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Abstract: The Labouchère gambling system is hypothesized to increase 
the probability of winning a predetermined arbitrary profit in a gambling 
system such as a coin flip or a roulette game in which both payouts and 
odds are 1:1. However, use of the system increases the downside monetary 
risk in the event of a streak of multiple losses. To begin, a player creates an 
arbitrary series of consecutive integers with a sum equal to the desired 
profit from multiple rounds of betting. Using the system, a player will 
either win an amount equal to the sum of the elements of the initial series 
or lose all of their available capital. This sequence was simulated multiple 
times to determine the statistical characteristics of both the return and of 
the loss in an average round of betting. By running the simulations of 
millions of rounds of Labouchere, it was possible to discern the probable 
outcomes of running the system using the Labouche gambling sequence 
and plotting the results on a graph to map the average return on the initial 
capital investment. The Labouchère system is very psychologically 
appealing to players because when applied over time it provides very 
consistent linear returns. However, there is eventually a critical moment at 
which the available capital for betting is exceeded and a player loses all of 
their available capital. It was found that as the number of bets increased, 
the outcome of applying the sequence approached zero. 
 
Keywords: Applied Statistics, Gambling Systems 

 

Introduction 

The Labouchère system is designed for zero sum 

betting systems in which the chance of winning is 50%. 

This can be thought of as two players betting equal 

amounts of money on the outcome of a coin flip. The 

winner of the bet receives the money he or she put down 

as well as the money the other player put down. It is 

known, empirically, that the probability a fair coin toss 

will return an approximately equal amount of heads and 

tails as a coin toss approaches infinity, (Downton and 

Hill, 1982). The Labouchère betting sequence strategy 

attempts to increase the chances of a positive return over 

multiple rounds of betting. This is then applied to a 

wagering system, such as coin flip, sports outcome, or 

online casino. Using this strategy, the player decides the 

desired return ahead of time by writing a sequence of 

consecutive integers where the sum is the desired return 

from multiple rounds of betting. Once this initial 

sequence is selected, the player begins betting. The 

system can be implemented as a recursive algorithm. 

Recursion terminates in either the event that the 

sequence is empty or the event that the player runs out of 

available capital. On each recursion, a bet is made of 

value equal to the sum of the first and last numbers of 

the sequence. If the length of the sequence is one, then 

the bet is equal to the sole member of the sequence. If 

the bet is won, then the first and last members are spliced 

from the sequence and the next round begins. However, 

if the bet results in a loss, then an integer equal the size 

of the lost bet is appended to the sequence and the next 

round begins. As determined by the parameters for 

termination of recursion, the only cases in which the 

algorithm will terminate are those in which the player 

has either won an amount equal to the summation of the 

original sequence or has lost all of their available capital. 
The Labouchere system is thought to return a profit 

in cases such that a player wins more bets than they lose. 
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(Downton, 1980). This logic is flawed as it perpetuates 
The Gambling Fallacy (Gray et al., 2012). It is not 
possible to improve betting outcomes through the use 
of a betting strategy. It is possible to profit from the use 
of this betting system. The system works by increasing 
bet size when farther from the desired return. As a 
result, the risk of a loss increases with the number of 
bets performed (Savaş and Patterson, 2007). The 
gambling strategy increases the stakes with every loss 
that is experienced (Schmidt and Winterhof, 2014). 
This results in a greater chance that the size of a bet 
will exceed a player’s available capital as time passes. 
In other words, the probability of losing increases as 
more rounds are played. As the number of rounds 
played approaches infinity, the probability of a loss 
approaches one. Players implementing this strategy will 
continue until they have insufficient funds and 
therefore cannot play the game. Players experience 
gambler's fallacy hen implementing this strategy 
because this sequence strategy results in relatively 
few losses relative to the number of wins. However, 
this strategy amplifies the magnitude of the loss 
experienced which outweighs the moderate, although 
relatively consistent, wins  that  are  experienced 
(Gray et al., 2012). This is indicative of the negative 
progressive system of the Labouchere sequence which 
facilitates losses and perpetuates the gambler's fallacy 
(Makri and Psillakis, 2016). 

