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Abstract: In this study, sequences are used for direct computation of 

prime numbers. A single equation for generating all prime numbers with 

the exception of 2 and 3 and composite numbers that are not divisible by 2 

or 3 is presented. A periodicity to the indices of the composites generated 

by that equation is determined. An equation to determine the indices of the 

composite numbers is derived. The equation for determining the composite 

indices is then altered to avoid redundancy by observation of its diagonal, 

when its values are inserted into a matrix that has the indexes (j) for 

columns and (k) for rows. The two equations are presented in several 

different forms and are used in conjunction to render a technique for 

computing prime numbers indefinitely. The validity of the technique is 

proven up to one billion by computation and the prime number theorem. 
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Introduction 

A number of methods for determining prime 

numbers, such as the sieve of Eratosthenes and sieve of 

Atkins, have been discovered (Crandall and Pomerance, 

2006). The equations shown in this study render a 

mathematical technique for generating primes, which is 

very similar to the sieve of Eratosthenes. There are also 

ways to approximate the density of prime numbers 

between 1 up to some number, (x) (Goldstein, 1973). In 

300 B.C., Euclid proved the existence of an infinite 

number of primes through fundamental arithmetic 

theorems. In 1737, Euler further proved the existence of 

an infinite number of primes. Euler showed the sum of 

the reciprocals of prime numbers is a divergent sum; 

thus, it contains infinitely many terms (prime 

reciprocals). In 1791, Gauss discovered that the density 

of primes is asymptotic. This is known as the prime 

number theorem (Goldstein, 1973). Further works from 

Gauss’s assertion lead to the following: 
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With π(x) representing the density of primes, the above 

equation implies that the density of prime numbers 

decreases as (x) approaches infinity (Crandall and 

Pomerance, 2006). The density of primes between 1 and 

some number (x) can be approximated as follows: 
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The above equation provides a good method of 

approximating the density of primes for some value (x), 

but an effective mathematical method for generating all 

prime numbers efficiently and indefinitely seems to have 

eluded mathematicians for centuries. In fact, many 

mathematicians and members of the scientific 

community believe that prime numbers are random and 

no such formula for generating prime numbers in this 

way exists. It is difficult and perhaps impossible to 

disprove such a statement mathematically. However, 

what if there exists an equation that can indefinitely 

generate prime numbers as well as some composite 

numbers and what if there is a periodicity to the 

composite numbers? An equation could then be written 

to eliminate the composite numbers. Then, in essence, 

there would exist a mathematical method for generating 

primes indefinitely, which avoids the need for finding a 

sequential order to the prime numbers. The purpose of 

this work is to present such a method, which is in 

agreement with the prime number theorem and to prove 

the validity of that method by computation.  
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Materials and Methods  

The flowchart in Fig. 1 is a simplified version of the 

C++ computer algorithm which was used to compute all 

of the prime numbers between 1 and 1,000,000,000, 

using a set of sequences. A Dell laptop with an i7 

processor was used to run the algorithm. The algorithm 

used is represented mathematically as follows:  
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The derivation process for the above equations will 

be described in detail in the Discussion section. The first 

step in the development of the computer program 

entailed writing code that asked the user for a number 

(N), so that the program knew the range of prime 

numbers to generate. If the user were to input 100, the 

program would return every prime number between 1 

and 300 (3N). Once (N) was input, the program would 

calculate all of the values of the (a) function from a(1) to 

a(N) and store those values into a text file.  

The next step involved calculating the indices of the 

composites generated by the (a) function. Essentially, 

this was accomplished with a nested for loop    

(Gaddis and Krupnow, 2007). All of the composite 

indices were then sorted so they made sense to the rest 

of the program. The approach used for the logic 

shown in Fig. 1 involved generating all of the 

composite indices, sorting them into smaller 

segments, storing those smaller segments into another 

text file and breaking the large text file up into 

smaller text files accordingly. The numbers stored in 

the smaller text files were used to determine the 

indices of the composites generated by the (a) function. 

The final step was simply reading the results of the 

(a) function from the file in which they were stored. A 

counter was used to keep track of each integer as it was 

read from the file; if the counter equaled any of the 

composite indices, the corresponding (a) function’s 

result was not output to the prime number file    

(Gaddis and Krupnow, 2007). Otherwise, the value 

read from the file was a prime number and was written 

to the prime number file. The logic described was a 

very simple program to write and it proved that the 

described prime generator method could be used with 

very primitive programming languages to efficiently 

determine prime numbers.   

