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Abstract: New exact solutions of the Fractional Riccati Differential 

equation are presented. Exact solutions are obtained in cases that the 

coefficient functions and an arbitrary function satisfy some differential 

conditions. In view of the conditions imposed on Riccati equation's 

coefficients we define and formulate the coefficients of the Riccati equation 

to obtain the differential cases, for each case the general solution is 

presented. The results obtained are useful and confirm the simplicity of the 

conformable definition of fractional derivative.  
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Introduction 

Integer order differential operator is a local operator, 
while fractional order operator is a non local operator. 
Mathematical modeling of systems in which the next 

state depends on the present state as well as the current 
state is better using fractional differential equations. 
Fractional calculus has many applications in physics, 
statistics, engineering and electrochemistry. Many 

phenomena in these fields modeled using differential 
equations of fractional order, especially the derivative 
with respect to the time (Kamke, 1959; Polyanin and 

Zaitsev, 2003; Soare et al., 2008; Mak and Harko, 2013; 
Cang et al., 2009; Tan and Abbasbandy, 2008; 
Abbasbandy, 2006a; Khalil et al., 2014; Aminikhah and 

Hemmatnezhad, 2010; Khan et al., 2011). 
The general form of the linear first order differential 

equation can be written as ( , )
dy

f x y
dx

= . The function f(x, 

y) can be approximated as f(x, y) = P(x) + Q(x)y +R(x)y2 

+ ⋯. If this approximation was terminated at the third 
term we get a non linear first order differential equation 

called Riccati Differential Equation (RDE) which is a 

type differ from all classical non linear first order 

differential equations. The first who deal with this kind 

of differential equations was the Italian mathematician 

Riccati (1676-1754). Riccati differential equation has 

many physical applications, such as particle motion 

under the effect of a central potential of power law 

representation and some applications in classical 

mechanics. Riccati differential equation was studied by 

many researchers (Kamke, 1959; Polyanin and Zaitsev, 

2003; Soare et al., 2008). Mak and Harko (2013) studied 

the reduced Riccati equation for the integration of Navier 

Stokes and Schrodinger equations using new 

integrability case for Riccati equation with Q(x) = 0. 

The Fractional Riccati Differential Equation (FRDE) 

has the form: 

 
2( ) ( ) ( ) , 0, 0 1.aD y P x Q x y R x y x a= + + > < ≤   (1) 

 

With the initial condition y(0) = y0 and the 

coefficients P(x), Q(x) and R(x) are arbitrary continuous 

functions. Fractional Riccati equation was solved by 

many researchers using different methods, such as 

homotopy analysis method (Cang et al., 2009; Tan and 

Abbasbandy, 2008), homotopy perturbations method 
(Abbasbandy, 2006a; Aminikhah and Hemmatnezhad, 

2010; Abbasbandy, 2006b), Adomian decomposition 

(Khan et al., 2011), Gulsu and Sezer (2006) gave a 

solution of the Riccati equation using the Taylor matrix 

method and many others.  

In the conformable sense 1a d y dy
D y x

dx dx

∝
−∝

∝
=  so 

Equation (1) can be transformed to the form: 
 

2' ( ) ( ) ( ) , 0.y p x q x y r x y x= + + >   (2) 
 
where, p(x) = x∝−1P(x), q(x) = x∝−1Q(x), r(x) = x∝−1R(x). 

Using the substitution 
( )

( )
( ) ( )

u x
y x

u x r x

′−
=  RDE (2) can be 
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transformed to the following differential 

equation
( )

( ) ( ) ( ) 0
( )

r x
u q x u p x r x u

r x

′ 
′′ ′− + + = 

 
, which is a 

second order differential equation. If a particular 

solution yP of Riccati differential equation is well 

known one can find its general solution, in the case that 
the particular solution is not known and its coefficient 

functions satisfy some conditions RDE could be 

integrated, otherwise, there is no chance to find an 

analytical solution. The classical method for solving 

Riccati differential equation depends on a given 

particular solution yP. One can substitute 
1

( )
p

y x y
w

= +  

so, 
2

( )
p

w
y x y

w

′
′ ′= −  into RDE (2) to be expressed as: 

 

( ) 2

2 2

' ( ) ( ) 2 ( )
' ( ) ( ) .P
P P P

w q x r x r x y
y P x q x y r x y

w w w w
− = + + + + +  

 

Since yP satisfies RDE (2), previous equation can be 

reduced to a first order linear differential equation of the 

form [ ( ) 2 ( ) ] ( )
P

w q x r x y w r x′ + + = − which can be solved 

by multiplying it by an integrating factor. 

