

 © 2017 Jake Billings and Sebastian Del Barco. This open access article is distributed under a Creative Commons Attribution

(CC-BY) 3.0 license.

Journal of Mathematics and Statistics

Investigations

An Investigation into Labouchère’s Betting System to

Improve Odds of Favorable Outcomes to Generate a Positive

Externality Empirically

Jake Billings and Sebastian Del Barco

University of Colorado Denver, USA

Article history

Received: 02-07-2017
Revised: 24-07-2017
Accepted: 10-08-2017

Corresponding Author:
Sebastian Del Barco
University of Colorado Denver,
USA
Email: Sebastian.delbarco@ucdenver.e

Abstract: The Labouchère gambling system is hypothesized to increase
the probability of winning a predetermined arbitrary profit in a gambling
system such as a coin flip or a roulette game in which both payouts and
odds are 1:1. However, use of the system increases the downside monetary
risk in the event of a streak of multiple losses. To begin, a player creates an
arbitrary series of consecutive integers with a sum equal to the desired
profit from multiple rounds of betting. Using the system, a player will
either win an amount equal to the sum of the elements of the initial series
or lose all of their available capital. This sequence was simulated multiple
times to determine the statistical characteristics of both the return and of
the loss in an average round of betting. By running the simulations of
millions of rounds of Labouchere, it was possible to discern the probable
outcomes of running the system using the Labouche gambling sequence
and plotting the results on a graph to map the average return on the initial
capital investment. The Labouchère system is very psychologically
appealing to players because when applied over time it provides very
consistent linear returns. However, there is eventually a critical moment at
which the available capital for betting is exceeded and a player loses all of
their available capital. It was found that as the number of bets increased,
the outcome of applying the sequence approached zero.

Keywords: Applied Statistics, Gambling Systems

Introduction

The Labouchère system is designed for zero sum

betting systems in which the chance of winning is 50%.

This can be thought of as two players betting equal

amounts of money on the outcome of a coin flip. The

winner of the bet receives the money he or she put down

as well as the money the other player put down. It is

known, empirically, that the probability a fair coin toss

will return an approximately equal amount of heads and

tails as a coin toss approaches infinity, (Downton and

Hill, 1982). The Labouchère betting sequence strategy

attempts to increase the chances of a positive return over

multiple rounds of betting. This is then applied to a

wagering system, such as coin flip, sports outcome, or

online casino. Using this strategy, the player decides the

desired return ahead of time by writing a sequence of

consecutive integers where the sum is the desired return

from multiple rounds of betting. Once this initial

sequence is selected, the player begins betting. The

system can be implemented as a recursive algorithm.

Recursion terminates in either the event that the

sequence is empty or the event that the player runs out of

available capital. On each recursion, a bet is made of

value equal to the sum of the first and last numbers of

the sequence. If the length of the sequence is one, then

the bet is equal to the sole member of the sequence. If

the bet is won, then the first and last members are spliced

from the sequence and the next round begins. However,

if the bet results in a loss, then an integer equal the size

of the lost bet is appended to the sequence and the next

round begins. As determined by the parameters for

termination of recursion, the only cases in which the

algorithm will terminate are those in which the player

has either won an amount equal to the summation of the

original sequence or has lost all of their available capital.
The Labouchere system is thought to return a profit

in cases such that a player wins more bets than they lose.

Jake Billings and Sebastian Del Barco / Journal of Mathematics and Statistics 2017, 13 (3): 186.196

DOI: 10.3844/jmssp.2017.186.196

187

(Downton, 1980). This logic is flawed as it perpetuates
The Gambling Fallacy (Gray et al., 2012). It is not
possible to improve betting outcomes through the use
of a betting strategy. It is possible to profit from the use
of this betting system. The system works by increasing
bet size when farther from the desired return. As a
result, the risk of a loss increases with the number of
bets performed (Savaş and Patterson, 2007). The
gambling strategy increases the stakes with every loss
that is experienced (Schmidt and Winterhof, 2014).
This results in a greater chance that the size of a bet
will exceed a player’s available capital as time passes.
In other words, the probability of losing increases as
more rounds are played. As the number of rounds
played approaches infinity, the probability of a loss
approaches one. Players implementing this strategy will
continue until they have insufficient funds and
therefore cannot play the game. Players experience
gambler's fallacy hen implementing this strategy
because this sequence strategy results in relatively
few losses relative to the number of wins. However,
this strategy amplifies the magnitude of the loss
experienced which outweighs the moderate, although
relatively consistent, wins that are experienced
(Gray et al., 2012). This is indicative of the negative
progressive system of the Labouchere sequence which
facilitates losses and perpetuates the gambler's fallacy
(Makri and Psillakis, 2016).

