

 © 2017 Jonathan M. Dugas and Brian M. O’Connor. This open access article is distributed under a Creative Commons

Attribution (CC-BY) 3.0 license.

Journal of Mathematics and Statistics

Hypotheses

Sequences for Determination of Prime Numbers by

Elimination of Composites

1
Jonathan M. Dugas and

2
Brian M. O’Connor

1Department of Electrical and Computer Engineering, Tennessee Tech University, Cookeville, USA
2Department of Mathematics, Tennessee Tech University, Cookeville, USA

Article history

Received: 25-03-2017

Revised: 26-06-2017

Accepted: 14-07-2017

Corresponding Author:

Jonathan M. Dugas

Department of Electrical and

Computer Engineering,

Tennessee Tech University,

Cookeville, USA
Email: jmdugas42@students.tntech.edu

Abstract: In this study, sequences are used for direct computation of

prime numbers. A single equation for generating all prime numbers with

the exception of 2 and 3 and composite numbers that are not divisible by 2

or 3 is presented. A periodicity to the indices of the composites generated

by that equation is determined. An equation to determine the indices of the

composite numbers is derived. The equation for determining the composite

indices is then altered to avoid redundancy by observation of its diagonal,

when its values are inserted into a matrix that has the indexes (j) for

columns and (k) for rows. The two equations are presented in several

different forms and are used in conjunction to render a technique for

computing prime numbers indefinitely. The validity of the technique is

proven up to one billion by computation and the prime number theorem.

Keywords: Prime, Sequence, Generation, Composite, Elimination

Introduction

A number of methods for determining prime

numbers, such as the sieve of Eratosthenes and sieve of

Atkins, have been discovered (Crandall and Pomerance,

2006). The equations shown in this study render a

mathematical technique for generating primes, which is

very similar to the sieve of Eratosthenes. There are also

ways to approximate the density of prime numbers

between 1 up to some number, (x) (Goldstein, 1973). In

300 B.C., Euclid proved the existence of an infinite

number of primes through fundamental arithmetic

theorems. In 1737, Euler further proved the existence of

an infinite number of primes. Euler showed the sum of

the reciprocals of prime numbers is a divergent sum;

thus, it contains infinitely many terms (prime

reciprocals). In 1791, Gauss discovered that the density

of primes is asymptotic. This is known as the prime

number theorem (Goldstein, 1973). Further works from

Gauss’s assertion lead to the following:

()
()

lim 1

ln
x

x

x
x

π
→∞

=

With π(x) representing the density of primes, the above

equation implies that the density of prime numbers

decreases as (x) approaches infinity (Crandall and

Pomerance, 2006). The density of primes between 1 and

some number (x) can be approximated as follows:

()
ln

x
x

x
π ≈

The above equation provides a good method of

approximating the density of primes for some value (x),

but an effective mathematical method for generating all

prime numbers efficiently and indefinitely seems to have

eluded mathematicians for centuries. In fact, many

mathematicians and members of the scientific

community believe that prime numbers are random and

no such formula for generating prime numbers in this

way exists. It is difficult and perhaps impossible to

disprove such a statement mathematically. However,

what if there exists an equation that can indefinitely

generate prime numbers as well as some composite

numbers and what if there is a periodicity to the

composite numbers? An equation could then be written

to eliminate the composite numbers. Then, in essence,

there would exist a mathematical method for generating

primes indefinitely, which avoids the need for finding a

sequential order to the prime numbers. The purpose of

this work is to present such a method, which is in

agreement with the prime number theorem and to prove

the validity of that method by computation.