( )
0

( ) exp [ ( ) 2 ( ) ( )]
x

P
x

x q t r t y t dtµ = +∫ , then integrating to 

get the following general solution 
( ) ( )

( )

c r x x dx
w

x

µ

µ

−
= ∫ . 

Using these results, FRDE (1) has the general solution: 

 

( )
( ) }{

1

1

exp ( ( ) ( ) ( ))

.

( ) exp ( ( ) ( ) ( ))

X

P

P
X

P

t Q t R t y t dt

y y

C r x t Q t R t y t dt dx

∝−

∝−

+
= +

− +

∫

∫ ∫
  (3) 

 

The main object of this work is to construct 

appropriate conditions on the coefficient functions of 

fractional Riccati differential equation (1) using the 

approach used in (Harko et al., 2013). 

Preliminaries and Notations 

Fractional derivative and integration were defined by 

many famous mathematicians, such as Riemann, 

Liouville and Caputo. In this section, Riemann-Liouville 

and Caputo definitions will be given, in addition some 

basic properties of fractional calculus theory which are 

further used in this study. 

Definition 2.1. 

The Riemann-Liouville operator of fractional integral 

of order a>0, of a piecewise continuous function f on [0, 

∞) such that it is integrable in any subinterval (a, ∞) is 

defined as: 

1

1 ( )
( ) , ( 1)

( ) ( )

n t

a

a t a n

a

d f x
D f t dx n n

n a dt t x
α

− +

 = − ≤ < Γ − −  ∫  

 

where, α is any real number and n is an integer. 

Definition 2.2. 

The Caputo fractional derivative of a function f(t) is 

defined as: 
 

( )

1

1 ( )
( ) ,( 1)

( ) ( )

n
t

c a

a t a na

f x
D f t dx n n

n a t x
α

+ −
= − ≤ <
Γ − −∫  

 
where, α is any real number and n is an integer. 

Khalil et al. (2014) gave a new definition of 

fractional derivative of order α∈(0, 1]. This definition is 
conformable to the definition of the derivatives of 

integer order, it is more natural and easier than previous 

definitions. Also, he generalized this definition for any 

α>0. However, the case α∈(0, 1] is the most important 
one and the other cases become easy when it is 

established. 

Definition 2.3. 

Conformable fractional derivative of order α∈(0, 

1] of a Given function f: [0, ∞) → R, is defined by 

(Khalil et al., 2014): 
 

( )1

0

( )
( )( ) lim , 0.

af t t f t
T f t for all tα ε

ε

ε

−

→

+ −
= >  

 
The Conformable fractional derivative at t = 0 can be 

defined as ( ) ( )

0
(0) lim ( )a a

t
f f t

→ +
=  provided that the limit 

exist and the function f is α-differentiable in some 

intervals (0, a). 
The conformable definition treats many shortages of 

previous definitions such as the derivative of the constant 
equals to zero, the product and fractional derivative rules 
are satisfied, also chain rule and anti-derivative rule are 
satisfied. In the present work, we adopting the 
Conformable Fractional Derivative definition. 

Solution Methods 

Fractional riccati equation was studied by many 
researchers. Some of these method will be discussed 
briefly In this section. 

Theorem 3.1. (Reduction to Second Order 

Equation) 

The non-linear fractional Riccati equation can be 

transformed using the substitution v = y R(x), then the 

substitution 1 a u
x v

u

− ′
= −  into an ordinary differential 

equation of the form: 
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11
( ) ( ) 0aa

u A X u X B X u
x

−− ′′ ′− + + = 
 

  (4)  

 

where, 1 ( )
( ) ( )

( )

p x
A x x R x

P x

∝− ′
= +  and B(x) = x∝-1 P(x) R(x). 

P(x) is a non-zero and differentiable function, such that 

α∈(0, 1], also the solution of this equation leads us to 
the solution: 

 
1( )

.
( ) ( )

u x x
y

P x U x

α−′−
=  

 

Theorem 3.2. (Transform FRDE to the Bernoulli 
Equation) 

For non-linear fractional Riccati equation the 

substitution v(x) = y(x) –yP(x) will transform the (FRDE) 

into the differential equation: 

 

{ }-1 -1 1 2( ) 2 ( ) ( ) ( ) ( ),
P

x x P x y x Q x x x xν ν ν∝ ∝ ∝−′ + − − =∝  

 

which is a Bernoulli equation with n = 2 and yP is a 

known particular solution. 