The algorithm continues until one of the following 

criteria for termination are met: The player can no 

longer bet due to insufficient funds or the sequence is 

empty. At the point of algorithmic termination, one of 

two outcomes has occurred. Either the player has lost 

all available capital or the player has profited by an 

amount equal to the summation of the original starting 

sequence. This bet must be reached unless the 

probability of a loss exceeds 2/3 or where ρ = 0.66 

(Downton and Hill, 1982). The fatal flaw of this betting 

system is that the loss will eventually exceed the 

gambler’s available capital and thus will result in a 

complete loss. The purpose of this investigation was to 

determine the probabilistic outcome by testing 

empirical results via simulation of prolonged use of the 

Labouchère betting system. 

Materials and Methods 

Implementation of Rand om Coin Flips in Python 

For the purpose of simulating rand om events in 
Python, getrand bits() function the rand om module 
was used. According to python documentation, the 
underlying entropy is extracted from the Mersenne 
Twister algorithm written in C, (Python Stand ard 
Library). It is worth noting that the rand om events 
used for simulation of millions of bets were acquired 

from a pseudo-rand om number generator. This 
implementation balanced computational efficiency, 
speed and practicality. 
 
import rand om 
# Return a rand om boolean in order to simulate a coin 

flip. 

# This is approximately 50% odds. 

# The odds are not 50% on online betting sites. They 

typically take a "house advantage," so 

the odds are actually 

# similar to 49.95%. 

def flip_coin(): 
 return bool(rand om. getrand bits(1)) 
 

Recursive Implementation of the Labouchere 

betting system in Python 
 

# Runs a simulation of the Labouchere betting system 

with a given starting sequence and  

balance. 

# Returns the ending balance after running the system to 

completion and the number of bets it 

took 

# This is a recursive function. Each function call is one 

"round" of betting. 

# 

# See: 

https://en.wikipedia.org/wiki/Labouch%C3%A8re_syste

m 

def gamble(sequence, balance): 
 # If the sequence is empty, the labouchere system 

says that the round is over. 

 # End the recursion. This is essentially a win. 

 if len (sequence) < 1 : 
 # Return 0 and the initial balance because no bet 

was made 

 return 0, balance 
 # If the sequence is of length 1, the bet is the number 

in the sequence. Otherwise, it is the first number 

 # added to the last number. 

 if len (sequence) is 1: 
 bet = sequence[0] 
 else: 
 bet = sequence[ 0 ] + sequence[- 1 ] 

 # You can't bet more money than you have (this isn't 

Wall Street), so 

 # betting more than the initial balance ends 

recursion. This is essentially a loss. 

 if bet > balance: 

 # Return 0 and the initial balance because no bet 

was made 

 return 0, balance 

 # If a rand om boolean is true, we won. 

won = flip_coin() 
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 # Add or subtract from the balance based on the 

result of the bet and then play the next round. 

 # Labouchere states that the first and last numbers of 

the sequence are removed in the event of a win and the 

 # amount of the bet is added to the end of the 

sequence in the event of a loss. 

 if won: 
 bets, resulting_balance = gamble(sequence[1: -1], 
balance + bet) 
 # Increment the number of bets because we made 

a one and return the resulting balance 

 return bets+ 1, resulting_balance 
 else: 
bets, resulting_balance = gamble(sequence+[bet], 
balance-bet) 
# Increment the number of bets because we made a one 

and return the resulting balance 

return bets+ 1, resulting_balance 
  

The following are examples of the round sequences 
that were simulated 10,000 and 10,000,000 times: 
 

Example Round 1: Best Possible Case 
Initial Round: {$1, $2, $3} 

Bet 1: $1 + $3 = $4 
Assume Bet 1 is won. 

Total Profit: $4 
 

Sequence after Bet 1: {$2} 
Bet 2: $2 

Assume Bet 2 is won. 

Total Profit: $6 
 

Sequence after Bet 2: ∅ 
Algorithm completes in 2 bets. 

 
Example Round 2: Worst Possible Case 

Initial Round: {$1, $2, $3} 
Bet 1: $1 + $3 = $4 
Assume Bet 1 is lost. 

Total Loss: $4 
 

Sequence after Bet 1: {$1, $2, $3, $4} 
Bet 2: $1 + $4 = $5 
Assume Bet 2 is lost. 

Total Loss: $9 
 

Sequence after Bet 2: {$1, $2, $3, $4, $5} 
Bet 3: $1 + $5 = $6 
Assume Bet 3 is lost. 