The algorithm continues until one of the following

criteria for termination are met: The player can no

longer bet due to insufficient funds or the sequence is

empty. At the point of algorithmic termination, one of

two outcomes has occurred. Either the player has lost

all available capital or the player has profited by an

amount equal to the summation of the original starting

sequence. This bet must be reached unless the

probability of a loss exceeds 2/3 or where ρ = 0.66

(Downton and Hill, 1982). The fatal flaw of this betting

system is that the loss will eventually exceed the

gambler’s available capital and thus will result in a

complete loss. The purpose of this investigation was to

determine the probabilistic outcome by testing

empirical results via simulation of prolonged use of the

Labouchère betting system.

Materials and Methods

Implementation of Rand om Coin Flips in Python

For the purpose of simulating rand om events in
Python, getrand bits() function the rand om module
was used. According to python documentation, the
underlying entropy is extracted from the Mersenne
Twister algorithm written in C, (Python Stand ard
Library). It is worth noting that the rand om events
used for simulation of millions of bets were acquired

from a pseudo-rand om number generator. This
implementation balanced computational efficiency,
speed and practicality.

import rand om
Return a rand om boolean in order to simulate a coin

flip.

This is approximately 50% odds.

The odds are not 50% on online betting sites. They

typically take a "house advantage," so

the odds are actually

similar to 49.95%.

def flip_coin():
 return bool(rand om. getrand bits(1))

Recursive Implementation of the Labouchere

betting system in Python

Runs a simulation of the Labouchere betting system

with a given starting sequence and

balance.

Returns the ending balance after running the system to

completion and the number of bets it

took

This is a recursive function. Each function call is one

"round" of betting.

See:

https://en.wikipedia.org/wiki/Labouch%C3%A8re_syste

m

def gamble(sequence, balance):
 # If the sequence is empty, the labouchere system

says that the round is over.

 # End the recursion. This is essentially a win.

 if len (sequence) < 1 :
 # Return 0 and the initial balance because no bet

was made

 return 0, balance
 # If the sequence is of length 1, the bet is the number

in the sequence. Otherwise, it is the first number

 # added to the last number.

 if len (sequence) is 1:
 bet = sequence[0]
 else:
 bet = sequence[0] + sequence[- 1]

 # You can't bet more money than you have (this isn't

Wall Street), so

 # betting more than the initial balance ends

recursion. This is essentially a loss.

 if bet > balance:

 # Return 0 and the initial balance because no bet

was made

 return 0, balance

 # If a rand om boolean is true, we won.

won = flip_coin()

Jake Billings and Sebastian Del Barco / Journal of Mathematics and Statistics 2017, 13 (3): 186.196

DOI: 10.3844/jmssp.2017.186.196

188

 # Add or subtract from the balance based on the

result of the bet and then play the next round.

 # Labouchere states that the first and last numbers of

the sequence are removed in the event of a win and the

 # amount of the bet is added to the end of the

sequence in the event of a loss.

 if won:
 bets, resulting_balance = gamble(sequence[1: -1],
balance + bet)
 # Increment the number of bets because we made

a one and return the resulting balance

 return bets+ 1, resulting_balance
 else:
bets, resulting_balance = gamble(sequence+[bet],
balance-bet)
Increment the number of bets because we made a one

and return the resulting balance

return bets+ 1, resulting_balance

The following are examples of the round sequences
that were simulated 10,000 and 10,000,000 times:

Example Round 1: Best Possible Case
Initial Round: {$1, $2, $3}

Bet 1: $1 + $3 = $4
Assume Bet 1 is won.

Total Profit: $4

Sequence after Bet 1: {$2}
Bet 2: $2

Assume Bet 2 is won.