Theorem 3.3. (Obtaining Solution of FRDE by 

Abel’s Formula) 

The substitution 
1

P

z
y y

=
−

in the FRDE (2), where yP 

is a particular solution of (2), will leads to the solution: 

 

1 11(2 ( ) ( )) ( 2 ( ) ( ))( ( ( ))).P x y Q x I P x y Q x

a
z e I e P x− + += −  

 

Differentiability Conditions for Fractional 

Riccati Differential Equation 

Fractional Riccati differential equation (1) can be 

considered as an algebraic quadratic equation R(x)y2 + 

Q(x)y + (P(x) -Dαy) = 0 in the variable y. The algebraic 
solution leads to its particular solution in the form: 

 
2( ) ( ) 4 ( ) ( ) 4 ( )

2 ( )
P

Q x Q x R x P x R x D y
y

R x

∝− − +
=

∓
  (5) 

 

Previous equation of the particular solution along with 

an introduced generating function f(x) that satisfies some 

conditions we will construct some differential conditions 

on the coefficients functions of the Fractional Riccati 

differential equation then give its general solution. 
Recently, Harko et al. (2013) gave analytical 

solutions of Riccati equation, in their study they assumed 

that the functional coefficients of RDE satisfying some 

integral or differential conditions. Jaber and Tarawneh 

(2016) found an analytic solution of FRDE if its 

coefficients satisfy an integral condition. In this study we 

will construct more differential conditions on the 

coefficient functions involve arbitrary functions and give 

the general solution in each case. 

Case 1: 
 

( )
21

1 1

1
( ) 2 ( ) 2 ( ) ( ) .

4 ( )

f
P x R x D f Q x f x

R x R x

∝
  

= − −      
 

 

Assume that the coefficient function R(x) of the 

FRDE (2) satisfies the condition: 
 

( )
1

2
P

f
y

R x
=   (6) 

 

where, f1(x) ∈ C∞(I) is an arbitrary function and I is an 
interval of real numbers. By equating the particular 

solution (5) of Equation (1) to the assumed form in 

Equation (6): 
 

2

1
( ) ( ) 4 ( ) ( ) 4 ( )D

.
2 ( ) 2 ( )

Q x Q x R x P x R x y f

R x R x

∝− − +
=

∓
 

 
By some calculations it can be reduced to: 

 

( )2 2

1
( ) 4 ( ) 4 ( ) y ( ( )) .Q x R x P x R x D f Q x∝− + = +  

 
Performing the square and doing some rearranging to 

find an expression for P(x) we get the first differentiability 

condition on coefficient functions of FRDE: 
 

21
1 1

1
( ) 2 ( ) 2 ( ) ( )

4 ( ) ( )

f
P x R x D f Q x f x

R x R x

∝  
− − −  

  
  (7) 

 
In this case the FRDE (1) has the form: 

 

1

2

2

1 1

2 ( )1
( ) ( ) ( ) .

4 ( )
2 ( ) ( )

f
R x D

R xD y Q x y R x y
R x

f Q x f x

α
∝  

  
= + +  

 − − 

  (8) 

 
Therefore the following theorem can be obtained: 

Theorem 4.1. 

If the coefficient functions of the FRDE (1) are 

chosen such that Equation (7) is satisfied, then the 

general solution of the FRDE (8) is given by: 
 

( )
( ) (( ){ }

1

1

1

1

exp ( ( ) ( ) ( )
( )

.
2 ( )exp ( ) ( ) ( )

X

P

X

P

t Q t R t y t dt
f x

y
R xC r X t Q t R t y t dt dx

∝−

∝−

+
= +

− +

∫

∫ ∫
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Case 2: 
 

( )
( )

( )
( )

( ) ( )2 2

2

1
2 .