Total Loss: $15 
 

Sequence after Bet 3: {$1, $2, $3, $4, $5, $6} 
Bet 4: $1 + $6 = $7 
Assume Bet 4 is lost. 

Total Loss: $22 

… 
Sequence after Bet ∞: {$1, $2, $3, $4, $5, $6 

… $∞} 
Bet ∞: $∞ 

Total Loss: $∞ 
Algorithm does not complete if no bets are won. 

 
The algorithm will always end return a profit of $6 if 

there is no limit to the size of the bet. The algorithm 
never completes until the profit is made. The profit is 
always equal to the sum of the original sequence: 
 

$1 $2 $3 $6+ + =  

 
In a practical setting, the algorithm will often halt 

because it exceeds the available funds of the player 
and is unable to make a bet. As a result, wealthier 
players are more likely to make a $6 profit when 
running the algorithm. However, players risk losing 
the complete contents of their bank account since that 
is the only other case in white the algorithm will 
complete.  

Implementation of the Bankroll Strategy in Python 

The bankroll strategy, also known as the 
Zimmerman Strategy, takes the aggregate of multiple 
rounds of Labouchere betting. Supposedly by making 
bets much smaller than one's bankroll, one can 
maximize the probability of winning because it is very 
unlikely that Labouchere will result in the loss of the 
entire bankroll all at once. 
 
from labouchere import gamble 
# After a round of Labouchere, if a balance is above a 

certain threshold, all money above that 

threshold is removed 

# from the bankroll as profit and it is never used for 

gambling again. 

# 

# sequence The initial sequence to use in every round of 

Labouchere 

# rounds The number of rounds of Labouchere to run 

# max_balance The threshold above which profits are 

extracted from the bankroll (balance) 

# initial_balance The initial size of bankroll (balance) to 

use 

def run_bankroll_strategy(sequence = [1, 2, 3], rounds = 

5, max_balance = 6000, 

initial_balance = 4000): 

 # Calculate the initial bet that Labouchere will make 

 initial_bet = sequence [0] 
 if len (sequence) > 1: 
 initial_bet + = sequence[-1] 
 # Store the current balance in a variable 

 balance = initial_balance 
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 # Store the "extracted profit" or "money scraped off 

the top" 

 extracted_profit = 0 
 # Run the number of rounds stored in the variable 

rounds 

 for i in range (1, rounds): 
 # Stop playing if you're out of money. 

 if balance<initial_bet: 
 # print "You're broke." 

 break 
 # Run one full round of Labouchere 
 bets, resulting_balance = gamble(sequence, 
balance) 
 # Store the new balance from Labouchere 

 balance = resulting_balance 
 # Scrape off the top in accordance with the 

bankroll strategy 

 unwanted_money = balance-max_balance 
 if unwanted_money > 0: 
 balance -= unwanted_money 
 extracted_profit += unwanted_money 
 return (balance + extracted_profit)-initial_balance 
 

Down Sampling of Logarithmic Data 

This listing is included to exemplify retrieval of 
experimental values for research. 
wins_to_bankroll_downsampled() monitors the time it 
takes for the algorithm complete as compared to the 
maximum time it could take complete. Additionally, it 
down samples data proportionally to the order of 
magnitude of the bankroll. This makes processing 
simulations with many large bankrolls far more efficient 
and far more manageable in Excel. 
 
# Analyzes the number of bets won 

# returns a histogram where the number of rounds 

resulting in each number of bets is counted 

# Down samples proportionally the order of magnitude 

of the bankroll 

def wins_to_bankroll_downsampled( 
 sequence = [1, 2, 3], 
 min_bankroll = 0, 
 max_bankroll = 400000, 
 rounds_per_bankroll = 10000, 
 update_frequency = 2, 
 downsample_constant = 10): 
 # Store results in a dict 

 results = [['balance', 'wins' , 'losses' , 'draws ' ]] 
 # Initialize variables for performance benchmarking 

 start = time() 
 last_update = 0 
 total_rounds = (max_bankroll - min_bankroll) * 

rounds_per_bankroll 
 step = 1 
 balance = min_bankroll 

 while balance < max_bankroll: 

 wins = 0 

 losses = 0 

 draws = 0 

 for i in range (0, rounds_per_bankroll): 

 bets, resulting_balance = gamble(sequence, 

balance) 

 if resulting_balance > balance: 

 wins += 1 

 elif balance > resulting_balance: 

 losses += 1 

 else: 

 draws += 1 

 # Update a user on the progress of the 

simulation 

 t = time() 

 if t - last_update > update_frequency: 

 print completed %s/<s rounds in %s seconds. 

