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Abstract: Generalized additive models as a predictor in regression 

approaches, are made up over cubic spline basis and penalized 

regression splines. Despite of linear predictor in GLM, generalized 

additive models use a sum of smooth functions of covariates as a 

predictor. The data which are used in this study have generalized Pareto 

distribution and have been simulated by inversion method. The data are 

generated in two types, the stationary case and the non-stationary case. 

The method of root mean square of errors as a method of measurement 

is used for comparison between power of predictions which are based 

on penalized regression splines as a method in univariate generalized 

additive models and linear regression based on maximum likelihood 

estimation. The finding of this research illustrates that the amount of 

accuracy of estimation of parameter of location in UGAM approach as 

an alternative promising of modelling through each specialized GPD's 

models, has less RMSE in compare with MLE. 
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Introduction 

During early of 1990, generalized Additive models, 

GAMs, by attempts of Hastie and Tibshirani have been 

developed (Hastie and Tibshirani, 1990). The 

construction of GAM, is relied on back-fitting with 

linear smoothers. Although this model seems to be 

flexible, but, in practice, some difficulties like how to 

inference and how to select the model be revealed. To 

get the solution of these difficulties, the sensitive 

mathematical work of Wahba and her colleagues 

(Wahba, 1990) on generalized spline smoothing, GSS, 

provided a consistent and precise framework to 

inference. Smoothing splines, are basis for model 

selection (Gu and Wahba, 1991a) with GAMs (Gu and 

Wahba, 1991b). Computationally, the selection of these 

models are very expensive. Applying penalized 

regression splines, are a "middle approach" (Wahba and 

Wendelberger, 1980) to build GAMs (Eilers and Marx, 

1996; Wood, 2006). Recall that GAMs is based on 

smooth functions and has ability to predict. Therefore, 

for better prediction, a basis and "wiggliness" penalty for 

every smooth function in the model is selected. 

Univariate generalized additive models, provide a 

flexible and smooth approach to distinguish and identify 

the non-linearity's covariate effects in a several types of 

modelling situations and circumstances (Wood, 2006). 

The simulated data are generated based on 
inversion method, in this study. It has been used from 

R software to program the approaches, problems and 
solutions. Generalized pareto distribution is belong to 
a family of continuous probability distributions and 
often is used to model the tails of another 
distributions. At first, this paper will pay attention to 
the root of origination of univariate generalized 

additive models and then will go to concentrate on 
parameter of location. The goal is to display the 
ability of amount of accuracy of estimation of 
parameter of location. To get the goal, the method of 
penalized regression spline in univariate generalized 
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additive models in stationary and non-stationary GPD data 
are compared in contrast of another approach, MLE. 

Section 2, presents the basic materials in details of 

structure of GAM. Section 3, deals with different types 

of simulated GPD data and their inversions. The 

maximum likelihood estimation of each type of data are 

calculated and provided in section 3, as well. Section 4, 

display the implementation of GAM and goes to the 

details of this method like cubic spline and penalized 

regression spline. Section 5, is consist of results of this 

research. The results are included some figures and 

related tables. The conclusion is placed in section 6. 

Basic Materials 

GAM has resemblance to a GLM in which a linear 

combination of scatter-plot smoothers is replaced instead 

of linear combination of explanatory variables. The 

general structure of a GAM can be illustrated as bellow: 

 

1 1 2 2 3 3 4
( ) ( ) ( ) ( , ) ...

i i i i i i
g X f x f x f x xµ θ∗= + + + +  (1)

 
 

where, 
i

X ∗ , is a row of the model matrix for any strictly 

parametric model components, θ, is the corresponding 

parameter vector and fj, are smooth functions of the 

covariates, xk (Wood, 2006). In addition: 

 

( )i iE Yµ =  

 

where, Yi, is a dependent variable which is distributed as 

some of the exponential family distribution. 

The indication of smooth function is best introduced 

with respect to a model which has one smooth function 

of one covariate. This model is: 

 

( )i i iy f x ε= +  (2) 

 

where, yi, is an outcome or response variable and xi is 

covariate, f is a smooth function and 2(0, )
i

Nε σ∼ random 

variables, for i = 1,2,…,n (Wood, 2006). 

To show f, as a simple predictor, one can choose a 

known basis function.  

Suppose that bj(x) is the jth basis function, then f, is 

modelled to have a formula (Wood, 2006) like:  

 

1

( ) ( )
q

j j

j

f x b x β
=

=∑  (3) 

 

for a number of unknown parameters which should be 

estimated. By replacement of Equation 3 into yi = f(xi) + 

εi, a linear model will be constructed. 