Total Profit: $6

Sequence after Bet 2: ∅
Algorithm completes in 2 bets.

Example Round 2: Worst Possible Case

Initial Round: {$1, $2, $3}
Bet 1: $1 + $3 = $4
Assume Bet 1 is lost.

Total Loss: $4

Sequence after Bet 1: {$1, $2, $3, $4}
Bet 2: $1 + $4 = $5
Assume Bet 2 is lost.

Total Loss: $9

Sequence after Bet 2: {$1, $2, $3, $4, $5}
Bet 3: $1 + $5 = $6
Assume Bet 3 is lost.

Total Loss: $15

Sequence after Bet 3: {$1, $2, $3, $4, $5, $6}
Bet 4: $1 + $6 = $7
Assume Bet 4 is lost.

Total Loss: $22

…
Sequence after Bet ∞: {$1, $2, $3, $4, $5, $6

… $∞}
Bet ∞: $∞

Total Loss: $∞
Algorithm does not complete if no bets are won.

The algorithm will always end return a profit of $6 if

there is no limit to the size of the bet. The algorithm
never completes until the profit is made. The profit is
always equal to the sum of the original sequence:

$1 $2 $3 $6+ + =

In a practical setting, the algorithm will often halt

because it exceeds the available funds of the player
and is unable to make a bet. As a result, wealthier
players are more likely to make a $6 profit when
running the algorithm. However, players risk losing
the complete contents of their bank account since that
is the only other case in white the algorithm will
complete.

Implementation of the Bankroll Strategy in Python

The bankroll strategy, also known as the
Zimmerman Strategy, takes the aggregate of multiple
rounds of Labouchere betting. Supposedly by making
bets much smaller than one's bankroll, one can
maximize the probability of winning because it is very
unlikely that Labouchere will result in the loss of the
entire bankroll all at once.

from labouchere import gamble
After a round of Labouchere, if a balance is above a

certain threshold, all money above that

threshold is removed

from the bankroll as profit and it is never used for

gambling again.

sequence The initial sequence to use in every round of

Labouchere

rounds The number of rounds of Labouchere to run

max_balance The threshold above which profits are

extracted from the bankroll (balance)

initial_balance The initial size of bankroll (balance) to

use

def run_bankroll_strategy(sequence = [1, 2, 3], rounds =

5, max_balance = 6000,

initial_balance = 4000):

 # Calculate the initial bet that Labouchere will make

 initial_bet = sequence [0]
 if len (sequence) > 1:
 initial_bet + = sequence[-1]
 # Store the current balance in a variable

 balance = initial_balance

Jake Billings and Sebastian Del Barco / Journal of Mathematics and Statistics 2017, 13 (3): 186.196

DOI: 10.3844/jmssp.2017.186.196

189

 # Store the "extracted profit" or "money scraped off

the top"

 extracted_profit = 0
 # Run the number of rounds stored in the variable

rounds

 for i in range (1, rounds):
 # Stop playing if you're out of money.

 if balance<initial_bet:
 # print "You're broke."

 break
 # Run one full round of Labouchere
 bets, resulting_balance = gamble(sequence,
balance)
 # Store the new balance from Labouchere

 balance = resulting_balance
 # Scrape off the top in accordance with the

bankroll strategy

 unwanted_money = balance-max_balance
 if unwanted_money > 0:
 balance -= unwanted_money
 extracted_profit += unwanted_money
 return (balance + extracted_profit)-initial_balance

Down Sampling of Logarithmic Data

This listing is included to exemplify retrieval of
experimental values for research.
wins_to_bankroll_downsampled() monitors the time it
takes for the algorithm complete as compared to the
maximum time it could take complete. Additionally, it
down samples data proportionally to the order of
magnitude of the bankroll. This makes processing
simulations with many large bankrolls far more efficient
and far more manageable in Excel.