 

 
 

Fig. 1. The flow logic of the simple C++ program used to calculate every prime number between 1 and a billion 
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Results 

Observe Table 1. All of the primes generated by 
the described algorithm are not shown in Table 1, as 
there are over 50 million of them between 1 and a 
billion. Table 1 shows the last 50 prime numbers 
generated by the described algorithm as well as the 
count value associated with that prime number. Recall 
that an approximation of the density of prime numbers 
between 1 and a billion can be obtained as follows: 
 

( )
1,000,000,000 48,254,942.43

ln 1,000,000,000

 
≈ 

 
 

 
In the described experiment, 50,847,534 prime 

numbers were generated between 1 and a billion: 
 

( ) 50,847,534xπ =  

 
Using the prime number theorem, a value close to 

one should be obtained from the following: 
 

( )910

50847534
lim 1.053727

48,254,942.43x→
=  

 
The result was a value very close to 1, which 

indicated a good approximation of the density of primes. 
The results were in good agreement with the prime 
number theorem.  

In fact, it is well known that there are exactly 
50,847,534 prime numbers between one and a billion 
and all of the integers stored in the prime number file 
were prime numbers. Therefore, the experiment was 

successful in proving the validity of the presented prime 
number generator. Also, it can be observed in Fig. 2 
(Fig. 2 will be explained in the following section) that 
when the (a) function is iterated to higher values of (N), 
more composites and fewer primes are generated by the 
(a) function. In other words, Equation 7 (Equation 7 will 

also be explained in the next section) eliminates more of 
the (a) function values as (N) increases because (n) (i.e., 
the number of steps in Fig. 2) must be increased 
proportionally with (N). Again, the method is in good 
agreement with the prime number theorem because the 
density of primes decreases as (N) increases. 

Discussion 

Derivation of General Prime Number Sequences  

The following function (Equation 1), which will 
simply be termed the (a) function, generates all prime 
numbers starting with 5 and it generates composites, 
which are not divisible by 2 or 3, periodically: 
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Table 1. Last 50 prime numbers and corresponding count value  

Count  Prime number  Count  Prime number  

50847485  999998929  50847510  999999337  

50847486  999998957  50847511  999999353  

50847487  999998959  50847512  999999391  

50847488  999998971  50847513  999999433  

50847489  999998981  50847514  999999487  

50847490  999999001  50847515  999999491  

50847491  999999017  50847516  999999503  

50847492  999999029  50847517  999999527  

50847493  999999043  50847518  999999541  

50847494  999999059  50847519  999999587  

50847495  999999067  50847520  999999599  

50847496  999999103  50847521  999999607  

50847497  999999107  50847522  999999613  

50847498  999999113  50847523  999999667  

50847499  999999131  50847524  999999677  

50847500  999999137  50847525  999999733  

50847501  999999151  50847526  999999739  

50847502  999999163  50847527  999999751  

50847503  999999181  50847528  999999757  

50847504  999999191  50847529  999999761  

50847505  999999193  50847530  999999797  

50847506  999999197  50847531  999999883  

50847507  999999223  50847532  999999893  

50847508  999999229  50847533  999999929  

50847509  999999323  50847534  999999937 
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Fig. 2. Results of the (a) function for (i) equals 1 to 31 with a 

staircase showing the periodicity of the composite indices 

 

Equation 1 is a very simple function, which has an 

initial condition value of 1 (a nonprime number in the 

strictest sense of the definition of a prime). The index (i) 

is multiplied by 6 and the previous value of the (a) 

function is subtracted from that product. Equation 1 

generates all of the prime numbers starting at 5 up to as 

high a number as desired. In fact by plugging all integers 

from 1 up to some number (N) into the (a) function, all 

of the prime numbers from 5 up to (N) times a factor of 3 

will be generated. 

To understand why Equation 1 determines the primes 

from 5 up to (N) times a factor of 3, observe the following:  

 

( ) ( )1lim 1 6
2i N

a i N
→

− ≈ ⋅  

 

By inspection, it can be seen that a(i-1) is 

approximately half of (6i), resulting in the following:  

 

( ) ( )( ) ( )1 1lim lim 6 6 6
2 2i N i N

a i i i N
→ →

≈ − ⋅ ≈ ⋅  

 

By calculating the results of Equation 1 and letting (i) 

encompass all integers from 1 to (N), every prime 

number between 5 and approximately (3N), as well as 

composites not divisible by 2 or 3, is generated. The (a) 

function can also be written in terms of the absolute 

values of the sine and cosine functions, which will be 

explained later.  