A cubic spline can be applied as a representative for 

univariate functions. A cubic spline is made of 

combining of cubic polynomials which are connected to 

each other to build a special curve. This new curve is 

continuous in value, as well as, in first and second 

derivatives (Wood, 2000). The knots of the splines are 

illustrated by the points where the sections have 

connection (Hastie and Tibshirani, 1987). What 

approach is applied, let the location of knots be marked 

by { : 1,..., 2}
i

x i q∗ = − , where, q∈N (Wood, 2006). For a 

formal spline, wherever there is some datum, the knots 

occur. In general, the knots could either be spread 

among the range of observed x, or put it at quantiles of 

the distribution of unique x values (Hastie and 

Tibshirani, 1987). With regard to the location of knots, 

many alternatives can occur (Gu, 2002). Let consider 

basis b1(x) = 1, b2(x) = x and bi +2 = R(x,x
*
) for i = 

1,…, q-2, where: 

 

( ) ( )

( ) ( )

2 2
1 1 1 1
2 12 2 12

4 2
71 1 1

2 2 2 240

( , )
4

24

z x
R x z

x z x z

   − − − −
   =

 − − − − − +  −

 

 

In order to making function of “f”, by applying the 

cubic spline basis Equation 2, will be a linear model: Y = 

Xβ +ε, where the ith row of the model matrix is: 

 

1 2 21, , ( , ), ( , ),..., ( , )i i i i i qX x R x x R x x R x x∗ ∗ ∗
− =    

 

therefore, the model could be approximated by least 

squares (Wood, 2002; Gu and Kim, 2002). 

Instead of fitting the model by minimizing: 

 
2

y X β−  

 

where, Y, is a dependent variable and X, is model matrix. 

We are able to minimize: 

 

[ ]
1

22

0

( ) ( )y X f x d xβ λ ′′− + ∫  

 

in which λ, displays the smooth parameter in where the 

integrated square of second derivative penalizes models 

that are too wiggly. Always, the penalty can be written 

as a quadratic form in β, i.e.: 

 
1

2

0

[ ( )] ( ) Tf x d x Sβ β′′ =∫  

 

where, S, is a matrix of known coefficients. Here, the 

form of spline basis is a little complicated and this 

complication proves its worth. Notice that: 

2, 2 ( , )i j i jS R x x∗ ∗
+ + =  for { , 1,..., 2},i j q= − while, the first 
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two rows and columns of S are 0. Accordingly, 

indeed, the penalized regression spline fitting problem 

is to minimize: 
 

2 Ty X Sβ λβ β− +  

 

with regard to β. In practice, the explanations above, is 

not useful for computation. The method of orthogonal 

matrix offers greater numerical stability. In practical 

solution, the bellow formula can be applied: 
 

2

2

0

T
Xy

y X S
B

β β λβ β
λ

  
− = − +  

   
 

 

where B
�

, is any square root of the matrix S, note that 

B
T
B = S (Wood, 2006). 

This research is used from generalized cross 

validation, GCV, as an evaluator method to trade off the 

validity and accuracy of modelling. GCV has 

computational benefits, in addition, has benefits in terms 

of invariance (Wahba, 1990; Gu, 1992). 

Simulated Data 

This section illustrates the special GPD distribution 

function briefly. The GPD distribution function is belong 

to exponential distributions functions family and has 

three parameters, location: µ∈R, scale: σ>0 and shape 

ξ∈R (Arnold, 2011). If the parameters of shape and 

location be equal to zero, then generalized Pareto 

distribution is equal to exponential distribution. On the 

other hand, the GPD is equal to Pareto distribution where 

shape is considered to be ξ>0 and location is regarded to 

be 
σ

µ
ξ

=  (Coles et al., 2001). 

This paper deals with two types of GPD data: 

Stationary Case 

The meaning of stationary case of GPD distribution 

function is the function which has determined 

parameters. In other words, all parameters such as µ, σ 

and ξ are equal to a specified value, in their defined 

domain and are constant. In order to generate simulated 

stationary data, the inversion method to simulate should 

be applied computing the inversion function of 

stationary case of GPD distribution function makes an 

ability to produce the stationary data: 
 

1

( ; , , ) 1 1 , for 0
x

F x

ξσ
ξσ

σ ξ ξ ξ
ξ σ

−
 − 

= − + ≠      
 (4) 

 
therefore, the inverse of this function will be:  
 

( )
1

, for 
1

y x
x

ξ

σ σ
ξ ξ

 
= ≥ 

−  
 (5) 

 
1( 1)