Jonathan M. Dugas and Brian M. O’Connor / Journal of Mathematics and Statistics 2017, 13 (3): 177.185

DOI: 10.3844/jmssp.2017.177.185

178

Materials and Methods

The flowchart in Fig. 1 is a simplified version of the

C++ computer algorithm which was used to compute all

of the prime numbers between 1 and 1,000,000,000,

using a set of sequences. A Dell laptop with an i7

processor was used to run the algorithm. The algorithm

used is represented mathematically as follows:

()

()

()

()

1

2

1

1 4 sin 2 cos
2 2

7 2 cos 6 sin 2
2 2

2 1

sin cos
2 2

1

1

2

i N

i

n

k

m

not prime
j

i i
a i

k k
p u n

q n

j j
i n p q

i N

j m

k n

π π

π π

π π

≤

=

=

=

    = + +    
    

     = + + −           
= +

    = + +    
    

≤ ≤

≤ ≤

≤ ≤

∑

∑

∑

L=1

LL
i

The derivation process for the above equations will

be described in detail in the Discussion section. The first

step in the development of the computer program

entailed writing code that asked the user for a number

(N), so that the program knew the range of prime

numbers to generate. If the user were to input 100, the

program would return every prime number between 1

and 300 (3N). Once (N) was input, the program would

calculate all of the values of the (a) function from a(1) to

a(N) and store those values into a text file.

The next step involved calculating the indices of the

composites generated by the (a) function. Essentially,

this was accomplished with a nested for loop

(Gaddis and Krupnow, 2007). All of the composite

indices were then sorted so they made sense to the rest

of the program. The approach used for the logic

shown in Fig. 1 involved generating all of the

composite indices, sorting them into smaller

segments, storing those smaller segments into another

text file and breaking the large text file up into

smaller text files accordingly. The numbers stored in

the smaller text files were used to determine the

indices of the composites generated by the (a) function.

The final step was simply reading the results of the

(a) function from the file in which they were stored. A

counter was used to keep track of each integer as it was

read from the file; if the counter equaled any of the

composite indices, the corresponding (a) function’s

result was not output to the prime number file

(Gaddis and Krupnow, 2007). Otherwise, the value

read from the file was a prime number and was written

to the prime number file. The logic described was a

very simple program to write and it proved that the

described prime generator method could be used with

very primitive programming languages to efficiently

determine prime numbers.

Fig. 1. The flow logic of the simple C++ program used to calculate every prime number between 1 and a billion

Jonathan M. Dugas and Brian M. O’Connor / Journal of Mathematics and Statistics 2017, 13 (3): 177.185

DOI: 10.3844/jmssp.2017.177.185

179

Results

Observe Table 1. All of the primes generated by
the described algorithm are not shown in Table 1, as
there are over 50 million of them between 1 and a
billion. Table 1 shows the last 50 prime numbers
generated by the described algorithm as well as the
count value associated with that prime number. Recall
that an approximation of the density of prime numbers
between 1 and a billion can be obtained as follows:

()
1,000,000,000 48,254,942.43

ln 1,000,000,000

 
≈ 

 

In the described experiment, 50,847,534 prime

numbers were generated between 1 and a billion:

() 50,847,534xπ =

Using the prime number theorem, a value close to

one should be obtained from the following:

()910

50847534
lim 1.053727

48,254,942.43x→
=

The result was a value very close to 1, which

indicated a good approximation of the density of primes.
The results were in good agreement with the prime
number theorem.

In fact, it is well known that there are exactly
50,847,534 prime numbers between one and a billion
and all of the integers stored in the prime number file
were prime numbers. Therefore, the experiment was

successful in proving the validity of the presented prime
number generator. Also, it can be observed in Fig. 2
(Fig. 2 will be explained in the following section) that
when the (a) function is iterated to higher values of (N),
more composites and fewer primes are generated by the
(a) function. In other words, Equation 7 (Equation 7 will

also be explained in the next section) eliminates more of
the (a) function values as (N) increases because (n) (i.e.,
the number of steps in Fig. 2) must be increased
proportionally with (N). Again, the method is in good
agreement with the prime number theorem because the
density of primes decreases as (N) increases.