Step size: %s" %( 

 balance/step * rounds_per_bankroll, 

total_rounds, floor(t - start), step) 

 last_update = t 

 results.append([balance, wins, losses, draws]) 
 balance += step 
 step = floor(balance / downsample_constant) 
 if step < 1: 
 step = 1 
 # Print a benchmark for how long the simulation took 

 end = time() 
 print "Done in %s seconds; Avg. %s seconds/round" 

% ((end - start), (end - start)/total_rounds) 
 return results 
 

Data Export and Analysis 

Relevant data from simulations written as variants of 
the above gamble() and run_bankroll_strategy() 
functions was exported to .csv files for analysis in 
Microsoft Excel. 
 
# Exports each key value pair as a row in a csv file 

 def export_dict_as_csv(d, name= 'export.csv'): 
 withopen (name, 'w ' ) as wfile: 
 for key in d: 
 wfile.write( str (key)+  ','+ str (d[key])+  '\n  ' ) 
# Exports a 2D array as a csv file 

 def export_array_as_csv(d, name= 'export.csv')): 
 with open (name, 'w ' ) as w file: 
 for row in d: 
 for cell in row: 
 wfile.write(str(cell)+ ',') 
 wfile.write('\n') 
 

Data was exported in csv files formatted similarly to 
the following: 
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Balance, wins, losses, draws, 
0, 0, 0, 1000, 
1, 0, 0, 1000, 
2, 0, 0, 1000, 
3, 0, 0, 1000, 
4, 371, 629, 0, 
.... 
22, 739, 261, 0, 
23, 754, 246, 0, 
24, 760, 240, 0, 
25, 775, 225, 0, 
.... 
39996, 1000, 0, 0, 
39997, 1000, 0, 0, 
39998, 1000, 0, 0, 
39999, 1000, 0, 0, 

 
All data and code used in this research is available 

under the MIT license at https://github.com/jake-
billings/research-labouchere. 

To assess the variance between the R2 values in 
throughout the distribution of the length of sequences 
before the Labouchere sequence completes, it will be 
necessary to assess the homogeneity of a number of bets 
that were placed. To do this, it will be necessary to run a 
bivariate case of the Gaussian multivariate distribution to 
assess the correlated real value of the rand om variables. 
This case found the probability density which was used 
to apply a Wald Test for homogeneity of the distribution 
of the number of bets before the sequence was complete. 

The Bivariate case was run using the following 
equation: 
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This was found with the following assumptions: 
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where, Ρ = Correlation between X and Y. 

This determined the parameters of the correlation. 
After this was done it was possible to run the Wald test 

for homogeneity on the number of bets before the 
sequence was complete. 

To run a Wald test, it was necessary to find the 
maximum likelihood test statistic for the distribution of 
the number of bets before completion. This was found 
using the Poisson distribution: 
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The linearity of the logit as described by the 
logarithmic test statistics of the f distribution was found 
by using the following assumption test: 

 

( ) ( )( ) ( )ln ln ln !i if n x xλ λ= − + −∑ ∏  

 

This was supported by the assumption that the 
derivative with respect to the maximum likelihood 
statistical was zero: 
 

ln
0

ixd f
n

dλ λ
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Finally, the last statistic will hold true when the 

previous assumptions were found: 
 

i
x

n
λ =∑  

 
Once these assumptions were tested to find the 

maximum likelihood test statistic, it was possible to use 
the Wald test for homogeneity: 
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Where: 

n
V  = Covariance matrix estimator 

n
θ  = Sample Estimator of parameters 

 

Results 

Figure 1 depicts a number of bets that were placed 
before the Labouchere sequence was terminated for 
10,000 rounds. This was mapped with an exponential 
function y = 1026.3e-0.806x. This regression equation was 
found to account for 93.1% of the outcomes in this 
experiment which can be seen by the R-squared value of 
R2 = 0.93172. After a computer simulation completed in 
15.821 seconds; Avg. 1.582e-06 seconds/round with an 
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initial sequence of [$1, $2, $3] and an initial balance, or 
bank roll, of $4,000. Figure 2 below depicts the sample 
distribution with 10,000,000 rounds. The next figrue 
demonstrates the distribution of the bets placed before 
each round was completed. 

