 -.069 -.069 -.069 -.069 -.069 -.069 -.069 -.069

-.008 . -.008 -.008 -.008 -.008 -.008 -.008 -.008 -.008 -.008

Lag

Lag 1

Lag 2

Lag 3

Lag 4

Lag 5

Lag 6

Lag 7

Lag 8

Lag 9

Lag 10

Lag 11

Lag 12

Lag 13

Lag 14

Lag 15

Lag 16

Lag 17

Lag 18

Lag 19

Lag 20

Lag 21

Lag 22

Lag 23

Lag 24

Mean SE MinimumMaximum 5 10 25 50 75 90 95

Percentile

 
 

Table 4.11: Model statistics 

Model Statistics

0-2.22E-016 .982 3.157 2.190 20.011 18 .332 0

Model
GDP in  billion US$-Model_

1

Number of

Predictors

Stationary

R-squaredR-squared RMSE MAE

Model Fit statistics

Statistics DF Sig.

Ljung-Box Q(18)

Number of

Outliers

 

 

Table 4.12: ARIMA model parameters 

ARIMA Model Parameters

.078 .023 3.378 .001

1

Constant

Difference

Natural

Log

GDP in 

billion

US$

GDP in  billion

US$-Model_1

Estimate SE t Sig.
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Table 4.13: Residual autocorrelation function 

Residual ACF

.056.060-.020.141-.181-.050-.070.174-.034.102-.161.025.042-.143-.313-.064-.103-.083-.064.047.082-.102-.069-.008

.135.135.136.136.138.143.143.144.147.147.149.152.152.152.155.166.166.167.168.169.169.169.171.171

ACF

SE

Model
GDP in  billion US$-Model_

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

 

 

Table 4.14: Residuals partial autocorrelation function 

Residual PACF

.056.057-.027.141-.199-.042-.039.168-.002.072-.193-.026.133-.191-.236-.108-.105-.043.045-.074.030-.161-.056.072

.135.135.135.135.135.135.135.135.135.135.135.135.135.135.135.135.135.135.135.135.135.135.135.135

PACF

SE

Model

GDP in  billion US$-Model_

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

 

 

Table 4.15: Model forecasts 

Forecast

106.639

148.340

74.426

Forecast

UCL

LCL

Model
GDP in  billion US$-Model_

1

57

For each model, forecasts start after the last non-missing

in the range of the requested estimation period, and end at

the last period for which non-missing values of all the

predictors are available or at the end date of the requested

forecast period, whichever is earlier.
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Fig. 4.1: Autocorrelation function 
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Fig. 4.2: Partial autocorrelation function 
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Fig. 4.3: Cross correlation function 