Analyzes the number of bets won

returns a histogram where the number of rounds

resulting in each number of bets is counted

Down samples proportionally the order of magnitude

of the bankroll

def wins_to_bankroll_downsampled(
 sequence = [1, 2, 3],
 min_bankroll = 0,
 max_bankroll = 400000,
 rounds_per_bankroll = 10000,
 update_frequency = 2,
 downsample_constant = 10):
 # Store results in a dict

 results = [['balance', 'wins' , 'losses' , 'draws ']]
 # Initialize variables for performance benchmarking

 start = time()
 last_update = 0
 total_rounds = (max_bankroll - min_bankroll) *

rounds_per_bankroll
 step = 1
 balance = min_bankroll

 while balance < max_bankroll:

 wins = 0

 losses = 0

 draws = 0

 for i in range (0, rounds_per_bankroll):

 bets, resulting_balance = gamble(sequence,

balance)

 if resulting_balance > balance:

 wins += 1

 elif balance > resulting_balance:

 losses += 1

 else:

 draws += 1

 # Update a user on the progress of the

simulation

 t = time()

 if t - last_update > update_frequency:

 print completed %s/<s rounds in %s seconds.

Step size: %s" %(

 balance/step * rounds_per_bankroll,

total_rounds, floor(t - start), step)

 last_update = t

 results.append([balance, wins, losses, draws])
 balance += step
 step = floor(balance / downsample_constant)
 if step < 1:
 step = 1
 # Print a benchmark for how long the simulation took

 end = time()
 print "Done in %s seconds; Avg. %s seconds/round"

% ((end - start), (end - start)/total_rounds)
 return results

Data Export and Analysis

Relevant data from simulations written as variants of
the above gamble() and run_bankroll_strategy()
functions was exported to .csv files for analysis in
Microsoft Excel.

Exports each key value pair as a row in a csv file

 def export_dict_as_csv(d, name= 'export.csv'):
 withopen (name, 'w ') as wfile:
 for key in d:
 wfile.write(str (key)+ ','+ str (d[key])+ '\n ')
Exports a 2D array as a csv file

 def export_array_as_csv(d, name= 'export.csv')):
 with open (name, 'w ') as w file:
 for row in d:
 for cell in row:
 wfile.write(str(cell)+ ',')
 wfile.write('\n')

Data was exported in csv files formatted similarly to
the following:

Jake Billings and Sebastian Del Barco / Journal of Mathematics and Statistics 2017, 13 (3): 186.196

DOI: 10.3844/jmssp.2017.186.196

190

Balance, wins, losses, draws,
0, 0, 0, 1000,
1, 0, 0, 1000,
2, 0, 0, 1000,
3, 0, 0, 1000,
4, 371, 629, 0,
....
22, 739, 261, 0,
23, 754, 246, 0,
24, 760, 240, 0,
25, 775, 225, 0,
....
39996, 1000, 0, 0,
39997, 1000, 0, 0,
39998, 1000, 0, 0,
39999, 1000, 0, 0,

All data and code used in this research is available

under the MIT license at https://github.com/jake-
billings/research-labouchere.

To assess the variance between the R2 values in
throughout the distribution of the length of sequences
before the Labouchere sequence completes, it will be
necessary to assess the homogeneity of a number of bets
that were placed. To do this, it will be necessary to run a
bivariate case of the Gaussian multivariate distribution to
assess the correlated real value of the rand om variables.
This case found the probability density which was used
to apply a Wald Test for homogeneity of the distribution
of the number of bets before the sequence was complete.

The Bivariate case was run using the following
equation:

()

()
() () ()()

2

2 2

2 22

1
,

2 1

21

2 1

X Y

x y X Y

X X Y

f x y

x y x y

π σ σ ρ

µ µ ρ µ µ

σ σ σ σρ

=
⋅ ⋅ −

  − − − −  ⋅ − + −
  −   

This was found with the following assumptions:

()1 2

1 2

2

2

,

0

0

I

X

Y

X X Y

X Y Y

V
P x x

X

Y

σ σ

σ

σ

µ
µ

µ

σ ρσ σ
ρσ σ σ

= =

>

>

 
=  
 

 
Σ =  
 

where, Ρ = Correlation between X and Y.

This determined the parameters of the correlation.
After this was done it was possible to run the Wald test

for homogeneity on the number of bets before the
sequence was complete.