Figure 2 depicts a number of bets that were placed 

before the Labouchere sequence was terminated for 

100,000,000 rounds. This was mapped with an 

exponential function y = 106e-0.131x. This regression 

equation was found to account for 86.9% of the 

outcomes in this experiment which can be seen by the 

R-squared value of R2 = 0. After a computer 

simulation completed in 85.821 seconds; Avg. 8.582e-

06 seconds/round with an initial sequence of [$1, $2, 

$3] and an initial balance, or bank roll, of $4,000. The 

next figrue shows the games won relative to the size 

of the bankroll. 

Based on a simulation of 10,000,000 rounds 

Labouchere betting, the following exponential decay 

regression can be used to model the number of rounds 

out of 10,000,000 that completed in a given number of 

bets with an R2 value of 0.86884: 

 

( ) 6 0.13110 xf x e−= ⋅  

 

where, f(x) is the number of rounds in 10,000,000 that 

can be expected to complete in x number of bets. 

 

 

 
Fig. 1. Distribution of bets before completion for 10,000 rounds 

 

 
 

Fig. 2. Distribution of bets before completion for 10,000,000 rounds 
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To determine the probability that a single round will 
not complete within a given number of bets, divide the 
original function by 10,000,000. For instance, consider 
the datum at 2 bets. Approximately 2,500,000 rounds 
completed within approximately 2 bets: 
 

( ) 0.1310.1 xg x e−= ⋅  

 
where, g(x) is the probability that a single round will not 
complete within a given number of bets in x number of bets. 

This is consistent with the shortest/best-case 
completion of an initial sequence of [1, 2, 3] in which a 
bet of $4 and then a bet of $2 are both won considering 
theoretical probability and regressed predictions from 

experimental results. 2.5×106 out of 1.0×107 rounds, or 
25% of [1, 2, 3] rounds should complete within 2 bets. 

f(2) ≈ 2.5×106 (ρ = ±0.7). Including numerical regression 

inaccuracy, f(2) = 7.69×105. g(2) ≈ 0.25 (ρ = ±0.7). 
Including numerical regression inaccuracy, g(2) = 0.076. 

As a result, the function g(x) = 0.1×e-0.131x
 can be 

used to model the probability of the termination of the 
recursive Labouchere betting algorithm with a given 
number of bets. Furthermore, the probability, ρ, of that 
the algorithm has terminated after a given number of bets 
can be computed by integrating g: 
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It is expected that as the number of bets approaches 

infinity, the probability of algorithmic termination 
approaches 1: 

 

( )lim 1
x

xρ
→∞

=  

 
With numeric regression inaccuracy of ρ = ±0.7: 

 

( )lim 0.763
x

xρ
→∞

≈  

 

Figure 3 depicts the amount of games that were won 

vs. the amount of games that were lost relative to each 

other with respect to the size of the bank roll or the 

initial capital. This was done for multiple tests with 1000 

games or sequences run. This was done for a bankroll 

size that started with a bankroll of $5 to a bankroll of 

$500,000. The next figrue depicts the capital balance 

relative to the amount of bets taken. 
Based on analysis of the probability tree, it is clear 

that players with infinite available capital should always 

profit from the Labouchère betting system. All branches 
eventually lead to a profit of the sum of the initial 
sequence if the player never runs out of capital. Consider 
a function that models the probability of profiting from a 
round of Labouchère. The limit of ρ(x) as x approaches 
infinity should be 1: 
 

( )
$

lim 1
x

xρ
→ ∞

=  

 
Additionally, ρ(x) should be modeled by the 

experimental data collected in the simulation that 
includes 10,000 bets at each bankroll value between $0 

and $1.0×106. Consider f (x), which is the number of 
simulated rounds won out of 10,000 rounds with an 
initial sequence of [$1, $2, $3] and available capital x: 
 

( ) ( )10,000f x xρ≈ ⋅  

 
Ergo: 

 

( )
$

lim 10,000
x

f x
→ ∞

=  

 
As a result, regarding the probability of success in 

relation to available capital, the experimental results are 
consistent with theoretical predictions. Larger amounts 
of available capital increase the probability of a positive 
return using the system. 