1
( ; , , ) 1

x
f x

ξσ
ξσ

σ ξ ξ
ξ σ σ

− +
 − 

= +      
 (6) 

 
to calculate the function of MLE, the production of p.d.f 

is called L(θ), where, θ, is representative of all 

parameters: 
 

1( 1)

1

1
( ) 1

n
i

i

x
L

ξσ
ξθ ξ

σ σ

− +

=

 − 
= +      
∏  (7) 

 
consequently:  
 

1

1
log( ( )) log( ) ( 1) log 1 .

n
i

i

x
L n

σ
ξθ σ ξ

ξ σ=

 − 
= − − + +      

∑  (8) 

 

Calculation of maximum likelihood of stationary case 

of GPD distribution function gives an opportunity to 

estimate of parameters and obtains base on probability 

distribution function of GPD:  

Non-stationary case 

Whereas the parameter of location in this case of 

GPD, µt, is equal to t
σ
ξ

, then, the non-stationary case of 

GPD has a trend in its mean while scattering of data is 

increased: 

 

: t
t

tσ σ κ
µ µ

ξ ξ ξ
→ → →  

 

The function after replacement is:  

 

1

, ; , , 1 1

x t

F x t
t

ξ

κ
ξκ

κ ξ ξ
ξ κ

−

   
−        = − +           

 (9) 

 

and the inversion of this function is obtained: 

 

( )1
t

y x
ξκ

ξ
− = −   (10) 

 

The most important usage of maximum likelihood 

function is estimation of unknown parameters. Indeed, 

the duty of this function is to estimate the two 

parameters included σ and ξ. By substitution, the 
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parameter of location automatically is calculated, 

t
t

σ
µ

ξ
= . To get the goal: 

 

1( 1)1
, ; , , 1

x t
t

f x t
t t

ξ

κ
ξκ

κ ξ ξ
ξ κ κ

− +

   
−        = +           

 (11) 

 

suppose that θ, is representative of all parameters, 

therefore, in production: 

 
1( 1)

1

1
( ) 1

i in

i i i

x t

L
t t

ξ
κ
ξ

θ ξ
κ κ

− +

=

   
−   

   = +       

∏  (12) 

 

consequently:  

 

1

1

log( ( )) log( ) log( )

1
1 log 1

n

i

i

i in

i i

L n t

x t

t

θ κ

κ
ξ

ξ
ξ κ

=

=

= − −

   
−        − + +        

   

∑

∑
 (13) 

 

Implementation of Univariate Generalized 

Additive Models for Each Set of Data 

The construction of GAM is based on cubic spline 

basis and penalized regression spline. In fact, in this 

structure, polynomial bases are very useful for 

positions which interest concentrates on attributes of f 

in the neighborhood of a single determined point (Gu, 

1992). However, when the query of interest relates to f 

on its whole domain ([0,1]), the polynomial bases 

have some difficulties on the border. The splines 

bases fulfill well in this circumstances, greatly, 

because spline basis can be illustrated to have good 

approximation theoretic properties. 

First of all, it should be written a function which has 

ability to take a sequence of an array of x values to make 

a model matrix for the spline. Secondly, the only thing 

that remains is to select a sequence of knots, 
i

x∗ . Briefly, 

it is displayed how to deal with these steps inside the 

programming: 

 

• get the knots 

• get the penalty matrices 

• get the model matrix 

Stationary Data 

The feature of histogram and density function of 

GPD in stationary case has been displayed in Fig. 1a. 

As it is observed in Fig. 1b, there are six predicted 

colored lines. Each sub-figure represents a number of 

specified knots which could describe the function of 

GAM only for parameter of location. The fitting of the 

model seems enough reliable and acceptable. Adjusting 

and qualifying the basis dimension, q, is arbitrary. In 

other words, the selection of degree of model 

smoothness which is the number of knots +2, is 

basically optional (Wood, 2006; Durrleman and Simon, 

1989). The arbitrary selection needs to more research 

and means that if a satisfactory theory for modelling 

with smooth function is to be extended, the number of 

knots must be shown. The smoothing parameter, λ, 

controls the specification between model fit and model 

smoothness (Kim and Gu, 2004). If λ = 0, means that 

there is no penalty and if λ→∞, means that something 

like a straight line is going to estimate f (Wood and 

Augustin, 2002; Eilers and Marx, 2010). 