To run a Wald test, it was necessary to find the
maximum likelihood test statistic for the distribution of
the number of bets before completion. This was found
using the Poisson distribution:

()
31 2 1

1 2 3

1 2 3 1 1 2 3

, , ,..., |

...
! ! ! ! ! ! !... !

i

n

xxx x x n

n

f x x x x

e e e e e

x x x x x x x x

λ λ λ λ λ

λ

λ λ λ λ λ− − − − − ∑
= =

The linearity of the logit as described by the
logarithmic test statistics of the f distribution was found
by using the following assumption test:

() ()() ()ln ln ln !i if n x xλ λ= − + −∑ ∏

This was supported by the assumption that the
derivative with respect to the maximum likelihood
statistical was zero:

ln
0

ixd f
n

dλ λ
= − =∑

Finally, the last statistic will hold true when the

previous assumptions were found:

i
x

n
λ =∑

Once these assumptions were tested to find the

maximum likelihood test statistic, it was possible to use
the Wald test for homogeneity:

() ()
1

2 ' 'n
n n

V
X R r R r R R

n
θ θ

−
 

= − −  
 

Where:

n
V = Covariance matrix estimator

n
θ = Sample Estimator of parameters

Results

Figure 1 depicts a number of bets that were placed
before the Labouchere sequence was terminated for
10,000 rounds. This was mapped with an exponential
function y = 1026.3e-0.806x. This regression equation was
found to account for 93.1% of the outcomes in this
experiment which can be seen by the R-squared value of
R2 = 0.93172. After a computer simulation completed in
15.821 seconds; Avg. 1.582e-06 seconds/round with an

Jake Billings and Sebastian Del Barco / Journal of Mathematics and Statistics 2017, 13 (3): 186.196

DOI: 10.3844/jmssp.2017.186.196

191

initial sequence of [$1, $2, $3] and an initial balance, or
bank roll, of $4,000. Figure 2 below depicts the sample
distribution with 10,000,000 rounds. The next figrue
demonstrates the distribution of the bets placed before
each round was completed.

Figure 2 depicts a number of bets that were placed

before the Labouchere sequence was terminated for

100,000,000 rounds. This was mapped with an

exponential function y = 106e-0.131x. This regression

equation was found to account for 86.9% of the

outcomes in this experiment which can be seen by the

R-squared value of R2 = 0. After a computer

simulation completed in 85.821 seconds; Avg. 8.582e-

06 seconds/round with an initial sequence of [$1, $2,

$3] and an initial balance, or bank roll, of $4,000. The

next figrue shows the games won relative to the size

of the bankroll.

Based on a simulation of 10,000,000 rounds

Labouchere betting, the following exponential decay

regression can be used to model the number of rounds

out of 10,000,000 that completed in a given number of

bets with an R2 value of 0.86884:

() 6 0.13110 xf x e−= ⋅

where, f(x) is the number of rounds in 10,000,000 that

can be expected to complete in x number of bets.

Fig. 1. Distribution of bets before completion for 10,000 rounds

Fig. 2. Distribution of bets before completion for 10,000,000 rounds

Jake Billings and Sebastian Del Barco / Journal of Mathematics and Statistics 2017, 13 (3): 186.196

DOI: 10.3844/jmssp.2017.186.196

192

To determine the probability that a single round will
not complete within a given number of bets, divide the
original function by 10,000,000. For instance, consider
the datum at 2 bets. Approximately 2,500,000 rounds
completed within approximately 2 bets:

() 0.1310.1 xg x e−= ⋅

where, g(x) is the probability that a single round will not
complete within a given number of bets in x number of bets.

This is consistent with the shortest/best-case
completion of an initial sequence of [1, 2, 3] in which a
bet of $4 and then a bet of $2 are both won considering
theoretical probability and regressed predictions from

experimental results. 2.5×106 out of 1.0×107 rounds, or
25% of [1, 2, 3] rounds should complete within 2 bets.

f(2) ≈ 2.5×106 (ρ = ±0.7). Including numerical regression

inaccuracy, f(2) = 7.69×105. g(2) ≈ 0.25 (ρ = ±0.7).
Including numerical regression inaccuracy, g(2) = 0.076.