Figure 4 depicts the amount of capital available to a 
player in simulated dollars vs. the number of bets that 
were placed for one simulation of repeated Labouchère. 
Every time a round terminated, another began with the 
new balance. This was shown for bets that were made 
with an initial capital of $4,000. It is apparent from the 
graph, that a player received almost linear increase in 
capital until almost 6,000 bets were placed. At this 
point, the player faced too many sequential losses. As a 
result, the bet size required to continue exceeded 
available capital and the player lost all available funds. 
This graph exemplifies the psychological temptation 
players may feel to continue playing given that their 
profit appears very consistent despite occasional dips. 
the next table demonstrates a linear profit that is 
generated from the bankroll strategy. 

Consider a function b(x) that describes the balance of 
a player’s bankroll after x bets for the above simulation. 
 

( )0 $4,000i

x

b b

∈

= =

ℤ

 

 
The value of b(x) at any x depends on the 

probabilistic behavior of the bets placed. However: 
 

( )
$

lim $0
x

b x
→

=  
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Fig. 3. Games won Vs. bank roll size 
 

 
 

Fig. 4. Capital balance Vs. number of bets placed 
 

 
 

Fig. 5. Profit extracted from bankroll strategy 
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Because eventually, a loss streak will result in a bet size 
that exceeds a player’s available capital. The bankroll 
strategy seeks to mitigate the risks of losing the entire 
bankroll by extracting profit once a player’s bankroll, or 
available capital reaches a certain predetermined level. 

Figure 5 demonstrates the potential profitability of 
the bankroll strategy under favorable conditions of 
repeated Labouchére with a starting balance of $4,000 
and a bankroll threshold of $6,000. Any profit the player 
made that brought the balance of the bankroll above 
$6,000 was extracted. These extracted funds grew 
steadily since they were no longer available for 
gambling. Profit for the bankroll strategy is calculated as 
the sum of the bankroll and the extracted profit. The next 
figure describes the results of continuing the bankroll 
strategy and the loss that is eventually experienced: 
 

( ) ( ) ( ) ( )0P x p x b x b= + −  

 
Where: 
p(x) = Extracted profit 
b(x) = Value of bankroll 
b(0) = The initial value of the bankroll 
P(x) = Net profit 
x = The number of bets performed 
 

In this use of the strategy, the player profited 
approximately $6,000 in the 7500 bets the simulation ran 

for. However, the bankroll strategy does not guarantee 
positive returns. Once the player’s extracted profit is 
greater than the initial value of the bankroll, the player 
has profited and will not experience a net loss compared 
to their initial bankroll from further playing: 
 

( ) ( )
( )

0 ,

0

When p x b

P x

>

>
 

 
Figure 6 exemplifies a complete loss within 1600 

bets despite perfect implementation of the bankroll 
strategy with a starting balance of $4,000 and a threshold 
of $6,000. The player experiences a losing streak near 
700 bets before even reaching the threshold to extract 
profit from the bankroll. The initial loss streak nearly 
exceeds the player’s bankroll. The player’s balance then 
climbs from $500 to nearly $1,200 before experiencing 
another loss streak that brings the player’s bankroll to 0. 
The next figure demonstrates the results gathered from 
the test of homogeneity. 

In other words, a player must double their money in 
order to guarantee a return from the bankroll strategy. 
However, if a player can double their money, their net 
profit is then guaranteed as the extracted profit is no 
longer used for gambling. However, it should be noted 
that players always risk the loss of their entire bankroll 
while gambling using the Labouchére system. 

 

 
 

Fig. 6. Loss experienced with bankroll strategy 
 

 
 

Fig. 7. Wald test for homogeneity 
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Figure 7 showcases the outcome of the test for 
homogeneity. This test was run to determine the 
difference and homogeneity of the first and second R-
Squared value. Based on this test, with a confidence of 
95% or at an alpha level of α = 0.05, it was found that 
there was a statistically significant difference between 
the R-Squared value of the 10,000 sample simulation 
and the 10,000,000 sample simulation. 