Discussion

Derivation of General Prime Number Sequences

The following function (Equation 1), which will
simply be termed the (a) function, generates all prime
numbers starting with 5 and it generates composites,
which are not divisible by 2 or 3, periodically:

() ()
()

6 1

0 1

1

a i i a i

a

i N

= − −

=

≤ ≤

 (1)

Table 1. Last 50 prime numbers and corresponding count value

Count Prime number Count Prime number

50847485 999998929 50847510 999999337

50847486 999998957 50847511 999999353

50847487 999998959 50847512 999999391

50847488 999998971 50847513 999999433

50847489 999998981 50847514 999999487

50847490 999999001 50847515 999999491

50847491 999999017 50847516 999999503

50847492 999999029 50847517 999999527

50847493 999999043 50847518 999999541

50847494 999999059 50847519 999999587

50847495 999999067 50847520 999999599

50847496 999999103 50847521 999999607

50847497 999999107 50847522 999999613

50847498 999999113 50847523 999999667

50847499 999999131 50847524 999999677

50847500 999999137 50847525 999999733

50847501 999999151 50847526 999999739

50847502 999999163 50847527 999999751

50847503 999999181 50847528 999999757

50847504 999999191 50847529 999999761

50847505 999999193 50847530 999999797

50847506 999999197 50847531 999999883

50847507 999999223 50847532 999999893

50847508 999999229 50847533 999999929

50847509 999999323 50847534 999999937

Jonathan M. Dugas and Brian M. O’Connor / Journal of Mathematics and Statistics 2017, 13 (3): 177.185

DOI: 10.3844/jmssp.2017.177.185

180

Fig. 2. Results of the (a) function for (i) equals 1 to 31 with a

staircase showing the periodicity of the composite indices

Equation 1 is a very simple function, which has an

initial condition value of 1 (a nonprime number in the

strictest sense of the definition of a prime). The index (i)

is multiplied by 6 and the previous value of the (a)

function is subtracted from that product. Equation 1

generates all of the prime numbers starting at 5 up to as

high a number as desired. In fact by plugging all integers

from 1 up to some number (N) into the (a) function, all

of the prime numbers from 5 up to (N) times a factor of 3

will be generated.

To understand why Equation 1 determines the primes

from 5 up to (N) times a factor of 3, observe the following:

() ()1lim 1 6
2i N

a i N
→

− ≈ ⋅

By inspection, it can be seen that a(i-1) is

approximately half of (6i), resulting in the following:

() ()() ()1 1lim lim 6 6 6
2 2i N i N

a i i i N
→ →

≈ − ⋅ ≈ ⋅

By calculating the results of Equation 1 and letting (i)

encompass all integers from 1 to (N), every prime

number between 5 and approximately (3N), as well as

composites not divisible by 2 or 3, is generated. The (a)

function can also be written in terms of the absolute

values of the sine and cosine functions, which will be

explained later.

As mentioned previously, the (a) function generates

composites periodically. To determine the integers

generated by the (a) function which are composites, the

periodicity of those composites must first be

determined. The simplest way to determine the

periodicity of the composite numbers is to write out the

results of the (a) function up to some number (N). By

inspection, the periodicity of the composites generated

by the (a) function can then easily be seen. For

example, let (N) equal 31 and plug in all integers from

1 to (N) into the (a) function as shown in Fig. 2. Figure

2 displays the indices of the (a) function, (i) and the

corresponding results of the (a) function, a(i). The

staircase to the right in Fig. 2 is used to show the

periodicity of the composite numbers.

For instance, start at 5 (top step, blue) and count

down 7 spaces to arrive at a composite number divisible

by 5. Then, count down 3 spaces to arrive at another

composite divisible by 5. Continue counting down 7 and

then 3 to determine the composite numbers divisible by

5, which the (a) function generates.

To eliminate all numbers divisible by 7, simply move

down the staircase to 7 (second step, yellow). From 7,

count down 9 spaces to arrive at a composite number

divisible by 7. Then, count down 5 to arrive at another

composite divisible by 7. Continue counting down 9 and

then 5 to determine composites divisible by 7. To

eliminate all numbers divisible by 11, move down the

staircase to 11 (third step, green). From 11, count down

15 spaces to arrive at a composite number divisible by

11. Then, count down 7 to arrive at another number

divisible by 11. Continue counting down 15 and then 7

to determine composites divisible by 11. Likewise, from

the fourth step, count down 17 and then 9 repeatedly to

eliminate all numbers divisible by 13.