To apply the estimated function effectively, selection 

of q, jx∗  and λ are very significant. Hence, it must be 

considered to an important matter which emphasizes that 

the selecting of number of knots should be large enough, 

which basis functions could provide enough flexibility to 

illustrate f(x). Accordingly, neither the precise of knots 

locations nor the exact selection of number of knots has 

a big influence on the model fit. As regards, the selected 

λ, has a great role in determining model flexibility and 

finally the approximated form of ˆ ( ).f x By determining λ 

= 10
−8

 as a default to originate the program, then λ̂ , with 

respect to minimization is obtained by using this formula 

(Wood and Augustin, 2002): 

 
{ 1}ˆ 1.5 iλ λ−= ∗  (14) 

 

According to Equation 14, λ̂  for stationary data is 

obtained: 

 
43 1 8ˆ 1.5 10 0.2479λ − −= ∗ =  

 

Note that the program begins by a chosen value as a 

default for λ, empirically. In continue, according to the 

GCV function, the fitted model is depicted. In Fig. 1c the 

minimum of GCV function has occurred in point of 43 

and V (i) is equal to 2.396. Indeed, this point is the 

global landmark of this function. According to this 

obtained landmark, it is possible to guess that the fitted 

line has a big curve along itself. The numbers of curves 

during the fitted line are a reaction of global and local 

landmarks of GCV function. Figure 1d is the reference 

for application of minimum GCV function. 
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 (a) (b) 

 

   
 (c) (d) 
 

    
 (e) (f) 
 

   
 (g) (h) 
 
Figure 1. (a, e) density function and histogram of GPD in stationary case and non- stationary case respectively. (b, f) regression 

spline fit in stationary case and in non-stationary case, the brown, red, blue, green, yellow and black depicted graph has 

applied 4, 5, 6, 7, 8 and 9 knots respectively. (c, g) Min GCV functions, stationary: i = 43, V (i) = 2.396 and in non-stationary: 

i = 43, V (i) = 9974.124.  (d, h) optimal fitted model for parameter of location in stationary case and in non-stationary case, 

blue line is depicted based on MLE’s estimation and red line is based on estimation of PRS in GAM. n = 100 
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Non-Stationary Data 

The non-stationary of GPD distribution function 

has a trend in its parameter of location, µt (Hamilton, 

1994). This parameter, itself, is a new function and 

has two parameters such as σ and ξ. In this case σt is 

equal to κt, therefore the µt will be equal to t
κ
ξ

. The 

shape parameter can take any value in the range of 

real number and the scale parameter can take any non-

negative real number. As the µt shows itself, it is a 

linear function without intercept. In this function the 

slope is the t
κ
ξ

. Figure 1h proves that there is no 

intercept for the predicted lines based on this case of 

GPD non-stationary data in the origin of the axes. 

With respect to the properties of µt, the data have two 

specifications simultaneously, the first specification is 

along the coefficient of slope and the second one is 

scattering generally more and more by increasing the 

value of “t” in each step (Dominici et al., 2002). The 

histogram and density function of GPD non-stationary 

function is illustrated in Fig. 1e. The six PRS fitted 

models are located in Fig. 1f. With refer to Fig. 1f, 

each fitted model from these six depicted PRS, 

displays a determined number of knots. Based on 

Equation 14 the computing of λ leads to 0.2479. 

Figure 1g, illustrates that there is a global landmark at 

i = 43 and the value of minimum GCV function at this 

point is 9974.124. Hence, based on global and other 

local landmarks, the final fitted model is impressed 

proportionally to these landmarks Fig. 1h. 

Results and Discussions 

The result of this paper is gathered concisely in 

Table 1 and 2. The explanation of each type of data 

with consideration to related figure is categorized in 

below respectively: 

This panel demonstrates GPD stationary data. An 

illustration of the fitting models to predict the 

parameter of location based on estimated GAM and 

MLE's method are located in Fig. 1d. The blue line 

has been depicted according to MLE's estimations and 

the red one has been drawn based on estimation of 

GAM. These data have got homoscedasticity because 

the data scattered with the same variance. In Table 3, 

has been listed some various sample sizes with n = 20, 

100 and 500. The column of GPD stationary data 

makes the ability to test the comparison of RMSE 

between two estimators. In each sample size, the 

RMSE which is calculated by GAM's estimation is 

less than MLE's method. As it is observed, the 

structure of GAM helps to predict the parameter of 

location better among this type of data. By 

investigating the stationary column in Table 3, after 

increasing the sample size from 100 to 500, a decrease 

has happened in amount of values of GAM's 

estimation for obtaining RMSE. 