As mentioned previously, the (a) function generates 

composites periodically. To determine the integers 

generated by the (a) function which are composites, the 

periodicity of those composites must first be 

determined. The simplest way to determine the 

periodicity of the composite numbers is to write out the 

results of the (a) function up to some number (N). By 

inspection, the periodicity of the composites generated 

by the (a) function can then easily be seen. For 

example, let (N) equal 31 and plug in all integers from 

1 to (N) into the (a) function as shown in Fig. 2. Figure 

2 displays the indices of the (a) function, (i) and the 

corresponding results of the (a) function, a(i). The 

staircase to the right in Fig. 2 is used to show the 

periodicity of the composite numbers.  

For instance, start at 5 (top step, blue) and count 

down 7 spaces to arrive at a composite number divisible 

by 5. Then, count down 3 spaces to arrive at another 

composite divisible by 5. Continue counting down 7 and 

then 3 to determine the composite numbers divisible by 

5, which the (a) function generates.  

To eliminate all numbers divisible by 7, simply move 

down the staircase to 7 (second step, yellow). From 7, 

count down 9 spaces to arrive at a composite number 

divisible by 7. Then, count down 5 to arrive at another 

composite divisible by 7. Continue counting down 9 and 

then 5 to determine composites divisible by 7. To 

eliminate all numbers divisible by 11, move down the 

staircase to 11 (third step, green). From 11, count down 

15 spaces to arrive at a composite number divisible by 

11. Then, count down 7 to arrive at another number 

divisible by 11. Continue counting down 15 and then 7 

to determine composites divisible by 11. Likewise, from 

the fourth step, count down 17 and then 9 repeatedly to 

eliminate all numbers divisible by 13.  
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Table 2. Explanation of the observed periodicity of the composite indices reflected in Figure 2  

 For odd For even  Eliminate integers 

Step (n) iterations of (j) iterations of (j) divisible by:  

1  add 7  add 3  5  

2  add 9  add 5  7  

3  add 15  add 7  11  

4  add 17  add 9  13  

5  add 23  add 11  17  

6  add 25  add 13  19  

 

From the fifth step, count down 23 and then 11 

repeatedly to eliminate all numbers divisible by 17. 

From the sixth step, count down 25 and then 13 

repeatedly to eliminate all numbers divisible by 19. 

Table 2 clarifies the process further.  

A step counter exists, which will be represented by 

the variable (n). Begin by counting down 7 and then 3 

repeatedly. Then, when moving down to an even step, 

add 2 to the first number counted down (i.e., 7+2 = 9); 

when moving down to an odd step, add 6 to the first 

number counted down (i.e., 9+6 = 15). The second 

number counted down is always the next highest odd 

number (i.e., 3, 5, 7,…). Using the pattern observed in 

Fig. 2 and again in Table 2, an equation to determine 

the indices of all of the composite numbers generated 

by the (a) function can be derived.  

To write the equation for eliminating all of the 

composite numbers, an equation for the initial 

periodic sequence must first be determined. The 

absolute value of the sine and cosine functions at 

integral multiples of π/2 oscillate between 0 and 1 and 

they can be used such that 7 is multiplied by the sine 

function and 3 is multiplied by the cosine function, to 

yield an equation for summing 7 on odd values of (j) 

and 3 on even values of (j): 
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The not prime subscript of (i) notation in Equation 

2 denotes that these indices correspond to composite 

numbers generated by the (a) function. The (n) in 

Equation 2 accounts for the step number on the 

staircase in Fig. 2. With n = 1 and as (j) is iterated, 

Equation 2 determines the indices of the integers 

divisible by 5. However, an equation that determines 

the composites divisible by: 5, 7, 11, 13, 17, 19, 23 

and so forth is desired. For odd iterations of (j), let us 

define an equation for adding 2 to the 7 when starting 

the count on even steps and 6 when starting the count 

on odd steps and let us call this Equation (p): 
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Again, the cosine function is used to add 2 when 

counting down from even steps and the sine function 

is used to add 6 when counting down from odd steps. 

Since the only concern is with positive values of sine 

and cosine, the absolute value of the sine and cosine 

functions is taken similar to Equation 2. The unit step 

function, u(n-2), is used to ensure that the summation 

is only initialized after moving down to the second 

step (i.e., n = 2) to start determining integers divisible 

by 7 and the summation sums from 2 to (n) (Zill and 

Cullen, 2008). The upper limits of the summations, 

(n) and (m), are arbitrary and should be chosen such 

that (i) does not exceed (N). Now to find the next 

highest odd number for every even value of (j), the 

following simple equation is used, which is commonly 

used in mathematics: 

 

( )2 1q n= +  (4) 

 

Equation 4 is an odd number generator. Equation 2 

thru 4 are combined to produce the following:  
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Notice that the absolute value of the sine function is 

multiplied by (p) and the absolute value of the cosine 

function is multiplied by (q).  (p) is as it is in Equation 3.  