As a result, the function g(x) = 0.1×e-0.131x
 can be

used to model the probability of the termination of the
recursive Labouchere betting algorithm with a given
number of bets. Furthermore, the probability, ρ, of that
the algorithm has terminated after a given number of bets
can be computed by integrating g:

() ()

()

()

0

0.131

0

0.131

1

0.1 1

0.131 1

x

x

x

x

x g x

x e

x e

ρ

ρ

ρ

−

−

= +

= ⋅ +

= − ⋅ +

∫

∫

It is expected that as the number of bets approaches

infinity, the probability of algorithmic termination
approaches 1:

()lim 1
x

xρ
→∞

=

With numeric regression inaccuracy of ρ = ±0.7:

()lim 0.763
x

xρ
→∞

≈

Figure 3 depicts the amount of games that were won

vs. the amount of games that were lost relative to each

other with respect to the size of the bank roll or the

initial capital. This was done for multiple tests with 1000

games or sequences run. This was done for a bankroll

size that started with a bankroll of $5 to a bankroll of

$500,000. The next figrue depicts the capital balance

relative to the amount of bets taken.
Based on analysis of the probability tree, it is clear

that players with infinite available capital should always

profit from the Labouchère betting system. All branches
eventually lead to a profit of the sum of the initial
sequence if the player never runs out of capital. Consider
a function that models the probability of profiting from a
round of Labouchère. The limit of ρ(x) as x approaches
infinity should be 1:

()
$

lim 1
x

xρ
→ ∞

=

Additionally, ρ(x) should be modeled by the

experimental data collected in the simulation that
includes 10,000 bets at each bankroll value between $0

and $1.0×106. Consider f (x), which is the number of
simulated rounds won out of 10,000 rounds with an
initial sequence of [$1, $2, $3] and available capital x:

() ()10,000f x xρ≈ ⋅

Ergo:

()
$

lim 10,000
x

f x
→ ∞

=

As a result, regarding the probability of success in

relation to available capital, the experimental results are
consistent with theoretical predictions. Larger amounts
of available capital increase the probability of a positive
return using the system.

Figure 4 depicts the amount of capital available to a
player in simulated dollars vs. the number of bets that
were placed for one simulation of repeated Labouchère.
Every time a round terminated, another began with the
new balance. This was shown for bets that were made
with an initial capital of $4,000. It is apparent from the
graph, that a player received almost linear increase in
capital until almost 6,000 bets were placed. At this
point, the player faced too many sequential losses. As a
result, the bet size required to continue exceeded
available capital and the player lost all available funds.
This graph exemplifies the psychological temptation
players may feel to continue playing given that their
profit appears very consistent despite occasional dips.
the next table demonstrates a linear profit that is
generated from the bankroll strategy.

Consider a function b(x) that describes the balance of
a player’s bankroll after x bets for the above simulation.

()0 $4,000i

x

b b

∈

= =

ℤ

The value of b(x) at any x depends on the

probabilistic behavior of the bets placed. However:

()
$

lim $0
x

b x
→

=

Jake Billings and Sebastian Del Barco / Journal of Mathematics and Statistics 2017, 13 (3): 186.196

DOI: 10.3844/jmssp.2017.186.196

193

Fig. 3. Games won Vs. bank roll size

Fig. 4. Capital balance Vs. number of bets placed

Fig. 5. Profit extracted from bankroll strategy

Jake Billings and Sebastian Del Barco / Journal of Mathematics and Statistics 2017, 13 (3): 186.196

DOI: 10.3844/jmssp.2017.186.196

194

Because eventually, a loss streak will result in a bet size
that exceeds a player’s available capital. The bankroll
strategy seeks to mitigate the risks of losing the entire
bankroll by extracting profit once a player’s bankroll, or
available capital reaches a certain predetermined level.

Figure 5 demonstrates the potential profitability of
the bankroll strategy under favorable conditions of
repeated Labouchére with a starting balance of $4,000
and a bankroll threshold of $6,000. Any profit the player
made that brought the balance of the bankroll above
$6,000 was extracted. These extracted funds grew
steadily since they were no longer available for
gambling. Profit for the bankroll strategy is calculated as
the sum of the bankroll and the extracted profit. The next
figure describes the results of continuing the bankroll
strategy and the loss that is eventually experienced:

() () () ()0P x p x b x b= + −

Where:
p(x) = Extracted profit
b(x) = Value of bankroll
b(0) = The initial value of the bankroll
P(x) = Net profit
x = The number of bets performed