Jonathan M. Dugas and Brian M. O’Connor / Journal of Mathematics and Statistics 2017, 13 (3): 177.185

DOI: 10.3844/jmssp.2017.177.185

181

Table 2. Explanation of the observed periodicity of the composite indices reflected in Figure 2

 For odd For even Eliminate integers

Step (n) iterations of (j) iterations of (j) divisible by:

1 add 7 add 3 5

2 add 9 add 5 7

3 add 15 add 7 11

4 add 17 add 9 13

5 add 23 add 11 17

6 add 25 add 13 19

From the fifth step, count down 23 and then 11

repeatedly to eliminate all numbers divisible by 17.

From the sixth step, count down 25 and then 13

repeatedly to eliminate all numbers divisible by 19.

Table 2 clarifies the process further.

A step counter exists, which will be represented by

the variable (n). Begin by counting down 7 and then 3

repeatedly. Then, when moving down to an even step,

add 2 to the first number counted down (i.e., 7+2 = 9);

when moving down to an odd step, add 6 to the first

number counted down (i.e., 9+6 = 15). The second

number counted down is always the next highest odd

number (i.e., 3, 5, 7,…). Using the pattern observed in

Fig. 2 and again in Table 2, an equation to determine

the indices of all of the composite numbers generated

by the (a) function can be derived.

To write the equation for eliminating all of the

composite numbers, an equation for the initial

periodic sequence must first be determined. The

absolute value of the sine and cosine functions at

integral multiples of π/2 oscillate between 0 and 1 and

they can be used such that 7 is multiplied by the sine

function and 3 is multiplied by the cosine function, to

yield an equation for summing 7 on odd values of (j)

and 3 on even values of (j):

()

1

1 7 sin 3 cos
2 2

1

1

m

not prime

j

j j
i

i N

j m

π π

=

    = + +    
    

≤ ≤

≤ ≤

∑

 (2)

The not prime subscript of (i) notation in Equation

2 denotes that these indices correspond to composite

numbers generated by the (a) function. The (n) in

Equation 2 accounts for the step number on the

staircase in Fig. 2. With n = 1 and as (j) is iterated,

Equation 2 determines the indices of the integers

divisible by 5. However, an equation that determines

the composites divisible by: 5, 7, 11, 13, 17, 19, 23

and so forth is desired. For odd iterations of (j), let us

define an equation for adding 2 to the 7 when starting

the count on even steps and 6 when starting the count

on odd steps and let us call this Equation (p):

()
2

7 2 cos 6 sin 2
2 2

2

n

k

k k
p u n

n

π π

=

     = + + −           
≤

∑ (3)

Again, the cosine function is used to add 2 when

counting down from even steps and the sine function

is used to add 6 when counting down from odd steps.

Since the only concern is with positive values of sine

and cosine, the absolute value of the sine and cosine

functions is taken similar to Equation 2. The unit step

function, u(n-2), is used to ensure that the summation

is only initialized after moving down to the second

step (i.e., n = 2) to start determining integers divisible

by 7 and the summation sums from 2 to (n) (Zill and

Cullen, 2008). The upper limits of the summations,

(n) and (m), are arbitrary and should be chosen such

that (i) does not exceed (N). Now to find the next

highest odd number for every even value of (j), the

following simple equation is used, which is commonly

used in mathematics:

()2 1q n= + (4)

Equation 4 is an odd number generator. Equation 2

thru 4 are combined to produce the following:

()

1

sin cos
2 2

1

1

2

1

m

not prime

j

j j
i n p q

i N

j m

k n

n

π π

=

    = + +    
    

≤ ≤

≤ ≤

≤ ≤

≤

∑

 (5)

Notice that the absolute value of the sine function is

multiplied by (p) and the absolute value of the cosine

function is multiplied by (q). (p) is as it is in Equation 3.

For odd values of (j), (p) is added to (n) and for even

values of (j), (q) is added to (n).

Equation 5 is a general form for an equation that

determines the indices of the composite numbers

generated by the (a) function. In essence, using the (a)

function in conjunction with Equation 5 is a method

for determining prime numbers indefinitely but does

Jonathan M. Dugas and Brian M. O’Connor / Journal of Mathematics and Statistics 2017, 13 (3): 177.185

DOI: 10.3844/jmssp.2017.177.185

182

not include the primes 2 and 3. However, a major

drawback of Equation 5 is redundancy. There are

many occasions when the indices of the composites

are determined by Equation 5 more than once, which can

slow processing significantly. Observe Fig. 3, which

shows the values of (i) in Equation 5 as (j) and (k) are

iterated. Whenever any of the vertices seen in Fig. 3

meet, redundancy occurs. There is a way to remove most

of the redundancy from Equation 5, which is observable

when the values of Equation 5 are arranged in a matrix

that has the indexes (j) for columns and (k) for rows.