For odd values of (j), (p) is added to (n) and for even 

values of (j), (q) is added to (n). 

Equation 5 is a general form for an equation that 

determines the indices of the composite numbers 

generated by the (a) function. In essence, using the (a) 

function in conjunction with Equation 5 is a method 

for determining prime numbers indefinitely but does 
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not include the primes 2 and 3. However, a major 

drawback of Equation 5 is redundancy. There are 

many occasions when the indices of the composites 

are determined by Equation 5 more than once, which can 

slow processing significantly. Observe Fig. 3, which 

shows the values of (i) in Equation 5 as (j) and (k) are 

iterated. Whenever any of the vertices seen in Fig. 3 

meet, redundancy occurs. There is a way to remove most 

of the redundancy from Equation 5, which is observable 

when the values of Equation 5 are arranged in a matrix 

that has the indexes (j) for columns and (k) for rows. 

Observe at Table 3. 

Table 3 is a matrix containing the values of Equation 

5 as (j) and (k) are iterated. The values of the diagonal 

and everything in green above the diagonal are the only 

results needed from Equation 5.  

 

 

 
 

Fig. 3. Graphs of Equation 5 as (j) and (k) are iterated 

 
Table 3. Matrix containing (j) columns and (k) rows and shows how a large portion of the redundancy in Equation 5 can be removed 

by observation of the matrix’s diagonal  

 j = 1  j = 2  j = 3  j = 4  j = 5  j = 6  

k = 1  8  11  18  21  28  31  

k = 2  11  16  25  30  39  44  

k = 3  18  25  40  47  62  69  

k = 4  21  30  47  56  73  82  

k = 5  28  39  62  73  96  107  

k = 6  31  44  69  82  107  120  

 Composite Indices; Diagonal;  Redundancy  
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All values in red are redundant and can be omitted, as 

the values in the first column are identical to the values 

in the first row.  The same is true for all elements along 

the entire diagonal (hence, everything below the 

diagonal is redundant).  There is a periodicity to the 

diagonal elements similar to previously derived 

sequences, which can be written as follows:  
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Equation 6 can be used to modify Equation 5 to 

eliminate most redundancy as follows:  
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First, Equation 6 is added to Equation 5 and the step 

counter (n) in Equation 5 is negated. Equation 6 is a 

function of (k) and is used to determine the initial value 

of Equation 7 for each value of (n). The u(n+1-j) term 

in Equation 7 is used to properly initialize the sequence 

associated with Equation 5, which was previously 

derived. In other words, the unit step function is used to 

ensure that (j) is properly iterated for a given value of 

(n). For example, when (n) is equal to 1, (j) begins its 

iterations at 2; When (n) is equal to 2, (j) begins its 

iterations at 3. Equation 7 eliminates most of the 

redundancy in Equation 5 making the algorithm 

significantly more efficient.  

Derivation of Flexibility Equations  

As previously stated, the (a) function can be written 

in terms of the absolute values of the sine and cosine 

functions (Mandal and Asif, 2007). Observe Fig. 2. 

Notice that the values of the (a) function increase 

periodically by 4 and then 2. Similar to Equations 5 thru 

7, the (a) function can be written in terms of the absolute 

values of the sine and cosine functions as follows:  
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Writing the (a) function as shown in Equation 8 

eliminates the need to keep track of the (a) function’s 

previous values, which simplifies computer 

programming and helps preserve computer resources. 

From a signals and systems point of view, computer 

resources are preserved because the (a) function is 

memoryless when written as shown in Equation 8 

(Mandal and Asif, 2007). A final form of the prime 

number generator, which was programmed in C++ to 

prove its validity, is:  
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Provided the set of equations holds true for all of (N), 

then prime numbers are not random because of their 
connection to composites not divisible by 2 or 3. The 
described experiment proves the algorithm works to a 
billion and it seems very likely to hold true for all (N). 
Supercomputers with sufficient resources could possibly 
be used to prove the validity of the described method to 
much higher values of (N). It is also worth noting the 
existence of other methods to write the set of sequences 
without using the absolute values of sine and cosine. 
Observe the following two equations: 
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The above two equations can be used in place of the 

absolute value of the sine and cosine functions; the (a) 
function and Equation 7 then become:  
 

 

( ) ( ) ( )1

1

1 1 1 1
1 4 2

2 2

i i
i N

i

a i

+≤

=

    + − + −
    = + +
        

∑
L L

L=1

i

 (9) 
 