In this use of the strategy, the player profited
approximately $6,000 in the 7500 bets the simulation ran

for. However, the bankroll strategy does not guarantee
positive returns. Once the player’s extracted profit is
greater than the initial value of the bankroll, the player
has profited and will not experience a net loss compared
to their initial bankroll from further playing:

() ()
()

0 ,

0

When p x b

P x

>

>

Figure 6 exemplifies a complete loss within 1600

bets despite perfect implementation of the bankroll
strategy with a starting balance of $4,000 and a threshold
of $6,000. The player experiences a losing streak near
700 bets before even reaching the threshold to extract
profit from the bankroll. The initial loss streak nearly
exceeds the player’s bankroll. The player’s balance then
climbs from $500 to nearly $1,200 before experiencing
another loss streak that brings the player’s bankroll to 0.
The next figure demonstrates the results gathered from
the test of homogeneity.

In other words, a player must double their money in
order to guarantee a return from the bankroll strategy.
However, if a player can double their money, their net
profit is then guaranteed as the extracted profit is no
longer used for gambling. However, it should be noted
that players always risk the loss of their entire bankroll
while gambling using the Labouchére system.

Fig. 6. Loss experienced with bankroll strategy

Fig. 7. Wald test for homogeneity

Jake Billings and Sebastian Del Barco / Journal of Mathematics and Statistics 2017, 13 (3): 186.196

DOI: 10.3844/jmssp.2017.186.196

195

Figure 7 showcases the outcome of the test for
homogeneity. This test was run to determine the
difference and homogeneity of the first and second R-
Squared value. Based on this test, with a confidence of
95% or at an alpha level of α = 0.05, it was found that
there was a statistically significant difference between
the R-Squared value of the 10,000 sample simulation
and the 10,000,000 sample simulation.

Discussion

This study determined used a computational
simulation to predict the results of applying a
Labouchere Sequence on a betting system with a
dichotomous outcome of a gain or a loss. The simulation
was run using Python which may have introduced
confounding variables. The results that were produced
were empirical results that were calculated by a
pseudorand om generator which produced the results
displayed (Makri and Psillakis, 2016). This may generate
an inaccuracy in the results as the sample size for a
number of bets that were gathered increased. This may
have been quantified because of the change in accuracy
of the R2 value for the bankroll size of 10,000 bets to
10,000,000 bets. This change in R2 resulted in a change
in the accuracy of the measurement of about 6% which
was directly affected by the increase in a number of
rounds that were simulated. Overall, the inaccuracy of
the computer simulation limits the application of results
from this study because the inaccuracy is not quantified.
Correspondingly, a future investigation would be
required to specifically and accurately quantify the
inaccuracy that is generated from the Labouchere
sequence simulation that was created for this study.

The ability to quantify and therefore assess the
relationship between the distribution of bets before the
completion of a sequence is limited based on the
observed decrease in accuracy. There was a significant
different between the accuracy of R2 value that was
measured in both tests which were a different of 3 orders
of magnitude. This was tested with the Wald test
statistics for homogeneity which determined that the
difference between the R-square value of the first and
second distribution of bets. This confirmed the
assumption that there the difference in accuracy changes
with a significant change in sample size that was
measured. Therefore, as the sample size increased the
inaccuracy of the model decreased. Correspondingly, the
variance explanation as found by the R2 value decreases
as the sample size increases.

Conclusion

It was found that the algorithm for Labouchére
completes nondeterministically. The probability of
termination of a round can be modeled with the

following exponential decay regression equation: f(x) =
1026.3e-0.806x. However, it was found that the accuracy
of this regression equation decreased by a statistically
significant difference as tested by the homogeneity
Wald Test when the sample size increased which limits
its application. The probability that a Labouchere
sequence will finish provided a number of bets was
modeled again with a similar equation for the
Labouchere sequence simulation for the test with
10,000,000 samples. The equation that was found using
this sample size was found with the exponential decay
function f(x) = 106e-0.131x. Although there was a
statistically significant difference between the R-
Squared value and therefore the accuracy, the
conclusions drawn from the first test with 10,000
samples is consistent with the conclusion that can be
drawn from the 10,000,000 sample simulation.