Observe at Table 3.

Table 3 is a matrix containing the values of Equation

5 as (j) and (k) are iterated. The values of the diagonal

and everything in green above the diagonal are the only

results needed from Equation 5.

Fig. 3. Graphs of Equation 5 as (j) and (k) are iterated

Table 3. Matrix containing (j) columns and (k) rows and shows how a large portion of the redundancy in Equation 5 can be removed

by observation of the matrix’s diagonal

 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

k = 1 8 11 18 21 28 31

k = 2 11 16 25 30 39 44

k = 3 18 25 40 47 62 69

k = 4 21 30 47 56 73 82

k = 5 28 39 62 73 96 107

k = 6 31 44 69 82 107 120

 Composite Indices; Diagonal; Redundancy

Jonathan M. Dugas and Brian M. O’Connor / Journal of Mathematics and Statistics 2017, 13 (3): 177.185

DOI: 10.3844/jmssp.2017.177.185

183

All values in red are redundant and can be omitted, as

the values in the first column are identical to the values

in the first row. The same is true for all elements along

the entire diagonal (hence, everything below the

diagonal is redundant). There is a periodicity to the

diagonal elements similar to previously derived

sequences, which can be written as follows:

1

4 cos 8 sin
2 2

n

k

k k
Diagonal D k k

π π

=

    = = +    
    

∑ (6)

Equation 6 can be used to modify Equation 5 to

eliminate most redundancy as follows:

()()

2

sin cos 1
2 2

m

not prime

j

j j
i D p q u n j

π π

=

    = + + + −    
    

∑ (7)

First, Equation 6 is added to Equation 5 and the step

counter (n) in Equation 5 is negated. Equation 6 is a

function of (k) and is used to determine the initial value

of Equation 7 for each value of (n). The u(n+1-j) term

in Equation 7 is used to properly initialize the sequence

associated with Equation 5, which was previously

derived. In other words, the unit step function is used to

ensure that (j) is properly iterated for a given value of

(n). For example, when (n) is equal to 1, (j) begins its

iterations at 2; When (n) is equal to 2, (j) begins its

iterations at 3. Equation 7 eliminates most of the

redundancy in Equation 5 making the algorithm

significantly more efficient.

Derivation of Flexibility Equations

As previously stated, the (a) function can be written

in terms of the absolute values of the sine and cosine

functions (Mandal and Asif, 2007). Observe Fig. 2.

Notice that the values of the (a) function increase

periodically by 4 and then 2. Similar to Equations 5 thru

7, the (a) function can be written in terms of the absolute

values of the sine and cosine functions as follows:

()
1

1 4 sin 2 cos
2 2

i

L

L L
a i

π π

=

 
= + + 

 
∑ (8)

Writing the (a) function as shown in Equation 8

eliminates the need to keep track of the (a) function’s

previous values, which simplifies computer

programming and helps preserve computer resources.

From a signals and systems point of view, computer

resources are preserved because the (a) function is

memoryless when written as shown in Equation 8

(Mandal and Asif, 2007). A final form of the prime

number generator, which was programmed in C++ to

prove its validity, is:

()

()

1

()

1

2

2

4 cos 8 sin
2 2

2 cos
2

7 (2) sin
2

6 sin
2

2 1 cos

1 4 sin 2 cos
2 2

2

n

n

i N

ot prime

k

n

m
k

j

i

k k
i k k

k

j
u n

k

i
a

j
n

i
i

π π

π

π

π

π

π

π

=

=

=

≤

=

    = +    
    

   
+   

     + −   

    = + +    

      +     

 

  

 + + 
 

  

∑

∑

∑

∑ ()1

1

2

1

u n j

i N

j n

k n

 
 
 
 
  + −
 
 
 
 
 