Figure 1h displays two predictions for equation of µt 

among the GPD non-stationary data. The µt is equal to 

t
κ
ξ

. Thus, these data have got heteroscedasticity, 

because scattered with different variances. With respect 

to the Fig. 1h, the red line or GAM's prediction, is almost 

a straight line as the blue prediction which is depicted 

based on MLE. As it is realized from this panel, the 

prediction based on GAM has been depicted among the 

data, but the prediction based on MLE, has been drawn 

near the lower threshold of these data. Hence, by 

looking at this phenomenon and before searching Table 

3, it is possible to guess that the estimation by GAM 

has less RMSE for prediction of parameter of location, 

rather than MLE's method. 

 
Table 1. The estimated parameters for stationary GPD distribution based on inversion method. There are three parameters for 

estimation: location, scale and shape. The estimation of location is illustrated by µ̂ , scale by σ̂  and shape by ξ̂ : In this 

table for more accuracy, the range of estimations have been calculated up to three digits after decimal. The true values for µ 

and ξ are 1.2 and 0.12 respectively 

Sample size σ̂   Bias 95% CI 

n = 20 1.83 0.63 (1.28,2.38) 

n = 100 1.37 0.17 (1.206,1.534) 

n = 500 1.33 0.13 (1.261,1.399) 

Sample size ξ̂  Bias 95% CI 

n = 20 0.167 0.047 (0.117,0.217) 

n = 100 0.129 0.009 (0.106,0.152) 

n = 500 0.127 0.007 (0.107,0.147) 

Sample size 
ˆ

ˆ
ˆ

σ
µ

ξ
=  Bias 95% CI 

n = 20 10.96 0.96 (9.170,12.720) 

n = 100 10.65 0.65 (9.430,11.860) 

n = 500 10.48 0.48 (9.350,11.610) 
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Table 2. The estimated parameters for non-stationary GPD distribution according to inversion method. The three parameters are: 

Location, scale and shape. The estimation of parameters are demonstrated for scale by σ̂ , shape by ξ̂ ; therefore, the 

illustration of estimation of location will be 
ˆ

ˆ
t

t

σ
µ

ξ
= , note that: ˆ

t ktσ = . In this table, for more accuracy the estimations have 

been calculated based on three digits after decimal. True values for k and ξ are: 1.2 and 0.12 respectively 

Sample size κ̂  Bias 95% CI 

n = 20 1.90 0.70 (-0.746,4.546) 

n = 100 1.35 0.15 (-0.260,2.980) 

n = 500 1.27 0.07 (0.976,1.560) 

Sample size ξ̂  Bias 95% CI 

n = 20 0.175 0.055 (-0.073,0.433) 

n = 100 0.132 0.012 (-0.026,0.239) 

n = 500 0.126 0.006 (0.082,0.170) 

Sample size 
ˆ

ˆ
ˆ

κ
µ

ξ
=  Bias 95% CI 

n = 20 10.86 0.86 (9.79,11.93) 

n = 100 10.26 0.26 (9.89,10.63) 

n = 500 10.08 0.08 (9.95,10.21) 

 
Table 3. A comparison by RMSE over parameter of location for GPD data in stationary and nonstationary cases between estimations 

based on estimated GAM and method of MLE 

  RMSE Types of GPD Data 

---------------------------------------------------------------------------------------------------------------------------------------------------------------- 

 Stationary  Non-Stationary µτ 

Sample size ---------------------------------------------------------- -------------------------------------------------------- 

 MLE Est. Based on GAM MLE Est. Based on GAM 

n = 20 4.291 1.327 88.172 26.137 

n = 100 14.069 1.978 651.184 101.437 

n = 500 24.194 1.637 7370.33 462.037 

 

The column which displays the non-stationary case in 

Table 3, is contain the calculated RMSE for different 

sample sizes. According to Table 3, by increasing the 

number of data in each sample size, the RMSE based on 

MLE's method, increases much more than the RMSE 

which has been calculated according to GAM's estimation. 

In estimation based on MLE in Table 3, there is just 

growth in value of RMSE with raising the sample size, but 

in estimation according to GAM, for n = 500, there is a 

decrease in calculated RMSE rather than n = 100. 

Conclusion 

The concentration and focus of studying in this study 

is over parameter of location. The results of this paper 

illustrate the extension of conception of generalized 

additive models in order to evaluate the accuracy of 

estimation of parameter of location. This development 

is displayed by related figures. In addition, the 

parameter of location is monitored by method of MLE, 

as well. In order to compare the amount of accuracy of 

estimation of parameter of location 1 is prepared. 

According to RMSE values, the amount of accuracy of 

estimation of parameter of location based on PRS in 

GAM is better than Method of MLE via GPD models. 

In general terms, the finding illustrate that the 

estimation based on GAM has less root mean square of 

errors, hence, the estimation based on GAM is more 

powerful than findings based on MLE. 
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