The Labouchere sequence strategy was simulated to

determine whether or not a player will be able to generate

a return on the gamble. It was found that only a player

with an infinite amount of capital is capable of profiting

from the Labouchere betting system. This was found

because a player with an infinite amount of capital would

be capable of surmounting the eventful loss pattern that

was found by running the simulation. This loss pattern

was averted in many cases where the sequence was

terminated, however, it was determined a great enough

loss pattern would result in the complete loss of the initial

capital. A player with enough capital to surpass these loss

patterns would then be capable of consistently generating

a profit from the gamble. Therefore, this player would be

capable of generating a profit equal to the sum of the

initial sequence that is run. However, in a practical setting, a

given player with some amount of capital would not be

capable of generating a consistent profit equal to the sum of

the first sequence in the long run because the player does

not have enough capital. This was confirmed through the

analysis of the bankroll size vs. a number of games that

were won. It was shown that as the size of the bankroll

increased, a number of games that were won

correspondingly increased. This supported the practical

conclusion drawn from this simulation that a player would

not be able to circumvent the loss experienced from a game.

The gambler's fallacy that is experienced by many

players was examined through this simulation through

the analysis of bankroll and a number of bets that were

placed in a game. It is known that a player in a game

with any probability of losing, will eventually experience

a loss (Marmurek et al., 2015). The structure of a

Labouchere sequence magnifies the loss that players may

experience (Nuida et al., 2012). However, players

experiencing gambler's fallacy may ignore this eventual

reality which results in a loss of capital. This was

investigated and confirmed to apply for the Labouchere

Jake Billings and Sebastian Del Barco / Journal of Mathematics and Statistics 2017, 13 (3): 186.196

DOI: 10.3844/jmssp.2017.186.196

196

sequence strategy because as a player continued to place

bets, the loss experienced continue to increase and

eventually terminated the amount of capital a player had.

This was found when the graph that charted the amount

of capital a player had Vs. a number of bets that the

player implemented confirmed the loss prediction. This

was seen because the player was consistently making a

profit in the sequence with observed losses, however, it

was found that as the player continued this sequence,

the player eventually faced a loss that resulted in a

complete loss. Through the simulation, it was found

that the Labouchere sequence strategy does not allow a

player to avert a loss.

Acknowledgment

We would like to dedicate this section to The

University of Colorado Denver for providing the

resources needed to complete this project.

Author’s Contributions

Each author contributed an equal amount of work to this

manuscript as measured by an FG coefficient of work.

Ethics

Every author that contributed to the production of

this manuscript has held no conflicts of interest in the

production of this manuscript.

References

Downton, F., 1980. A note on labouchere sequences. J.
Royal Stat. Society, 143: 363-366.

 DOI: 10.2307/2982134
Downton, F. and J.M. Hill, 1982. Rational roulette. Bull.

Austral. Math. Society, 26: 399-420.
 DOI: 10.1017/S0004972700005876
Makri, F.S. and Z.M. Psillakis, 2016. Corrigendum to “On

success runs of a fixed length in bernoulli sequences:
Exact and asymptotic results” [comput. math. appl. 61
(2011) 761–772]. Comput. Math. Applic., 72: 806.
DOI: 10.1016/j.camwa.2016.06.006

Marmurek, H.H.C., J. Switzer and J. D'Alvise, 2015.
Impulsivity, gambling cognitions and the gambler's
fallacy in university students. J. Gambl. Stud., 31:
197-210. DOI: 10.1007/s10899-013-9421-6

Nuida, K., T. Abe, S. Kaji, T. Maeno and Y. Numata,
2012. A mathematical problem for security analysis
of hash functions and pseudorand om generators.
Int. J. Foundat. Comput. Sci., 26: 169-169.

 DOI: 10.1142/S0129054115500100
Savaş, E. and R.F. Patterson, 2007. Erratum to

“Lacunary statistical convergence of multiple
sequences” [appl. math. lett. 19 (2006) 527-534].
Applied Math. Lett., 20: 1174-1174.

 DOI: 10.1016/j.aml.2006.09.016
Schmidt, K. And A. Winterhof, 2014. Sequences and

their applications. Proceedings of the 8th
International Conference, Nov. 24-28, Springer
International Publishing, Melbourne, VIC, Australia,
DOI: 10.1007/978-3-319-12325-7