Discussion 

This study determined used a computational 
simulation to predict the results of applying a 
Labouchere Sequence on a betting system with a 
dichotomous outcome of a gain or a loss. The simulation 
was run using Python which may have introduced 
confounding variables. The results that were produced 
were empirical results that were calculated by a 
pseudorand om generator which produced the results 
displayed (Makri and Psillakis, 2016). This may generate 
an inaccuracy in the results as the sample size for a 
number of bets that were gathered increased. This may 
have been quantified because of the change in accuracy 
of the R2 value for the bankroll size of 10,000 bets to 
10,000,000 bets. This change in R2 resulted in a change 
in the accuracy of the measurement of about 6% which 
was directly affected by the increase in a number of 
rounds that were simulated. Overall, the inaccuracy of 
the computer simulation limits the application of results 
from this study because the inaccuracy is not quantified. 
Correspondingly, a future investigation would be 
required to specifically and accurately quantify the 
inaccuracy that is generated from the Labouchere 
sequence simulation that was created for this study. 

The ability to quantify and therefore assess the 
relationship between the distribution of bets before the 
completion of a sequence is limited based on the 
observed decrease in accuracy. There was a significant 
different between the accuracy of R2 value that was 
measured in both tests which were a different of 3 orders 
of magnitude. This was tested with the Wald test 
statistics for homogeneity which determined that the 
difference between the R-square value of the first and 
second distribution of bets. This confirmed the 
assumption that there the difference in accuracy changes 
with a significant change in sample size that was 
measured. Therefore, as the sample size increased the 
inaccuracy of the model decreased. Correspondingly, the 
variance explanation as found by the R2 value decreases 
as the sample size increases. 

Conclusion 

It was found that the algorithm for Labouchére 
completes nondeterministically. The probability of 
termination of a round can be modeled with the 

following exponential decay regression equation: f(x) = 
1026.3e-0.806x. However, it was found that the accuracy 
of this regression equation decreased by a statistically 
significant difference as tested by the homogeneity 
Wald Test when the sample size increased which limits 
its application. The probability that a Labouchere 
sequence will finish provided a number of bets was 
modeled again with a similar equation for the 
Labouchere sequence simulation for the test with 
10,000,000 samples. The equation that was found using 
this sample size was found with the exponential decay 
function f(x) = 106e-0.131x. Although there was a 
statistically significant difference between the R-
Squared value and therefore the accuracy, the 
conclusions drawn from the first test with 10,000 
samples is consistent with the conclusion that can be 
drawn from the 10,000,000 sample simulation. 

The Labouchere sequence strategy was simulated to 

determine whether or not a player will be able to generate 

a return on the gamble. It was found that only a player 

with an infinite amount of capital is capable of profiting 

from the Labouchere betting system. This was found 

because a player with an infinite amount of capital would 

be capable of surmounting the eventful loss pattern that 

was found by running the simulation. This loss pattern 

was averted in many cases where the sequence was 

terminated, however, it was determined a great enough 

loss pattern would result in the complete loss of the initial 

capital. A player with enough capital to surpass these loss 

patterns would then be capable of consistently generating 

a profit from the gamble. Therefore, this player would be 

capable of generating a profit equal to the sum of the 

initial sequence that is run. However, in a practical setting, a 

given player with some amount of capital would not be 

capable of generating a consistent profit equal to the sum of 

the first sequence in the long run because the player does 

not have enough capital. This was confirmed through the 

analysis of the bankroll size vs. a number of games that 

were won. It was shown that as the size of the bankroll 

increased, a number of games that were won 

correspondingly increased. This supported the practical 

conclusion drawn from this simulation that a player would 

not be able to circumvent the loss experienced from a game. 

The gambler's fallacy that is experienced by many 

players was examined through this simulation through 

the analysis of bankroll and a number of bets that were 

placed in a game. It is known that a player in a game 

with any probability of losing, will eventually experience 

a loss (Marmurek et al., 2015). The structure of a 

Labouchere sequence magnifies the loss that players may 

experience (Nuida et al., 2012). However, players 

experiencing gambler's fallacy may ignore this eventual 

reality which results in a loss of capital. This was 

investigated and confirmed to apply for the Labouchere 
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sequence strategy because as a player continued to place 

bets, the loss experienced continue to increase and 

eventually terminated the amount of capital a player had. 

This was found when the graph that charted the amount 

of capital a player had Vs. a number of bets that the 

player implemented confirmed the loss prediction. This 

was seen because the player was consistently making a 

profit in the sequence with observed losses, however, it 

was found that as the player continued this sequence, 

the player eventually faced a loss that resulted in a 

complete loss. Through the simulation, it was found 

that the Labouchere sequence strategy does not allow a 

player to avert a loss. 
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