≤ ≤

≤ ≤

≤ ≤

i

L=1

L L

Provided the set of equations holds true for all of (N),

then prime numbers are not random because of their
connection to composites not divisible by 2 or 3. The
described experiment proves the algorithm works to a
billion and it seems very likely to hold true for all (N).
Supercomputers with sufficient resources could possibly
be used to prove the validity of the described method to
much higher values of (N). It is also worth noting the
existence of other methods to write the set of sequences
without using the absolute values of sine and cosine.
Observe the following two equations:

()

()

1
1,1 1

sin
0,2 2

0,1 1
cos

1,2 2

i

i

for odd values of ii

for even values of i

for odd values of ii

for even values of i

π

π

+ + −    = =       

 + −    = =       

The above two equations can be used in place of the

absolute value of the sine and cosine functions; the (a)
function and Equation 7 then become:

() () ()1

1

1 1 1 1
1 4 2

2 2

i i
i N

i

a i

+≤

=

    + − + −
    = + +
        

∑
L L

L=1

i

 (9)

() ()

()

()
()

() ()

1

()

1

1

1
2

2

1 1 1 1
4 8

2 2

1 1
2

2 1 1
7 (2)

21 1
6

2

1 1
2 1

2

k k
n

not prime

k

k

j
n

k
m k

j

j

i k k

u n

n

+

=

+

+
=

=

    + − + −
    = +

        

    + −    
      + −      + −

     + −      + +
       

  + −  + +
    

∑

∑
∑ ()1

1

1

2

1

u n j

i N

j m

k n

n

+ −






≤ ≤

≤ ≤

≤ ≤

≤

 (10)

Jonathan M. Dugas and Brian M. O’Connor / Journal of Mathematics and Statistics 2017, 13 (3): 177.185

DOI: 10.3844/jmssp.2017.177.185

184

Table 4. Alternate method for determining the composite

indices by periodically adding and subtracting even

numbers to the results of the (�) function

a(i) ± Even number = Addition result Subtraction result

5 ± 2 = 7 3

7 ± 2 = 9 5

11 ± 4 = 15 7

13 ± 4 = 17 9

17 ± 6 = 23 11

19 ± 6 = 25 13

23 ± 8 = 31 15

25 ± 8 = 33 17

29 ± 10 = 39 19

31 ± 10 = 41 21

35 ± 12 = 47 23

37 ± 12 = 49 25

41 ± 14 = 55 27

43 ± 14 = 57 29

Equation 7 can also be written another way, which is

significantly different than its previously derived form.

Observe Table 4. By periodically adding and subtracting

2 to a(1), 7 and 3 can be periodically generated to

determine the indices of the composites divisible by 5.

By periodically adding and subtracting 2 to a(2), 9 and 5

can be periodically generated to determine the indices

of composites divisible by 7. Instead of adding and

subtracting 2 to a(3) and a(4), add and subtract 4 to

those values to first generate 15, then 7 and 17 and then

9, respectively. The technique is obvious by

observation of Table 4. Start by adding and subtracting

2 to the (a) function values for (i) equal to 1 and 2. For

odd values of (i), increase the number added and

subtracted to a(i) to the next even number. Thus, the

sequence shown in Table 4 computes the same results

as Equation 7 and can be represented as:

()

() () ()() ()

1

2 1 1

1

4 cos 8 sin
2 2

1 1 1 1

n

m
k

not prime
n

j j k

k

k k
k k

i

a n u n j

π π

=

= + +

=

     
+     

     =    + + − + − + −    

∑
∑

∑
 (11)

Alternatively, the sequence in Table 4 can be written as:

() () ()

1

()

2 1

1

4 cos 8 sin
2 2

1 2 1 sin 1
2

n

m
k

not prime
n

j j

k

k k
k k

i
k

a n u u n j

π π

π

=

= +

=

     +     
     

=      + + − − + −         

∑
∑

∑
(12)

The alternate version using the powers of (-1) in

place of the absolute value of the sine and cosine

functions could also be used for Equations 11 thru 12.