2

f f
Q x R x D R x P x

f x R x

∝
  

= − −      
 

 
Assume that the arbitrary function f2(x) and the 

coefficient functions satisfy the condition: 
 

( )
2

2
P

f
y

R x
=   (9) 

 

where, f2(x) ∈ C∞ (I) and I is an interval of real numbers. 
By equating the particular solution (5) of Equation (1) to 

the assumed form in Equation (9): 

 

( ) ( ) ( ) ( ) ( )
( ) ( )

2

2
4 4

.
2 2

Q x Q x R x P x R x D y f

R x R x

∝− ± − +
=  

 

By some calculations it can be reduced to: 

 
2 2

2
( ) 4 ( ) ( ) 4 ( ) ( ( )) .Q x R x P x R x D y f Q x∝− + = +  

 

Performing the square and doing some rearranging to 

find an expression for P(x) we get the first differentiability 

condition on coefficient functions of FRDE: 

 

2 2 2

2

1 ( )
( ) ( ) 2 ( ) ( )

( ) ( ) 2

f f x
Q x R x D R x P x

f x R x

∝  
− −  

  
  (10) 

 

In this case the FRDE (1) has the form: 

 

2

2
2

( )
1 ( )

( ) ( )
( ) 22 ( ) ( )

( )

R x D
f x

D y P x y R x yf
f x R x P x

R x

α

∝  
  

= + − +   −   
   

  (11) 

 

Therefore the following theorem can be obtained: 

Theorem 4.2. 

If the coefficient functions of the FRDE (1) are 

chosen such that equation (10) is satisfied, then the 

general solution of the FRDE (11) is given by: 
 

( )
( ) ( ){ }

2

1

exp ( ( ) ( ) ( )
( )

2 ( )exp ( ( ) ( ) ( )

X

P

X

P

t Q t R t y t dt
f x

y
R xC r x t Q t R t y t dt dx

∝−1

∝−1

+
= +

− +

∫

∫ ∫
 

 

Case 3: 

 
2 2 2

3
3

( ) 4 ( ) ( ) ( )
( ) ( ) .

4 ( ) 2 ( )

Q x R x f x Q X
P x D f x

R x R x

∝  − −
= + ± 

 
 

Assume that the arbitrary function f3(x) and the 

coefficient functions satisfy the condition: 
 

3

( )
( )

2 ( )
P

Q X
y f x

R x

−
= ±   (12) 

 

where, f3(x)∈C∞ (I) and I is an interval of real numbers. 
By equating the particular solution (5) of Equation (1) to 

the assumed form in Equation (12): 
 

( )

2

3

3

( ) 4 ( ) ( )

( ) ( )
4 ( ) ( )

2 ( ) ( )
( ).

2 2 ( )

Q x R x P x

Q x Q X
R x D f x

R x Q X
f x

R x R x

∝

−

−  −
+ ± 

−  = ±

∓

 

 

By some calculations it can be reduced to: 
 

2 2 2

3 3

( )
4 ( ) ( ) ( ) 4 ( ) ( ) 4 ( ) ( ) .

2 ( )

Q X
R x f x Q x R x P x R x D f x

R x

∝  −
= − + ± 

 
 

 

By some calculations, we can find a differentiability 

condition on the coefficient functions of FRDE given as 

the following third condition: 
 

( )
2 2 2

3
3

( ) 4 ( ) ( ) ( )
( ) .

4 ( ) 2 ( )

Q x R x f x Q X
P x D f x

R x R x

∝  − −
= + ± 

 
  (13) 

 
In this case the FRDE (1) has the form: 

 
2 2 2

3

2

3

( ) 4 ( ) ( )

4 ( )

( )
( ) ( ) ( ) .

2 ( )

Q x R x f x
D y

R x

Q x
D f x Q x y R x y

R x

α

∝

−
=

 −
+ ± + + 

 

  (14) 

 
Therefore the following theorem can be obtained. 

Theorem 4.3. 

If the coefficient functions of the FRDE (1) are 

chosen such that Equation (13) is satisfied, then the 

general solution of the FRDE (14) is given by: 
 

( )
( ){ }1

3

exp ( ( ) ( ) ( )

( ) exp ( ( ) ( ) ( )

( )
( ).

2 ( )

X

P

X

P

t Q t R t y t dt
y

C r x t Q t R t y t dt dx

Q x
f x

R x

∝−1

∝−1

+
=

− +

− +

∫

∫ ∫  

 

Conclusion 

In the present paper we found exact solutions for the 

fractional Riccati differential equation using the 

conformable fractional derivative, by extending the work 

of (Harko et al., 2013) to fractional case. 
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