( ) ( )

( )

( )
( )

( ) ( )

1

(  )

1

1

1
2

2

1 1 1 1
4 8

2 2

1 1
2

2 1 1
7 ( 2)

21 1
6

2

1 1
2 1

2

k k
n

not prime

k

k

j
n

k
m k

j

j

i k k

u n

n

+

=

+

+
=

=

    + − + −
    = +

        

    + −    
      + −      + −

     + −      + +
       

  + −  + +
    

∑

∑
∑ ( )1

1

1

2

1

u n j

i N

j m

k n

n

+ −






≤ ≤

≤ ≤

≤ ≤

≤

 (10) 



Jonathan M. Dugas and Brian M. O’Connor / Journal of Mathematics and Statistics 2017, 13 (3): 177.185 

DOI: 10.3844/jmssp.2017.177.185 

 

184 

Table 4. Alternate method for determining the composite 

indices by periodically adding and subtracting even 

numbers to the results of the (�) function  

a(i)  ±  Even number  =  Addition result  Subtraction result  

5  ±  2  =  7  3  

7  ±  2  =  9  5  

11  ±  4  =  15  7  

13  ±  4  =  17  9  

17  ±  6  =  23  11  

19  ±  6  =  25  13  

23  ±  8  =  31  15  

25  ±  8  =  33  17  

29  ±  10  =  39  19  

31  ±  10  =  41  21  

35  ±  12  =  47  23  

37  ±  12  =  49  25  

41  ±  14  =  55  27  

43  ±  14  =  57  29  

 

Equation 7 can also be written another way, which is 

significantly different than its previously derived form. 

Observe Table 4. By periodically adding and subtracting 

2 to a(1), 7 and 3 can be periodically generated to 

determine the indices of the composites divisible by 5. 

By periodically adding and subtracting 2 to a(2), 9 and 5 

can be periodically generated to determine the indices 

of composites divisible by 7. Instead of adding and 

subtracting 2 to a(3) and a(4), add and subtract 4 to 

those values to first generate 15, then 7 and 17 and then 

9, respectively. The technique is obvious by 

observation of Table 4. Start by adding and subtracting 

2 to the (a) function values for (i) equal to 1 and 2. For 

odd values of (i), increase the number added and 

subtracted to a(i) to the next even number. Thus, the 

sequence shown in Table 4 computes the same results 

as Equation 7 and can be represented as:  

 

( )

( ) ( ) ( )( ) ( )

1

2 1 1

1

4 cos 8 sin
2 2

1 1 1 1

n

m
k

not prime
n

j j k

k

k k
k k

i

a n u n j

π π

=

= + +

=

     
+     

     =    + + − + − + −    

∑
∑

∑
 (11) 

 
Alternatively, the sequence in Table 4 can be written as: 
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The alternate version using the powers of (-1) in 

place of the absolute value of the sine and cosine 

functions could also be used for Equations 11 thru 12.  

Several forms of the (�) function and Equation 7 have 

now been presented. Having several forms of the same 

equations could provide some flexibility when 

programming the overall algorithm. When writing 

computer algorithms that are intended to perform 

billions of calculations, flexibility with the 

implementation of the algorithms can help preserve 

computer resources. The use of more advanced 

programming languages and sophisticated computer 

systems, such as supercomputers, could significantly 

exceed the results presented in this study. 

Given that the method holds true for all (N), the 

described prime number generator could possibly be 

used to break public encryption keys, which are based 

on the products of higher order prime numbers. In 

fact, the (a) function and Equation 7 could be used to 

determine the products of higher order prime 

numbers. The composites generated by the (a) 

function are nothing more than the products of prime 

numbers; therefore, Equation 7 could easily be used to 

pick which results of the (�) function match the higher 

order prime number products. 

Conclusion 

The results of this work validate the notion that prime 

numbers are not random. The sequential order to the 
prime numbers is determinable by a connection to 

composite numbers which are not divisible by 2 or 3. 
Although it is difficult to prove by a method other than 

computation, the sequences presented generate prime 

numbers indefinitely; however, they do generate 
composite numbers not divisible by 2 or 3. There is a 

periodicity to the composite numbers, which allows 
them to be eliminated using basic mathematical 

functions and operations. Given the presented sets of 

sequences for determining primes and eliminating 
composites hold true for all values of (N), one must 

first understand the sequence to the composites not 
divisible by 2 or 3 to understand the sequence to the 

prime numbers; the sequence to primes is disguised as a 

sequence to composites. 
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