Several forms of the (�) function and Equation 7 have

now been presented. Having several forms of the same

equations could provide some flexibility when

programming the overall algorithm. When writing

computer algorithms that are intended to perform

billions of calculations, flexibility with the

implementation of the algorithms can help preserve

computer resources. The use of more advanced

programming languages and sophisticated computer

systems, such as supercomputers, could significantly

exceed the results presented in this study.

Given that the method holds true for all (N), the

described prime number generator could possibly be

used to break public encryption keys, which are based

on the products of higher order prime numbers. In

fact, the (a) function and Equation 7 could be used to

determine the products of higher order prime

numbers. The composites generated by the (a)

function are nothing more than the products of prime

numbers; therefore, Equation 7 could easily be used to

pick which results of the (�) function match the higher

order prime number products.

Conclusion

The results of this work validate the notion that prime

numbers are not random. The sequential order to the
prime numbers is determinable by a connection to

composite numbers which are not divisible by 2 or 3.
Although it is difficult to prove by a method other than

computation, the sequences presented generate prime

numbers indefinitely; however, they do generate
composite numbers not divisible by 2 or 3. There is a

periodicity to the composite numbers, which allows
them to be eliminated using basic mathematical

functions and operations. Given the presented sets of

sequences for determining primes and eliminating
composites hold true for all values of (N), one must

first understand the sequence to the composites not
divisible by 2 or 3 to understand the sequence to the

prime numbers; the sequence to primes is disguised as a

sequence to composites.

Acknowledgement

I acknowledge that Leonhard Euler was not wrong;

primes are “a mystery into which the mind will never

penetrate.” Thus, computers are needed to perform the

very tedious mathematics. Thanks to my father and

mother, Roger and Rhonda Dugas, for all of their love

and encouragement. Also, thanks to Dr. Satish Mahajan,

a professor in the Electrical and Computer Engineering

Department at Tennessee Tech University, for providing

me with a great opportunity to attend Graduate studies at

Tennessee Tech. I also acknowledge that mathematicians

before me have noticed very similar patterns to prime

numbers reported in this study. However, in doing a

literature review, I was unable to find any equations

exactly like the ones presented.

Jonathan M. Dugas and Brian M. O’Connor / Journal of Mathematics and Statistics 2017, 13 (3): 177.185

DOI: 10.3844/jmssp.2017.177.185

185

Funding Information

My father, Roger M. Dugas, purchased a Dell laptop,

with an Intel i7 processor for me, which I used to write

the described algorithm.

Author’s Contributions

The primary author, Jonathan M. Dugas, discovered

the (a) function and the sequences related to Equations 1

thru 10, derived all of the equations and composed this

paper. Dr. O’Connor, a professor in the Mathematics

Department at Tennessee Tech University and the

secondary author, found the fascinating connection

between the (a) function and the sequence shown in

Table 4, allowing this work to be much more interesting

and useful to cryptography. As a result, Dr. O’Connor

helped to validate the authenticity of this work.

Ethics

The information presented in this study can possibly

be used to break public encryption keys. I encourage and

hope care is taken with its implementation. The order

that exists within the universe is amazing and

fascinating; there is even an order to the prime numbers.

I only hope it is used so that others, like myself, can

learn new universal truths and make the world a better

and safer place to live.

References

Crandall, R. and C. Pomerance, 2006. Prime Numbers:

A Computational Perspective. 2nd Edn., Springer

Science and Business Media Inc., New York,

 ISBN-10: 0387289798, pp: 597.

Goldstein, L., 1973. A history of the prime number

theorem. Am. Math. Monthly, 80: 599-615.

 DOI: 10.2307/2319162

Gaddis, T. and B. Krupnow, 2007. Starting out with

C++: From Control Structures through Objects. 5th

Edn., Pearson/Addison Wesley, Boston,

 ISBN-10: 032147970X, pp: 904.

Mandal, M. and A. Asif, 2007. Continuous and Discrete

Time Signals and Systems. 1st Edn., Cambridge

University Press, New York,

 ISBN-10: 052172841X, pp: 880.

Zill, D. and M. Cullen, 2008. Differential Equations with

Boundary-Value Problems.7th Edn., Brooks/Cole,

Cengage Learning, Belmont, CA,

 ISBN-10: 0495108367, pp: 608.

